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Abstract

Background: Distance-based phylogenetic reconstruction methods use evolutionary distances between species in
order to reconstruct the phylogenetic tree spanning them. There are many different methods for estimating distances
from sequence data. These methods assume different substitution models and have different statistical properties.
Since the true substitution model is typically unknown, it is important to consider the effect of model misspecification
on the performance of a distance estimation method.

Results: This paper continues the line of research which attempts to adjust to each given set of input sequences a
distance function which maximizes the expected topological accuracy of the reconstructed tree. We focus here on
the effect of systematic error caused by assuming an inadequate model, but consider also the stochastic error caused
by using short sequences. We introduce a theoretical framework for analyzing both sources of error based on the
notion of deviation from additivity, which quantifies the contribution of model misspecification to the estimation error.
We demonstrate this framework by studying the behavior of the Jukes-Cantor distance function when applied to data
generated according to Kimura’s two-parameter model with a transition-transversion bias. We provide both a
theoretical derivation for this case, and a detailed simulation study on quartet trees.

Conclusions: We demonstrate both analytically and experimentally that by deliberately assuming an oversimplified
evolutionary model, it is possible to increase the topological accuracy of reconstruction. Our theoretical framework
provides new insights into the mechanisms that enables statistically inconsistent reconstruction methods to
outperform consistent methods.
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Introduction
Phylogenetic reconstruction is the task of determining the
topology of an evolutionary tree underlying a given set
of samples (species) using sequence data extracted from
them. This is typically done by assuming some simpli-
fied model for DNA sequence evolution, in most cases
modeling it as a homogeneous continuous-time Markov
process [1-3]. Distance-based reconstruction algorithms
tackle this task by first computing a set of

(n
2
)

pairwise dis-
tances between the n input samples and then finding a tree
which fits these distances. The distance measures used for
this purpose typically reflect the rates of certain substitu-
tion events along the evolutionary paths in question. We
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thus refer to these distance measures as substitution rate
(SR) functions. The distance-based approach is based on
the fact that if the SR function used is additive for the
underlying substitution model, and the input sequences
are sufficiently long, then the topology of the true tree
can be efficiently recovered with high probability. How-
ever, since the underlying evolutionary model is usually
unknown, this assumption is rarely satisfied in practice.

Substitution models used for phylogenetic reconstruc-
tion range from the simplest Jukes-Cantor (JC) model
[4], through slightly more complex and flexible mod-
els, such as Kimura’s two-parameter (K2P) model [5]
and the Hasegawa-Kishino-Yano model (HKY) [6], to
the General Time-Reversible (GTR) model [7,8]. In
previous works [9,10] we observed that substitution
models which are not too restrictive or too general
have many inherently different additive SR functions.
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We used this basic observation to demonstrate that it is
possible to adjust for each given set of DNA sequences
a “good” additive SR function, which leads to signif-
icantly increased phylogenetic reconstruction accuracy,
compared to other additive SR functions. This exploits
our ability to predict the stochastic noise associated with
each SR function. When the SR function used for dis-
tance estimation is additive for the underlying substitution
model, this stochastic noise is the only cause for inaccu-
rate reconstruction. However, in the scenario, which is
very common in practice, where the SR function in use is
not additive for the model, an additional systematic bias
is introduced in the distance estimates. This systematic
bias in distance estimation results in a phylogenetic recon-
struction method that might be statistically inconsistent
in some cases. In this papera, we extend our previous line
of research to this scenario, by removing the constraint of
additivity. We do this by considering both the stochastic
noise and systematic error.

Several previous studies have demonstrated the util-
ity of phylogenetic reconstruction methods that are not
generally statistically consistent. The maximum parsi-
mony method has been long known to be inconsistent
in some cases [11,12]. However, in other cases it was
shown to be more likely to produce accurate reconstruc-
tions, compared with the maximum likelihood method
[13-15]. More recently, it has been demonstrated that
reconstruction accuracy can be improved by deliberately
assuming an oversimplified substitution model, when
reconstructing a tree using maximum likelihood [16,17].
In the context of distance-based reconstruction, non-
additive distance measures have been shown in several
cases to lead to improved accuracy when compared with
additive measures [18,19]. Overall, these studies provide
convincing evidence for the need to consider incon-
sistent phylogenetic reconstruction methods. However,
none of them provide a rigorous framework for character-
izing the cases in which inconsistent methods outperform
consistent ones.

In this paper we develop a theoretical framework which
provides a practical and systematic way to quantify the
effect of distance-estimation-bias on the accuracy of
distance-based reconstruction. This framework is based
on a novel method for measuring the deviation from addi-
tivity of SR functions. Coupled with the results in [9],
this method enables evaluation of both the systematic bias
and stochastic noise of SR functions. Such evaluation is
important, because there is often a tradeoff between these
two sources of error, stemming from the fact that simpler
models with fewer parameters (such as JC) have smaller
stochastic noise at the expense of greater estimation bias.
Our framework allows us to consider this tradeoff when
deciding which SR function to use for a given data set.
This allows us to characterize a wide range of cases in

which an SR function associated with an oversimplified
evolutionary model results in increased reconstruction
accuracy.

This finding falls in line with previous studies demon-
strating the usefulness of phylogenetic reconstruction
methods that are not generally consistent. Previous stud-
ies have attributed the increased accuracy of inconsis-
tent methods mainly to the fact that these methods
have a bias toward reconstructing certain topologies,
leading to increased accuracy in cases where the phy-
logeny being reconstructed has the “favored topology”.
We notice a similar behavior using our theoretical
characterization of non-additive SR functions. However,
somewhat surprisingly, we find that non-additive SR
functions often have an advantage even when the phy-
logeny being reconstructed has an “unfavorable topol-
ogy”. This is due to the reduced stochastic noise of
the non-additive SR function (compared with it addi-
tive alternatives), which compensates for its topological
bias.

Our paper is organized as follows. Section “Background”
outlines some of the required background and introduces
several new concepts that are central in our analysis.
Section “Deviation from Additivity in Homogeneous Sub-
stitution Models” provides the main analytic results in
the paper, and introduces deviation from additivity as a
measure of distance estimation bias. In that section we
prove a general upper bound for this deviation and estab-
lish a connection with reconstruction accuracy. We then
study deviation from additivity and stochastic error of
the JC distance formula when applied to data generated
under the K2P model. In Section “Performance of Non
affine-additive SR Functions in Quartet Resolution” we
study the effect of deviation from additivity and stochas-
tic error on the accuracy of quartet reconstruction. In the
case of quartets we can draw a tight connection between
the different sources of error in distance estimation and
inaccuracy of reconstruction. We present a useful heuris-
tic, based on the so-called Fisher criterion ([20,21]), for
comparing the expected accuracy of two SR functions in
this context. In Section “Simulations on Hasegawa’s Tree”
we extend our study to larger trees using experiments on
simulated data based on the tree obtained by Hasegawa
in [6]. Finally, In Section “Inferring Trees from Genomic
Sequences” we demonstrate our approach through a series
of experiments reconstructing trees from bacterial gene
sequences.

Background
In this section we provide a brief exposition of DNA sub-
stitution models and substitution rate functions used for
distance estimation. We concentrate on details essential to
this study and refer the reader to a previous paper [9] and
standard textbooks [1,2] for a more complete survey.



Doerr et al. Algorithms for Molecular Biology 2012, 7:22 Page 3 of 16
http://www.almob.org/content/7/1/22

Substitution Models
In this work, a DNA substitution model M is simply a
set of stochastic 4 × 4 transition matrices closed under
matrix product (i.e., P, Q ∈ M → PQ ∈ M). These
matrices serve to describe the substitution process along
evolutionary paths in a phylogenetic tree. All substitution
models addressed in this paper are time-reversible [7]. A
model tree in a time reversible substitution model M, or
an M-tree, is an undirected tree T = (V , E) in which each
edge e ∈ E is associated with a transition matrix Pe ∈
M. An M-tree T implies an inter-leaf transition matrix
Pij ∈ M for each pair of leaves {i, j} ⊂ L(T), namely Pij =∏

e∈pathT (i,j) Pe. Most common models are defined using
rate matrices, which are 4×4 matrices whose off-diagonal
elements are non-negative substitution rates, and whose
rows sum to 0. A stochastic transition matrix P is obtained
from a rate matrix R through matrix exponentiation:
P = eR.

A common assumption made on the substitution pro-
cess is that it is homogeneous throughout time. This means
that all rate matrices in the model are proportional to
each other. Such a substitution model is thus termed
homogeneous, and it is defined by a unit rate matrix R
as follows: MR = {etR : t > 0}. Note that the def-
inition of the unit rate matrix associated with a given
homogeneous model is somewhat arbitraryb, but once
the unit R is defined, it implies a bijection (or equiv-
alence) between rate matrices in MR and the parame-
ter t, which corresponds to evolutionary time. We will
make use of this equivalence extensively throughout this
paper.

We use the Kimura’s two-parameter (K2P) model [5] as a
concrete example for demonstrating our approach. A rate
matrix in this model is defined by two rate parameters:
α, which is the rate of transition-type (ti) substitutions
(A ↔ G, C ↔ T), and β , which is the rate of transver-
sion-type (tv) substitutions ({A,G} ↔ {C,T}). Each K2P
rate matrix can be represented as a product of a unit rate
matrix, in which α + 2β = 1, and a scalar t corresponding
to evolutionary time.

MK2P =
{

etRα,β | t > 0, α ≥ β > 0, α + 2β = 1
}

;

Rα,β =

⎛⎜⎜⎜⎝
− α β β

α − β β

β β − α

β β α −

⎞⎟⎟⎟⎠
(1)

Each unit rate matrix of the K2P model defines a homo-
geneous sub-model, which is identified by its unique

transition-transversion (ti-tv) ratio R = α
2β

≥ 1
2 . The

Jukes-Cantor (JC) model [4] is a special homogeneous
sub-model of K2P, in which R = 1

2 (i.e., α = β). Although
the K2P model is defined in (1) as a union of its homoge-
neous sub-models, it is important to note that this union
is closed under matrix product, implying that K2P adheres
to our definition of a proper substitution model. Con-
versely, some commonly used substitution models, such
as GTR and HKY, are defined as a union of homoge-
neous models, but are not themselves closed under matrix
product [22].

Transition matrices in the K2P model have the same
symmetric structure as the underlying rate matrices, with
two distinct transition parameters: pα – the probabil-
ity of a transition-type substitution; pβ – the probability
of a transversion-type substitution. The transformations
between (α, β , t) and (pα , pβ) are given by the following
equations:

αt = − 1
2

ln(1 − 2pβ − 2pα) + 1
4

ln(1 − 4pβ)

βt = − 1
4

ln(1 − 4pβ) .
(2)

pα = 1
4

(
1 + e−4βt − 2e−2αt−2βt)

pβ = 1
4

(
1 − e−4βt) .

(3)

Substitution rate functions
A substitution rate (SR) function for a model M is a non-
negative continuous function � : M → R

+ that maps
each transition matrix onto a numerical value of “sub-
stitution rate”. An SR function � induces the following
dissimilarity mapping over the leaves of an M-tree T :
DT

�(i, j) = �(Pij), for all {i, j} ⊂ L(T). Of particular
interest in phylogenetic reconstruction are additive SR
functions.

Definition 2.1 (Additive SR function). An SR function
� is said to be additive for a substitution model M if for
all P, Q ∈ M, �(PQ) = �(P) + �(Q).

It is often explicitly required that an SR function be addi-
tive for the assumed model (see [9]). The evolutionary
time, t, typically serves as the standard additive measure
in most common substitution models. Throughout this
study we follow the special case of K2P, focusing on the
two SR functions defined below.
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�K2P(pα , pβ) = −1
2

ln(1 − 2pβ − 2pα) − 1
4

ln(1 − 4pβ)

= αt + 2βt = t .
(4)

�JC(pα , pβ) = −3
4

ln
(

1 − 4
3
(pα + 2pβ)

)
= − 3

4
ln

(
1
3
(e−4βt + 2e−2αt−2βt)

)
.

(5)

The first SR function, �K2P, is the common SR func-
tion suggested for the K2P model in [5], and it is clearly
additive, as it maps the transition probabilities onto evo-
lutionary time t. The second SR function, �JC, maps the
transition probabilities onto evolutionary time only in the
special case of the JC model where α = β . Under other
homogeneous sub-models of K2P, it is non-additive. This
non-additivity is analyzed in details in section Deviation
from Additivity in Homogeneous Substitution Models.

Additive metrics, Affine-additive mappings, and
Near-additivity
The core idea behind distance-based phylogenetic recon-
struction is that a phylogenetic tree T can be accurately
and efficiently reconstructed from pairwise distances
which are additive with respect to T [23,24].

Definition 2.2 (Additive metric). A metric D defined
over the leaf-set L(T) of a tree T is T-additive (or additive
w.r.t T), if there exists a positive edge-weighting function
w : E(T) → R

+, such that for each i, j ∈ L(T), D(i, j) =∑
e∈pathT (i,j) w(e). D is additive for a set S if it is T-additive

for some tree T where L(T) = S.

It is well known that additive SR functions imply addi-
tive metrics: if � is an additive SR function for a model
M, then for any M-tree T, DT

� (the dissimilarity map-
ping induced by � on T) is a T-additive metric. The
inherent difficulty in reconstructing phylogenies using
additive SR functions is that computing the implied T-
additive metric requires the exact values of the inter-taxon
transition matrices {Pij}, and getting these exact values
from alignments of finite length is practically impossible.
Therefore, a distance-based reconstruction algorithm is
useful in a realistic setting only if it has some robustness
to error in distance estimation. In [25], Atteson observed
that the topology of a phylogenetic tree T can be accu-
rately (and efficiently) reconstructed from any dissimilar-
ity mapping D which is sufficiently close to a T-additive
metric, using certain “robust” distance-based algorithmsc.

Formally, “sufficiently close” is defined by the following
relation:

Definition 2.3 (Near-additive mapping). A dissimilar-
ity mapping D on L(T) is said to be near-additive w.r.t. T
iff there exists a T-additive mapping D� s.t.

||D, D�||∞
(

�= max
{i,j}⊂L(T)

{|D(i, j)−D�(i, j)|}
)

<
1
2

wmin(D�) ,

(6)

where wmin(D�) is the minimal weight assigned to an inter-
nal edged by the edge weighting function corresponding to
the additive metric D�.

For our results we will be using a generalization of this
criterion, in which the mapping D� can be any affine-
additive mapping, defined below.

Definition 2.4 (Affine-additive mapping). A dissimilar-
ity mapping D′ is said to be affine-additive w.r.t. a phyloge-
netic tree T, if there is a T-additive metric D, and scalars
a > 0, b s.t. D′ = aD + b (i.e., D′(i, j) = aD(i, j) + b for all
{i, j} ⊂ L(t)).

As with additive metrics, affine-additive mapping are
also associated with edge weights. Let D be a T-additive
mapping corresponding to the edge-weighting function
w(·). Then the edge weighting function w′(·) correspond-
ing to the affine additive mapping D′ = aD + b is given
by: w′(e) = aw(e) for all internal edges, and w′(e) =
aw(e) + 1

2 b for all external edges. When b is positive,
D′ is actually an additive metric, but when b is negative,
the weights of external edges implied by w′(·) might be
negative, and D′ might even yield negative dissimilarities.
The generalization of Atteson’s theorem to cases where
D� is affine-additive follows from the observation that the
robust distance-based reconstruct algorithms considered
by Atteson are invariant to affine transformations of their
input distances. From this point on, when we say a dissim-
ilarity mapping D is near additive, we mean it satisfies (6)
with respect to some affine-additive mapping D�.

Local consistency
Atteson’s result plays a central role in arguing the sta-
tistical consistency of distance-based phylogenetic recon-
struction. Typically, this is done by assuming that the
inter-leaf distances are computed using an SR function �

which is additive for the underlying substitution model
M, as follows:

1. If � is additive for M, then for each M-tree T the
mapping DT

� defined by DT
�(i, j) = �(Pij) for all

i, j ∈ L(T), is a T-additive metric.
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2. As the length of the input sequences grows, the
estimated transition matrices {P̂ij} converge (w.h.p.)
to the true matrices {Pij}.

3. When {P̂ij} are sufficiently close to {Pij}, the
estimated dissimilarity map D̂ defined by
D̂(i, j) = �(P̂ij) is sufficiently close to DT

�, and is thus
near-additive.

4. The near-additivity of the estimated dissimilarity
map D̂ implies accurate topological reconstruction,
assuming a robust distance-based algorithm is used.

This line of argument has been used in numerous
works studying statistical consistency of distance-based
algorithms (e.g., [25-27]), and in all these cases an addi-
tive SR function is assumed. Notice, however, that this
line of argument remains valid when DT

� is near addi-
tive w.r.t. T. For instance, consistent reconstruction of
any M-tree is guaranteed by using an affine-additive SR
function �′, which is an affine transformation of some
additive SR function �: �′ = a� + b (with a > 0). An
SR function that is not affine-additive in a given substi-
tution model M does not guarantee consistency across
all M-trees, but it still can be consistent for specific
M-trees.

Definition 2.5 (Consistent SR function). An SR function
� of a substitution model M is said to be consistent w.r.t.
an M-tree T if DT

� is near-additive w.r.t T.

The main idea endorsed in this paper is that if an SR
function only deviates slightly from some SR function
which is affine-additive for M, then it might be con-
sistent with respect to many M-trees of interest, and
as such should be considered for use in distance based
reconstructions.

Deviation from additivity in homogeneous
substitution models
In order to assess whether a given SR function � is con-
sistent w.r.t. a given model tree T , one has to find an
affine-additive mapping D� which minimizes the ratio
||DT

�,D�||∞
wmin(D�)

(see Definition 2.3). This task seems hard in a
general setting, but in the special case of homogeneous
substitution models it is tractable. Consider a homo-
geneous substitution model MR. The unit rate matrix
R implies a 1-1 mapping between evolutionary time t
and rate matrices in MR. It is thus useful to view an
SR function for MR as a function � : R

+ → R
+

which maps the evolutionary time t to a dissimilarity
measure �(t).

It can be shown that such � is affine-additive in the
model if and only if �(t) = at +b for some a ∈ R

+, b ∈ R.
We define the deviation of an SR function � from a given
affine-additive function at + b in an interval [ t0, t1] as

1
a max{|�(t)−at−b| : t ∈[ t0, t1] } (the factor 1

a normalizes
the deviation to units of evolutionary time). The deviation
from additivity of � within [ t0, t1] is defined as the min-
imum deviation of � from any affine-additive function in
that interval.

Definition 2.6 (Deviation from additivity). Let � :
R

+ → R
+ be an SR function in a homogeneous substi-

tution model. The deviation from additivity of � in an
interval [ t0, t1] is defined by:

dev(�, [ t0, t1] )
�= inf

a∈R+,b∈R

{
max

t∈[t0,t1]

{ |�(t) − at − b|
a

}}
.

(7)

Lemma 2.7 below presents the basic relation between
deviation from additivity and consistency. In Section Per-
formance of Non affine-additive SR Functions in Quartet
Resolution we demonstrate the tightness of this relation.

Lemma 2.7. Let M be a homogeneous model, and let T
be an M-tree with edge lengths (measured in time units)
denoted by {te}. Let tmin = min{te : e ∈ T}, and
assume that all inter-leaf distances in T fall within the
interval [ t0, t1]. Then any SR function � in M for which
dev(�, [ t0, t1] ) < 1

2 tmin is consistent w.r.t. T.

Proof. We need to show that DT
� is near-additive w.r.t.

T . Since dev(�, [ t0, t1] ) < 1
2 tmin, there are a ∈ R

+, b ∈ R

which satisfy

max
t∈[t0,t1]

{ |�(t) − at − b|
a

}
<

1
2

tmin.

For all i, j ∈ L(T), denote tij = ∑
e∈pathT (i,j) te, and let

D be the dissimilarity map associated with evolutionary
time: D(i, j) = tij. Clearly, D is an additive metric, and the
dissimilarity mapping D′ = aD + b is an affine-additive
mapping. The internal-edge-weights associated with D′
are given by w′(e) = at(e) (see discussion following
Definition 2.4), implying that wmin(D′) = atmin. We thus
have:

||D′, DT
�||∞ ≤ max

t∈[t0,t1]
{|�(t) − at − b|}

<
1
2

atmin = 1
2

wmin(D′) .

An upper bound on the deviation of an SR func-
tion � from additivity in a given interval [ t0, t1] is
implied from the error associated with its linear inter-
polation At + B within that interval (A = �(t1)−�(t0)

t1−t0
and
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B = t1�(t0)−t0�(t1)
t1−t0

). Figure 1a demonstrates this for �JC
under a homogeneous sub-model of K2P, and Lemma 2.8
below presents a general upper bound on the deviation
from additivity. For this purpose, we assume that the SR
function � is a monotone increasing continuous function
of t with continuous first and second derivatives.

Lemma 2.8. Let � : R
+ → R

+ be an SR function
in a homogeneous substitution model, and let [ t0, t1] be
an interval. Let �int(t) = At + B be the linear inter-
polation of � in [ t0, t1] defined above, and let F �=
maxt∈[t0,t1]{|�′′(t)|}. Then

dev(�, [ t0, t1] ) ≤ (t1 − t0)2F
16A

. (8)

Proof. Let us start by introducing a couple of auxiliary
notations:

ψ(a, b, t) = �(t) − at − b
ψ(a, b) = max

t∈[t0,t1]
{|ψ(a, b, t)|} .

We are looking for a ∈ R
+ and b ∈ R which mini-

mize 1
aψ(a, b). Let ψmin = mint∈[t0,t1]{ψ(A, B, t)}, ψmax =

maxt∈[t0,t1]{ψ(A, B, t)}, and let b∗ = B + 1
2 (ψmax +

ψmin). Then ψ(A, b∗) = 1
2 (ψmax − ψmin). A bound for

dev(�, [ t0, t1] ) will thus follow by showing that ψmax −
ψmin ≤ (t1−t0)2F

8 .
Since �int(t) = At + B is a linear interpolation of

� in [ t0, t1], we have ψ(A, B, t0) = ψ(A, B, t1) = 0.
Let tmin be an arbitrary point in the interval [ t0, t1] s.t.
ψ(A, B, tmin) = ψmin ≤ 0 and let (t2, t3) be the max-
imal open interval in [ t0, t1] containing tmin in which
ψ(A, B, t) < 0 (this interval can be empty if ψmin = 0).
We define a similar interval (t4, t5) in which ψ(A, B, t) > 0
around some arbitrary tmax s.t. ψ(A, B, tmax) = ψmax.
Note that the intervals (t2, t3) and (t4, t5) are disjoint, and
that �int is the linear interpolation of � in both these
intervals (since ψ(A, B, t2) = ψ(A, B, t3) = ψ(A, B, t4) =
ψ(A, B, t5) = 0). Therefore, the bound on the error of
polynomial interpolation (see, e.g., [28], p. 187) implies
that

ψmin ≥ − (t3 − t2)2F
8

and ψmax ≤ (t5 − t4)2F
8

,

Combining these, we get

dev(�, [ t0, t1] ) ≤ 1
A

ψ(A, b∗) = 1
2A

(ψmax − ψmin)

≤
(
(t5 − t4)2 + (t3 − t2)2) F

16A

≤ (t1 − t0)2F
16A

.

(9)

Note. In Appendix 3 we prove that if � does not inter-
sect its linear interpolation �int = At + B within the
interval (t0, t1), then the function At+b∗ mentioned in the
proof above is, in fact, the affine-additive function which
minimizes the deviation from additivity of � in [ t0, t1].
This means that, in such cases, the first inequality in (9)
holds in equality. The last inequality in (9) also holds in
equality in such cases, because we are guaranteed to have
either [ t2, t3] =[ t0, t1] (when � is bounded from above
by its linear interpolation) or [ t4, t5] =[ t0, t1] (when � is
bounded from below by its linear interpolation). Thus, in
such a case, the bound of Lemma 2.8 is reduced to the
bound on interpolation error (middle inequality in (9)).
Cases where � does not intersect its linear interpolation
are frequent among many SR functions of interest, as this
condition holds when � is either convex or concave.

Deviation of �JC from Additivity in K2P
We now turn to study the deviation of �JC from additivity
in homogeneous sub-models of K2P with ti-tv ratio R >
1
2 . First, we express �JC as a function of the ti-tv ratio R
and the time t, using (5) and the relations α

2β
= R and

α + 2β = 1.

�JC(R, t) = −3
4

ln
(

1
3
(e−4βt + 2e−2αt−2βt)

)
= −3

4
ln

(
1
3
(e− 2t

R+1 + 2e−t 2R+1
R+1 )

)
= −3

4
ln

(
1
3

e− 2t
R+1

(
1 + 2et 2R−1

R+1
))

=
(

3
2(R+1)

)
t− 3

4
ln

(
1
3

(
1+2e−t 2R−1

R+1
))

.

(10)

Note that the homogeneous K2P sub-model with R =
1
2 is the JC model; in this case the second term of (10)
vanishes, leaving �JC( 1

2 , t) = t. For other homogeneous
sub-models of K2P, where R > 1

2 , �JC is not affine-
additive (i.e., not of the form at + b for a > 0), and we can
use the result in Lemma 2.8 to bound the deviation of �JC
from additivity. Denoting ρ = 2R−1

R+1 , we get

∂�JC(R, t)
∂t

= 3
2(R + 1)

+ 3
2
ρ

e−ρt

1 + 2e−ρt > 0 .

(11)

∂2�JC(R, t)
∂t2 = −3

2
ρ2 e−ρt

(1 + 2e−ρt)2 < 0 . (12)

∂3�JC(R, t)
∂t3 = 3

2
ρ3 (1 − 2e−ρt)e−ρt

(1 + 2e−ρt)3 . (13)
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Figure 1 Deviation from additivity and stochastic error. (a) �JC is portrayed (green) in the homogeneous sub-model of K2P with R = 10 in the
interval t ∈[ 0.8, 2]. Its linear interpolation in that interval, �int = At + B, is plotted in blue, and the maximum difference between the two functions
is designated by X. The deviation of �JC from additivity in this setting is X

2A . (b) The affine-additive SR function minimizing its deviation from �JC is
�∗ = �int + 1

2 X . The two SR functions �JC and �∗ are shown with their stochastic error margins, assuming sequence length of 500 bp.

We get that for any given ti-tv ratio R > 1
2 , �JC(R, t)

is a concave monotone increasing function, and its sec-
ond derivative attains a global minimum of − 3

16ρ2 at
t = ln(2)

ρ
. By the note following Lemma 2.8, the devia-

tion of �JC from additivity in an interval [ t0, t1] can be
evaluated by computing the linear interpolation �int =
At + B of �JC in [ t0, t1], and finding t ∈[ t0, t1] which
maximizes �JC(t) − �int(t) (see Figure 1a). A bound on
this deviation from additivity can be obtained through
Lemma 2.8 by plugging in the slope of the linear inter-
polation, A, and the maximum value, F , attained by the
second derivative of �JC in [ t0, t1]. Using Lemma 2.7 and
an expression for dev(�JC(R, t) , [ t0, t1] ), it is possible to
map out coherent collections of homogeneous K2P-trees
for which �JC is guaranteed to be consistent. Each col-
lection is defined by a range of ti-tv ratios [ 0.5, Rmax], a
range of inter-leaf distances [ t0, t1], and a lower bound on
the weights of internal edges in the tree, given by tmin =
2dev(�JC(Rmax, t) , [ t0, t1] ).

After determining a collection of trees for which a given
non-affine-additive SR function, �, is consistent, one can
compare the performance of � with additive alternatives.
In our case, we compare � = �JC, which is not affine
additive when R > 1

2 , to the standard additive SR function
�K2P. The potential advantage of �JC over �K2P lies in its
reduced stochastic noise. Informally, this occurs because
JC relies on the accuracy of estimating a single parameter
- the sum p = pα + 2pβ , while �K2P relies on the accuracy
of estimating each of the two parameters pα and pβ sepa-
rately. The stochastic noise of an SR function is measured
by the standard deviation of the statistical estimator asso-
ciated with it, denoted σ(�JC) and σ(�K2P), respectively.
We use the result in [9] to get a first order approximation

(based on the delta method [29]) of σ(�K2P) for sequences
of length k and model parameters R, t:

σ(�K2P)

≈
√

(e
4t

R+1 − 1) + 4(e
2t

R+1 −1) + 2(e
4Rt
R+1 (e

4t
R+1 + 1) − 2)

16k
.

(14)

By a similar application of the delta method to �JC, we
obtain:

σ(�JC) ≈
√

p(t, R) (1 − p(t, R))

k (1 − 4
3 p(t, R))2

, (15)

where k is the sequence length and p(t, R) = pα + 2pβ =
3
4 − 1

4 e− 2t
R+1 − 1

2 e− (2R+1)t
R+1 (see (3)).

Figure 1 provides an illustrative comparison of �JC and
�K2P under the homogeneous sub-model of K2P with ti-
tv ratio R = 10, and within the inter-leaf time interval
of [ 0.8, 2]. Figure 1a shows the deviation of �JC from
additivity in that setting, using its linear interpolation
�int = At + B. Note that Lemma 2.8 and the subse-
quent note imply that dev(�JC, [ 0.8, 2] ) = X

2A , where
X = maxt∈[0.8,2]{�JC(t) − �int(t)}. Figure 1b depicts
�JC in the same setting with its stochastic error margins
(�JC ± σ(�JC)), alongside its closest affine-additive func-
tion �∗ = �int+ 1

2 X and its stochastic error margins (�∗±
σ(�∗)). These stochastic error margins are determined by
assuming a sequence length of 500 bp in the first-order
approximations given in (14) and (15), where σ(�∗) is
given by scaling σ(�K2P) by the slope A of the linear inter-
polation. Note how the margins of �JC are actually more
tightly concentrated around its affine-additive approxi-
mation �∗ than the margins of �∗. This implies that,
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despite its deviation from additivity in this setting, dis-
tances obtained using �JC are actually more likely to be
near-additive than distances obtained using �K2P.

Performance of Non affine-additive SR functions in
quartet resolution
The quartet tree is the smallest phylogenetic tree with
non-trivial topology. Focusing on quartets enables a close
study of the effects of deviation from additivity and
stochastic noise on reconstruction accuracy. The topology
of a quartet spanning four taxa {1, 2, 3, 4} can be repre-
sented by the split notation (ij|kl) (where {i, j, k, l} =
{1, 2, 3, 4}), indicating that the internal edge of the quartet
separates i, j from k, l. All distance based quartet res-
olution algorithms essentially reduce to the four-point
method (FPM) [26,30], which resolves this split using the
six observed pairwise distances {̂dij : {i, j} ⊂ {1, 2, 3, 4}}: it
first partitions the six observed distances into three sums
d̂12+d̂34, d̂13+d̂24, and d̂14+d̂23, and then determines the
quartet split according to the minimal sum (the sum d̂ij +
d̂kl corresponds to the split (ij|kl)). We will focus on the
task of reconstructing homogeneous K2P quartets using
FPM with distances {̂dij} estimated using either �JC or
�K2P. We note that most of our findings easily generalize
to more sophisticated homogeneous substitution models,
replacing �JC by any concave distance function and �K2P
by some SR function corresponding to the evolutionary
time t.

For concreteness, we assume henceforth that the quar-
tet split is (12|34), meaning that the sum of the exact
evolutionary times t12 + t34 is minimal. We start by ana-
lyzing the impact of the deviation from additivity of �JC
on the consistency of quartet resolutions. First, observe
that any monotone distance function is consistent for
quartets in which t12 and t34 are the smallest interleaf dis-
tances - as is the case with symmetric quartets, in which
all external edges are of the same length. Therefore, we
study two prototypes of asymmetric quartets. The length
of the internal edge in both types is ti, and each type
has two long external edges of length tl, and two short
external edges of length ts.In type A quartets (Figure 2a),
the short edges are on one side of the split and the long
edges are on the other side. In this case d12 and d34 are
the smallest and largest interleaf distances (resp.). Hence,
the concavity of �JC increases the separation between the
sum d12 + d34 and the other two competing sums, leading
to an expected improvement in reconstruction accuracy.
The other quartet configuration (type B; Figure 2b) has
a short edge and a long edge on both sides of the split.
In this case, the interval of interpolation is [ d13, d24], and
the distance d12 = d34 is near the center of this inter-
val. Thus the concavity of �JC decreases the separation
between the sums d13+d24 and d12+d34 by approximately

twice the deviation from additivity of �JC in that
range.

When the deviation from additivity exceeds half the
length of the internal edge, the sum d13 +d24 becomes the
minimal sum, and �JC becomes inconsistent. Note that
this demonstrates the tightness of the condition stated in
Lemma 2.7, and in this sense, type B quartets provide a
worst case scenario for quartet resolution by a concave
SR functione.

Next we turn to compare the accuracy of �JC with
that of �K2P when used to reconstruct its “worst case
scenario” quartets of type B. Interestingly, �JC ends up
outperforming �K2P on many of these quartets, due to
its reduced stochastic noise (as predicted in our dis-
cussion revolving around Figure 1b). For example, con-
sider a series of homogeneous K2P quartets of type B
with ti-tv ratio R = 5, whose edge lengths were set
as follows: ti = 0.2, tl = 1.0, and ts ∈[ 0.2, 1.0].
We assessed reconstruction accuracy for both SR func-
tions (�JC and �K2P) across this series of quartets, by
generating 100,000 simulations of the substitution pro-
cess using 1,000 bp long sequences for each quartet
(Figure 3a). Despite its deviation from additivity, �JC
outperforms the additive SR function �K2P on many
of these quartets (as long as tl/ts < 3.6) . Note
that as ts shrinks, the deviation of �JC from additiv-
ity increases, since the interval [ t0, t1] expands. This
experiment appears to indicate that the deviation of
�JC from additivity has to be quite large for �K2P to
outperform it.

Fisher’s criterion for separability
We now present a simple and general framework based on
the so-called Fisher Criterion (FC) for predicting the rel-
ative accuracy of two SR functions in resolving quartets.
FC measures the effective separation between normal ran-
dom variables X ∼ N(μ1, σ1) and Y ∼ N(μ2, σ2) using
the following measuref ([20,21]):

FC(X, Y ) = |μ1 − μ2|√
σ 2

1 + σ 2
2

. (16)

We use FC to measure the separability of the distance
sum corresponding to the true split (which should be the
minimal sum for consistent SR functions) from the two
remaining sums. For the expectation μ of each sum we
use the true distances as computed by the SR function
on the actual model parameters. For the variance σ 2, we
use the sum of the approximate variances of the two dis-
tances involved in the sum. We expect that an SR function
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Figure 2 Performance of the Four Point Method using �JC on K2P quartets with ti-tv ratio R = 2. The concave non affine-additive SR
function �JC is shown (dashed green line) in the interval [ t0, t1], where t0 and t1 are the smallest and largest of the six pairwise distances (resp.). The
dashed blue line shows the linear interpolation �int = At + B of �JC in the interval [ t0, t1]. Horizontal dotted lines correspond to half of the two
competing sums computed by FPM under the two SR functions (see legend). (a) In quartets of type A, t0 = t12 and t1 = t34, and so
�int(1, 2) + �int(3, 4) = �JC(1, 2) + �JC(3, 4). However, for i ∈ {1, 2} and j ∈ {3, 4}, �int(i, j) < �JC(i, j). Therefore, the deviation from additivity of
�JC increases its FPM separation, denoted SEPJC, compared to the FPM separation SEPint of �int. (b) In quartets of type B, t0 = t13 and t1 = t24, and
so �int(1, 3)+�int(2, 4) = �JC(1, 3)+�JC(2, 4). However, �int(1, 2) = �int(3, 4) < �JC(1, 2) = �JC(3, 4), and so �int(1, 2)+�int(3, 4) < �JC(1, 2)

+�JC(3, 4). Therefore, the deviation from additivity of �JC decreases its FPM separation, denoted SEPJC, compared to the FPM separation SEPint of
�int. Note that SEPint remains invariant in both types of quartets under fixed ti whereas SEPJC changes, depending on the type of quartet and the
ts/tl ratio.

which provides a larger separation of the smallest sum
from the two other sums will imply a better reconstruction
probability.

We note that FC is not an exact indicator of the sep-
arability in our case, because the necessary criteria for
this are not satisfied in our model. Namely, the two dis-
tance sums are not normally distributed, and they are
correlated through the substitution process along the
external edges of the quartet. Nevertheless, as Figure 3b
suggests, FC turns out to provide a quite reliable com-
parison of the expected performance of �JC and �K2P
for the quartet series considered in the aforementioned
experiment. Figure 3b exhibits for each quartet the FC
of �JC alongside that of �K2P, both associated with
the comparison of the true split (12|34) and the “�JC
favored split” (13|24). As shown, the trends observed
in both FC plots closely resemble the trends observed
in the reconstruction accuracy plot (Figure 3a), and
the the equilibrium point of the FC values of �JC and
�K2P is very close to the equilibrium point of the accu-
racy of reconstructions of these two functions (near
tl/ts = 3.6).

A useful feature of this framework is the natural way
in which it teases apart the stochastic noise from the
deviation from additivity. If we denote the numerator
of FC by SEP (for “separation”) and its denominator by

NOISE, then a comparison of FC estimates between two
SR function �1, �2 can be represented as a ratio of ratios:

FC(�1)

FC(�2)
= SEP(�1)

SEP(�2)
/

NOISE(�1)

NOISE(�2)
. (17)

Figure 4 illustrates how a comparison between the
expected performance of �JC and that of �K2P can be car-
ried out by tracing the SEP and NOISE ratios along four
series of homogeneous K2P quartet: the bottom-left plot
corresponds to the quartet series considered in Figure 3;
the plot above it corresponds to the same series with ti-tv
ratio R = 2; the two plots on the right describe two quar-
tet series in which the weight of the short edges is constant
ts = 0.2, and the weight of the long edges ranges in [ 0.2, 1].
These four series demonstrate several typical trends in the
behavior of the SEP and NOISE ratios. First, we observe
that the NOISE ratio decreases (favoring �JC) as the diam-
eter of the quartet (t24) increases (it is almost constant
in the two series on the left, and monotone decreasing in
the series on the right). This is because the diameter pro-
vides the major contribution to the stochastic noise (for
both �JC and �K2P), and as it increases, the ratio between
the stochastic noise of �K2P and �JC increases as well.
We also observe a natural decrease in the NOISE ratio
with an increase in the ti-tv ratio (the NOISE ratio for
R = 5 is consistently smaller than for R = 2). Concerning



Doerr et al. Algorithms for Molecular Biology 2012, 7:22 Page 10 of 16
http://www.almob.org/content/7/1/22

Figure 3 Performance of �JC and �K2P on a series of quartets of type B. A series of homogeneous K2P quartets is considered (left illustration),
with ti-tv ratio of R = 5, and edge lengths ti = 0.2, tl = 1, and ts ∈[ 0.2, 1]. (a) Reconstruction accuracy using FPM and either �JC (dashed green) or
�K2P (solid red) plotted against tl/ts . Accuracy ratio is estimated using 100,000 independent replicates for each value of ts in the interval [ 0.2, 1] (in
steps of 0.01), with sequence length 1,000 bp. (b) Fisher’s Criterion (FC) for the sums corresponding to splits (12|34) and (13|24) under either �JC

(dashed green) or �K2P (solid red) plotted against tl/ts .

the SEP ratio, we see it becomes smaller (favoring �K2P)
as the quartet becomes more unbalanced (the SEP ratio
decreases along the X axis in each of the four plots). This is
because the deviation of �JC from additivity increases as
the inter-leaf distance interval [ t0, t1] =[ t13, t24] expands.
Deviation of �JC from additivity also increases with the ti-
tv ratio, as the substitution model further departs from the
assumptions of JC (the SEP ratio for R = 5 is consistently
smaller than for R = 2).

The two series on the right side of Figure 4 demon-
strate well the tradeoff between the effects of stochastic
noise and deviation from additivity. In both series, the SEP
and NOISE ratios decrease as the quartets become more
unbalanced (due to the trends listed above). However, the
rates of decrease of these two ratios are different due to
the different ti-tv ratios, and this determines the expected
relative performance of the two SR functions across the
series. When R = 2, the SEP ratio decreases at a slower
rate than the NOISE ratio, and �JC is expected to outper-
form �K2P across the entire series. When R = 5, the SEP
ratio decreases at a faster rate than the NOISE ratio, and
when the quartets are sufficiently unbalanced (tl/ts > 4)
�K2P is expected to outperform �JC.

Simulations on Hasegawa’s Tree
In this section we describe experiments done on sim-
ulated data sets generated along the seven-taxon tree

assembled by Hasegawa, Kishino, and Yano in 1985 [1,6].
This tree, spanning seven eutherian mammals (Figure 5a),
was reconstructed originally using mitochondrial DNA
sequences. It has a caterpillar topology (meaning that
every internal node is incident to an external edge),
and it has long external edges and short internal edges,
making it a suitable representative of small phylogenetic
trees spanning moderately distant species. These features
also make it particularly challenging for distance-based
reconstruction.

In our study we used the tree structure and edge lengths
to generate simulated data sets. We considered the tree in
various scales, by setting the tree diameter (largest inter-
taxon path length) to values in the interval [ 0.1, 2.0]. For
each scale considered, 10,000 simulations were carried
out, where in each simulation 500 bp sequences were
evolved along the tree according to a homogeneous K2P
substitution model with ti-tv ratio of R = 2. For each sim-
ulated data set, estimated values of the K2P statistics pα

and pβ , denoted by p̂α and p̂β , were extracted for all
(7

2
)

pairs of taxa. Subsequently, several distance matrices were
computed for each data set by applying different SR func-
tions to these estimated statistics. Reconstruction accu-
racy was evaluated by applying the Neighbor Joining (NJ)
algorithm [31,32] to these distance matrices and record-
ing the Robinson-Foulds topological distance (RF) [33]
between the reconstructed tree and the Hasegawa tree.
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Figure 4 SEP and NOISE ratios. SEP(�JC)/SEP(�K2P) (dashed) and NOISE(�JC)/NOISE(�K2P) (dotted) plotted against tl/ts for four series of
homogeneous K2P quartets of type B. Top two series have ti-tv ratio of R = 2, and bottom two series have ti-tv ratio of R = 5. Left two series have
external edge lengths tl = 1 and ts ∈[ 0.2, 1], and right two series have external edge lengths tl ∈[ 0.2, 1] and ts = 0.2. The length of the internal
edge is constant ti = 0.2 in all four series.

Sequence simulation was performed using SeqGen [34]
(by choosing the HKY model with uniform base frequen-
cies), and tree reconstruction was performed using the
version of NJ implemented in the PHYLIP package [35].

We studied the reconstruction accuracy associated with
four different SR functions: �JC, �K2P, �tv, and �R=2. The
first two are as described in Equations (5) and (4), respec-
tively. The third SR function, �tv, considers only tv-type
substitutions: �tv(pα , pβ) = − 1

4 log
(
1 − 4pβ(t)

) = βt,
and the fourth SR function, �R=2, is based on a max-
imum likelihood (ML) estimatorg of the time t from
the estimated transition probabilities p̂α , p̂β , given that
R = 2. Informally, this function, which uses knowledge
of the true value of R (which is typically unknown to
the user), is optimal in our setting, because it has sim-
ilar stochastic noise as �JC, and it is additive since it
coincides with �K2P when applied to transition prob-
abilities p̂α , p̂β that are consistent with a ti-tv ratio of
R = 2.

The performance of these four SR functions is traced
across the different tree scales in Figure 5a. For each SR
function � and scale s, we recorded the average normal-
ized RF distance from the true tree to each of the 10,000
trees reconstructed using �. The RF distance was nor-
malized by its maximum value which is twice the number
of internal edges in the tree (in our case 2 × 4 = 8).
As observed previously in [9], �K2P performed well in
shorter scales, and �tv performed well in longer scales.
However, both additive SR functions were significantly
outperformed in nearly all cases by �JC. Surprisingly, �JC
even slightly outperformed �R=2. We speculate that this
happened due to a bias similar to the one observed in
type A quartets in Section Performance of Non affine-
additive SR Functions in Quartet Resolution, improving
the performance of concave SR functions such as �JC on
certain K2P-trees.

To test this hypothesis, we went through a similar exper-
iment with a more symmetric seven-taxon caterpillar tree,
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Figure 5 Simulations on Hasegawa’s Tree. (a) Reconstruction accuracy of four different SR functions on different scaled versions of Hasegawa’s
tree [6]. The tree with scaled edge weights is depicted (left) next to the graph (right) plotting reconstruction accuracy of four SR functions. Different
scales of the tree are considered, indicated by the diameter of the tree (X axis). Reconstruction accuracy (Y axis) is measured for each scaled tree by
the average normalized RF distance between the reconstructed tree and the true tree across 10,000 simulated data sets. Simulations were carried
out assuming a ti=tv ratio of R = 2 and sequence length of 500 bp. (b) A similar plot is shown for a semi-symmetric caterpillar tree.

with internal edges of uniform length tint , and external
edges of uniform length text = 5tint (Figure 5b). The sym-
metry of this tree was expected to reduce the effect of
the reconstruction bias observed in Hasegawa’s tree, and
indeed, �JC performed much more poorly on this tree.
Despite this fact, �JC still outperformed �K2P in all scales
and �tv in the smaller scales (s < 1.1).

Inferring trees from genomic sequences
In this section we describe our study comparing various
SR functions on genomic DNA sequences. Next to �JC
and �K2P we also considered the well known LogDet SR
function [36,37], denoted here as �LogDet. Extending our
study to this setting is challenging in two respects. First of
all, unlike the simulated case, the true tree is not known
with complete confidence, and accuracy of reconstruction
can only be determined by using a well-accepted refer-
ence tree that may contain some errors. Secondly, the true
substitution model is also unknown and is likely to vio-
late the assumptions of both JC and K2P models and even

the relaxed assumptions of the general time-reversible
model (in which �LogDet is additive). Hence, we have to
assume in this case that �JC, �K2P, and �LogDet are all
non affine-additive, where �JC and �K2P are still likely
to exhibit higher deviation from additivity than �LogDet,
since they make stronger assumptions on the substitution
model.

The genomic data set
In building the genomic data set, we made use of a set of 31
clusters of orthologous groups (COGs) which was compiled
by Ciccarelli et al. and used for inferring phylogenetic rela-
tionships amongst a large number of species in [38,39].
These 31 gene families were selected to capture the evo-
lutionary history of the species containing them. This
was done in [38] by making sure that the genes in these
families have the following properties: (1) they are highly
conserved across species, (2) they have a small number
of paralogs, and (3) they are weakly affected by horizon-
tal gene transfer. We scanned the NCBI genome database
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and found 199 bacterial genomes that contained all anno-
tated COGs. For each of the 31 COGs, we extracted the
appropriate protein sequence in each of the 199 bacterial
species, choosing an arbitrary paralog in cases of multiple
hits. We followed a procedure similar to the one described
in [38,39] to obtain reliable multiple-sequence alignments
for each COG: we computed a 199-way multiple align-
ment of the protein sequences of each COG using HMMa-
lign [40] and then mapped each protein sequence back to
its coding DNA sequence. The conserved parts of each of
the 31 DNA alignments were extracted using GBLOCKS
[41] to filter out alignment columns with 50% or more gap
symbols. The alignments were manually scanned, and 36
species which contributed a large number of gaps to the
alignments were removed from the subsequent analysis.
The 31 different alignments were concatenated to form
one long 163-way multiple sequence DNA alignment.

For the reference tree we used the phylogenetic tree of
microbial species provided by the ARB-SILVA Living Tree
Project [42]. This tree, spanning 8,029 species at the time
of writing, is based on a widely accepted analysis of the
small subunit (SSU) 16S RNA. A subtree spanning our 163
bacterial species was extracted from this tree and treated
as the true phylogenetic tree in our analysis.

Reconstruction accuracy for ten-species subsets
We used the base set of 163 species to generate 40,000
random 10-species sub-alignments. The random selection
process was guided to generate species subsets corre-
sponding to a wide range of diameter scales (a blind
random selection process is biased toward subsets with
large diameters). For each of the 40,000 subsets, a 10-
way subalignment was extracted from the original 163-
way alignment, and in this alignment we extracted only
columns corresponding to four-fold degenerate sites that
do not have any gap symbol. This is done to make sure
the sites used for distance estimation have undergone a
substitution process that is as uniform as possible along
the different lineages and across the different sites. Each
sub-alignment was used to compute three distance matri-
ces – one under �JC, one under �K2P, and one under
�LogDet. The latter was calculated by the version that is
implemented in the PHYLIP package. The NJ algorithm
was then applied to the three matrices and the resulting
trees were compared to the true tree (as depicted by the
appropriate LTP subtree) according to the RF distance.

As an additional comparison, we used a fourth recon-
struction technique. This method (termed BIONJ-GTR)
used the BIONJ reconstruction algorithm [43] on dis-
tances obtained under the general time-reversible model
with invariant sites and Gamma distribution of rates
across variant sites (GTR+
+I) [8,44].

The PhyML package [45] was used to infer this tree
for each of the 40,000 subsets. We selected the GTR+
+I

model since it was found by the MEGA5 software [46]
to provide the best fit to the sequence data. The 40,000
sampled instances were partitioned into eight bins accord-
ing to the RF distance observed between the BIONJ-GTR
tree and the true (LTP) tree, and average RF distances
were recorded for each of the three SR functions in each
bin. This allowed us to observe trends throughout these
40,000 samples (Figure 6). Of the 40, 000 trees inferred
under �JC, 83.1% showed an equal or lower RF distance
than those reconstructed by the BIONJ-GTR method.
Moreover, �JC outperformed �K2P and �LogDet on aver-
age in all partitions, and �LogDet showed by far the worst
performance with 48.7% of all reconstructed trees achiev-
ing higher RF distances to the reference tree than those
inferred by BIONJ-GTR. As with our results on simulated
data sets, we see that the SR functions with lower stochas-
tic error but inferior model fit performed best. Unsur-
prisingly, the GTR+G+I model itself, which was predicted
to have the best fit to the sequence data, was often out-
performed by the simpler JC and K2P models. Note that
the difference in performance between �JC and the two
other SR functions is greater for subsets that are more
accurately reconstructed by the BIONJ-GTR approach
(the lower bins). This appears to indicate that over-
simplified distance methods are particularly beneficial
when the sequence data conveys a stronger phylogenetic
signal.

Conclusions
In this paper we explored the basic properties of meth-
ods for estimating evolutionary distances, and studied
how these properties affect the accuracy of distance-based
phylogenetic reconstruction. We considered both the sys-
tematic bias and the stochastic noise (variance) of the
distance estimators, and examined the tradeoff between
these two factors. We focused on the common task of
phylogenetic reconstruction under homogeneous substi-
tution models. Assuming homogeneous models simplifies
the analytical framework, since in such models each SR
function is reduced to a univariate function of the evolu-
tionary time t. However, obtaining accurate estimates of t
is still a hard task in this setting, since the unit rate matrix
is unknown. An SR function � is guaranteed to yield con-
sistent reconstruction across all trees in a homogeneous
model only if it is additive, meaning that it is a linear
function of t. When � is not additive, it introduces a sys-
tematic bias in distance estimates, which we denoted here
as deviation from additivity. Some SR functions are only
additive in one homogeneous model, whereas others are
additive across a wider collection of homogeneous mod-
els. This less constrained additivity is typically achieved
at a price of increased estimation noise. We studied the
tradeoff between “deviation from additivity” and “estima-
tion noise” via a case study where the model tree is a
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Figure 6 Evaluation against BIONJ-GTR tree. The 40,000 subsets of size 10 were partitioned according to the the RF-distance between the
reference LTP tree and the tree reconstructed using BIONJ-GTR (X axis). The (left) Y axis describes the mean difference between the RF-distance
associated with a tree reconstructed using a particular SR function (�K2P, �JC, or �LogDet) and the RF-distance associated with the BIONJ-GTR tree.
The bar plot in the background depicts the number of subsets in each bin.

homogeneous K2P-tree with an unknown ti-tv ratio R. In
this case, Kimura’s distance formula �K2P is always addi-
tive, while the less noisy Jukes Cantor’s formula, �JC, is
additive only when R = 1

2 .
A study of this type requires a way to measure the

deviation from additivity of a non-additive SR function
� in a given range of distances [ t0, t1]. To this end, we
introduced the concept of affine-additive distance func-
tions, and defined the deviation from additivity of �

in [ t0, t1] as the distance of � from its closest affine-
additive function in [ t0, t1]. We established a tight con-
nection between this measure and statistical consistency
of reconstruction (Lemma 2.7) and derived an upper
bound for deviation from additivity in homogeneous
models (Lemma 2.8). We applied these results in analyz-
ing the deviation from additivity of �JC, and its effect on
the accuracy of reconstructing homogeneous K2P-trees.

We then showed, both analytically (in Section Devia-
tion from Additivity in Homogeneous Substitution Mod-
els) and through experiments on simulated data sets (in
Sections Performance of Non affine-additive SR Functions
in Quartet Resolution and Simulations on Hasegawa’s
Tree), that, compared to �K2P, it is often better to use
the non-additive but less noisy estimates of �JC, even
when R is quite high. Somewhat surprisingly, we found
this to be the case even when the tree being recon-
structed has an “unfavorable” topology. Our experiments
on bacterial gene sequences (Section Inferring Trees from
Genomic Sequences) also indicate that the simple and
less noisy SR functions perform better on average than
ones that are expected to better fit the true substitution
process.

The framework presented in this paper implies a prac-
tical way for selecting SR functions which are likely to

Figure 7 Proof of Lemma 2.9. A function f(t) is portrayed (bold) with its linear interpolation At + B = At + bA (green) in the interval [ t0 , t1],
s.t. f (t) ≥ At + B for all t ∈[ t0 , t1]. Equation (18) is illustrated for a < A on the right, and equation (19) is illustrated for a > A on the left.
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increase the accuracy of distance estimation. The practi-
cality of the method is drawn from the fact that the criteria
by which we select an SR function depend only a relatively
crude information about the tree being reconstructed. For
instance, in the case of a homogeneous K2P-tree, one
can easily obtain from the input sequences rough esti-
mates of both the ti-tv ratio R and the range of inter-leaf
times [ t0, t1]. These estimates can then be used to com-
pare the expected accuracies of �JC and �K2P on the given
input, and determine which of them is more likely to yield
an accurate phylogeny. For quartets, a tight comparison
can be made using the FC-based approach suggested in
Section Fisher’s Criterion for Separability, and for larger
trees, a cruder comparison can be made using a plot
like the one presented in Figure 1b. A promising avenue
of further research is to extend the FC-based approach
to allow tighter prediction of reconstruction accuracy of
trees spanning more than four taxa.

Endnotes
aThis is a WABI 2011 special issue invited paper. Extended
abstract of this paper appeared in [47].
bTypically, the unit rate matrix is assumed to be the one
corresponding to one substitution per site.
cMany common distance-based algorithms, such as the
Neighbor Joining (NJ) algorithm [31,32], are known to be
robust in this sense.
dIn a tree, edges which touch leaves are external, and all
other edges are internal.
eTypes A and B quartets represent the Farris zone and
Felsenstein zone, resp. (see, e.g., [1], Chapter 9).
fWe use here the square root of the criterion commonly
used in the literature, because we prefer to think in terms
of distances rather than squares of distances. This has no
practical influence, since we use FC only for comparing
between different choices, not for assessing the quality of
a give choice.
gThis ML estimate is obtained by a simple numerical
method for maximizing the likelihood function (see, e.g.,
[1]).

Appendix
Tightness of Lemma 2.8.
Let f (t) be a (continuous) function on some interval
[ t0, t1]. We prove below that if f does not intersect
its linear interpolation At + B in that interval, then
dev(f , [ t0, t1] ) = 1

A maxt∈[t0,t1]
{|f (t) − At − b∗|}. We use

the following notations, conforming to the notations in
the proof of Lemma 2.8:

ψ(a, b, t) = f (t) − at − b
ψ(a, b) = max

t∈[t0,t1]
{|ψ(a, b, t)|} ψ(a) = min

b∈R
{ψ(a, b)} .

Lemma 2.9. Let f (t) be a monotone increasing function
in the interval [ t0, t1] and let At + B be its linear interpo-
lation in [ t0, t1]. If either f (t) ≥ At + B for all t ∈[ t0, t1] or
f (t) ≤ At + B for all t ∈[ t0, t1], then for all a > 0, we have
1
aψ(a) ≥ 1

Aψ(A).

Proof. We prove the minimality of 1
Aψ(A) in the case

where f (t) ≥ At + B for all t ∈[ t0, t1]. The other case
(where f (t) ≤ At + B for all t ∈[ t0, t1]) can be proven in
an identical fashion.

For a > 0, let ba be the maximum value of b′ s.t.
ψ(a, b′, t) ≥ 0 for all t ∈[ t0, t1]. Evidently, ψ(a) =
1
2ψ(a, ba). If the linear interpolation of f (t) in [ t0, t1] is
given by At + B, then bA = B. We need to show that for
every a > 0, it holds that Aψ(a, ba) > aψ(A, bA). Let tA
be a point in [ t0, t1] s.t. ψ(A, bA, tA) = ψ(A, bA). Note that
if a < A, then the two linear functions At +bA and at +ba
intersect at (t0, f (t0)), and if a > A, then they intersect at
(t1, f (t1)) (see Figure 7).

For a < A, we get the following equality (Figure 7; right):

ψ(A, bA, tA) + A(tA − t0) = f (tA)

− f (t0) = ψ(a, ba, tA) + a(tA − t0) .
(18)

Hence, since ψ(a, ba) ≥ ψ(a, ba, t) for every t ∈[ t0, t1],
and since a < A, we get

aψ(A, bA, tA) + aA(tA − t0) < Aψ(a, ba, tA)

+ Aa(tA − t0) ⇒ aψ(A, bA) < Aψ(a, ba).

Similarly, if a > A, we get the following equality
(Figure 7; left)

A(t1 − tA) − ψ(A, bA, tA) = f (t1)

− f (tA) = a(t1 − tA) − ψ(a, ba, tA) ,
(19)

and a > A implies that

aA(t1 − tA) − aψ(A, bA) > Aa(t1 − tA)

− aψ(a, ba) ⇒ aψ(A, bA) < Aψ(a, ba) .
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