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Abstract

We designed a novel strategy to define codon usage bias (CUB) in 6 specific small

cohorts of human genes. We calculated codon usage (CU) values in 29 non-disease-

causing (NDC) and 31 disease-causing (DC) human genes which are highly expressed in

3 distinct tissues, kidney, muscle, and skin. We applied our strategy to the same selected

genes annotated in 15 mammalian species. We obtained CUB hierarchical clusters for

each gene cohort which showed tissue-specific and disease-specific CUB fingerprints.

We showed that DC genes (especially those expressed in muscle) display a low CUB,

well recognizable in codon hierarchical clustering. We defined the extremely biased

codons as “zero codons” and found that their number is significantly higher in all DC

genes, all tissues, and that this trend is conserved across mammals. Based on this calcu-

lation in different gene cohorts, we identified 5 codons which are more differentially used

across genes and mammals, underlining that some genes have favorite synonymous

codons in use. Since of the muscle genes clear clusters, and, among these, dystrophin

gene surprisingly does not show any “zero codon” we adopted a novel approach to study

CUB, we called “mapping-on-codons”. We positioned 2828 dystrophin missense and non-

sense pathogenic variations on their respective codon, highlighting that its frequency and

occurrence is not dependent on the CU values. We conclude our strategy consents to

identify a hierarchical clustering of CU values in a gene cohort-specific fingerprints, with

recognizable trend across mammals. In DC muscle genes also a disease-related finger-

print can be observed, allowing discrimination between DC and NDC genes. We propose

that using our strategy which studies CU in specific gene cohorts, as rare disease genes,

and tissue specific genes, may provide novel information about the CUB role in human
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and medical genetics, with implications on synonymous variations interpretation and

codon optimization algorithms.

Introduction

The genetic code consists of 64 triplet codons encoding 20 amino acids and three stop codons,

these last being recognized by the translational machinery to interrupt the protein synthesis

[1]. With the exception of two amino acids, tryptophan and methionine, which are encoded by

a unique codon, all other amino acids recognize multiple synonymous codons based on two,

three, four or six triplet redundancies, a phenomenon known as codon degeneration. There is

intriguing evidence that the redundancy of genetic code played a crucial evolutionary role in

allowing protein synthesis to turn the RNA world into the protein world [2]. For reasons not

fully understood, some codons become poorly used, a phenomenon known as codon usage

bias (CUB), or even tend to disappear (extreme CUB) during evolution. Although CUB was

widely studied in various gene categories (via gene ontology or interactome maps) and across

species, its evolutionary meaning is still uncertain [3–5]. The original neutral theory of molec-

ular evolution [6] might not apply to codon selection and mutational pressure and natural

selection may have played a major role in contributing to the codon usage [7]. Indeed,

although only in a few reported cases such as for keratin and some ribosomal and mitochon-

drial genes, an extreme CUB was identified in human, chimpanzee and chicken implying a

constant bias within vertebrates, and suggesting its evolutionary meaning [4].

A large consensus exists about the concept that the choice of a synonymous codon does

affect protein translation efficiency, expression level, structure, and function, a notion that has

prompted the designation of optimal codons and codon optimization, which is a process rou-

tinely used in synthetic biology to increase protein expression [8]. Nevertheless, there is little

consensus among the various codon optimization algorithms, and the metrics currently used

might not be appropriate for all genes [8].

The meaning of synonymous variations in the human genome and their effect on heredi-

tary diseases is largely unknown [9, 10]. Interpreting their functional impact on genes is diffi-

cult, if not impossible, without dedicated functional assays. In silico tools are currently used to

decipher synonymous variations but they are inaccurate. In addition, synonymous changes are

fully disregarded and filtered out of genomic data outputs, a fact that causes their omission in

pathogenic variation discovery and validation and lack of potential novel disease genes or the

identification of pathogenic genotypes.

In terms of energy, an extreme CUB is predicted in keeping energy demand low for protein

translation, according to the maximum entropy principle, which may drive the progressive

increase of CUB during evolution and across species [11, 12]. This trend highlights certain

functional pathways that might have been given energetic priority (assuming bias towards pre-

ferred codons) via natural selection and may have occurred in gene families with particular rel-

evance in a given lineage [13]. For example, in genomes with high GC content (such as Homo
sapiens, HSA), which can prime SNP changes, extreme CUB frequently occurs and it is thought

to reduce the risk of nonsense variation occurrence [14–16].

The role of “rare” (extremely biased) codons through evolution is still controversial. In bac-

teria, rare codons near the 5’ end of genes facilitate removing translation repression and are

thought to be “highway on-ramps” to prime and accelerate protein translation of 60 times

more, with a key role in regulating the ribosomal trafficking [17]. Synergistically, folding
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properties of mRNA rich in rare codons at their 5’ end increase the translation speed, like in

rapidly dividing cells [18, 19]. Conversely, some frequently used codons have the opposite

effect, slowing down translation efficiency [20].

We studied CU values and profiled CUB in 31 tissue-specific, muscle, kidney and skin,

human genes whose mutations do cause rare diseases (disease-causing genes, DC) and com-

pared them to 29 human genes which are not related to human diseases (Non-Disease-Causing

genes, NDC) but have the same tissue expression. CU values were calculated also across 15

mammalian species to explore whether CU values may vary across the selected human genes

with a consistent evolutionary trend. We showed that CUB displays a tissue-specific codon fin-

gerprint which is also different in DC compared to NDC genes.

We also explored relationship between CUB and mutations in the muscle dystrophin

(DMD) gene, the larger X-linked human gene, which mutations do cause Duchenne muscular

dystrophy [21] and highlighted that its 2828 pathogenic variations occurred non-randomly in

codons.

We suggest that our human gene disease-driven approach may help in identifying critical

codons, which may play a role in gene mutational events, synonymous variation interpretation

and possibly codon optimization algorithm design.

Methods

Our strategy was based on comparing CU values and their hierarchical clusters in Homo Sapi-
ens muscle, kidney, and skin tissues, across the selected mammals, and in DC versus NDC

genes.

Species selection, sequence data and sources for CU values calculation

We selected the following 15 mammals in the metazoan phylogenetic tree: R. ferrumequinum
(Greater horseshoe bat), M. musculus (mouse), F. catus (cat), C. lupus familiaris (dog), E.

caballus (horse), B. Taurus (cattle), M. murinus (gray mouse lemur), G. variegatus (Sunda

colugo), C. jacchus (common marmoset), M. mulatta (macaque), N. leucogenys (gibbons), P.

abelii (orangutan), G. gorilla (gorillas), P. troglodytes (chimpanzee) and H. sapiens (human).

S1 Table shows the list of species and assembly genome sequences. The mRNA reference

sequences of all H. sapiens gene groups were retrieved from RefSeq and GeneBank at the

National Center for Biotechnology Information [22] as shown in S2–S4 Tables.

Mammals were selected based on the higher number of annotated genes (RefSeq in S5–S10

Tables).

We selected genes with different lengths such as mRNAs and, to maximize the number of

analyzed codons and avoid bias against short or partial sequences, only full-length coding

sequences were selected. If more than one splicing isoform was annotated, the longest isoforms

were selected, since recent single cell RNAseq studies showed that mRNA length does not

influence isoform tissue expression level [23].

Gene selection

DC genes were prioritized based on their involvement in Mendelian rare diseases, with inci-

dence less than 1:5000 (according to the OMIM catalogue, www.omim.org), and with a

homogenous and tissue/organ-specific-related phenotype (renal, skeletal muscle and skin).

Exclusion criteria for genes were involvement in polygenic or cancer (both Mendelian and

somatic) diseases and absence of tissue specificity (housekeeping genes). We then selected DC

genes based on their disease-causing and tissue-specificity and NDC genes based on their
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higher expression in same tissues where DC genes were also expressed (muscle, skin and

kidney).

Gene selection criteria (S2–S4 Tables) were based on: i) fully annotated genes known to

cause rare Mendelian diseases (DC genes), ii) fully annotated genes not causing rare Mende-

lian diseases (NDC genes).

The OMIM catalogue database [24] was used to categorize genes as DC or NDC. The DC

genes had to be associated with a Mendelian disease in one of three tissues selected (kidney,

skeletal muscle and skin) in at least 5 reported families/patients, therefore being confirmed in

the OMIM database, and with defined inherited patterns (autosomal recessive, autosomal dom-

inant or X-linked recessive). Evidence of gene involvement in both Mendelian and somatic can-

cers, as susceptibility genes, were considered exclusion criteria for gene selection, since cancer

Mendelian genes are often cancer predisposing genes as well, and then they might be confound-

ing factors in our study which is focused on Mendelian diseases only. Rare disease (RD) types

are related to muscle, skin and kidney tissues gene mutations. Muscle RDs include muscular

dystrophies and congenital myopathies, which causative genes are predominantly and highly

expressed in skeletal muscle such as dystrophin, dysferlin, or in muscle extracellular matrix, as

the collagen 6A1 gene. Kidney RDs include uromodulin and polycistin 1 gene, whose mutations

cause Tubulointerstitial kidney disease or polycystic Kidney Type 1 respectively, gene highly

expressed in these two different kidney compartments. Finally, skin RDs include keratin 10 and

HOXC13 genes, whose mutations are associated with epidermolytic hyperkeratosis and ecto-

dermal dysplasia 9, two different diseases in terms of phenotype and skin layer involvement.

S2–S4 Tables, report the full list of RD genes with all corresponding OMIM numbers.

Two genes, TMEM52B and PLA2G4E, not listed in the OMIM database since they have

never been associated with any human diseases, were checked using PubMed [25], ClinVar

[26] and DMDM [27] databases and thus excluded from being causing Mendelian diseases.

We selected tissues based on their high gene enrichment in the Human Protein Atlas

(HPA) database [28]. Our gene prioritization was based on HPA metrics used for RNA level

(Transcripts Per Million, TPM), protein expression score (high, medium, low, not) and tissue-

specificity values. These scores allowed us to classify NDC and DC gene expression profiles

according to their tissue specificity. The higher expression value implies at least four-fold

higher mRNA levels in selected tissues compared to any other tissues, while protein scores

were high or medium, low levels of expression were excluded.

Mutation databases

We examined the OMIM [24], ExAC [29] and ClinVar [26] public databases together with our

UNIFE internal databases [21] for DMD single nucleotide gene variations. Only proven, path-

ogenic missense and nonsense variations were considered, since their meaning and identifica-

tion in the databases are not equivocal [30]. Synonymous changes in the DMD gene were

therefore not considered in this study since they are almost invariably defined as variants of

uncertain significance (VUS) or benign variants, according to the ACMGG guidelines [31].

CU values calculation and statistical analysis

The codon usage (CU) frequency was independently calculated for each of the 19 amino acids

considered in each gene group. The three stop codons usage was also evaluated. Methionine

(AUG) and tryptophan (UGG) were not included since they are encoded by a unique triplet.

All statistical analyses were conducted with R-3.4.4 [32].

Statistical significance was defined as P value < 0.05. Basic statistical tests and generation of

bar plots and box plots were performed by using built-in functions included with the base
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distribution of R or functions in ggplot2 package [33]. For codon usage comparison between

DC and NDC genes, tissue types and species, a Wilcox on rank sum test was applied to calcu-

late two-tailed P values using the ’Wilcox test’ function in R [34], and they were visualized by

using R package ggplot2.

CU frequency in DC and NDC genes was also compared to identify the codons most differ-

ently used in gene tissues, across species and in DC versus NDC genes, and data were visual-

ized in box plots.

The Spearman correlation coefficient of codon usage frequency in HSA muscle, skin and

kidney DC and NDC genes was used and was visualized using R package ggplot2.

Function heatmap.2 in R package gplots was used for the clustering of codons and their

visualization. In the clustering, as the codon usages are interval data and are not affected by

outliers with extremely large values, Euclidean distance metric was selected for easy implemen-

tation and simple interpretation. Agglomerative hierarchical clustering was performed by

using the default “complete” method in function hclust.

Genes are always listed in graphs in decreasing order according to the number of exons,

and exon number was calculated based on annotation data downloaded from the Ensembl

Genome database [35]. Data were analyzed using the hierarchical cluster algorithm or applying

priority analysis in terms of CUB percentages.

The synonymous codons which are not used at all by genes, therefore having an extreme

codon bias, were named “zero-codons”.

Results

S5–S10 Tables report CU values calculated in muscle DC and NDC, skin DC and NDC, and

kidney DC and NDC genes, respectively. On these values we carried on CU values verification

and comparison in the above listed cohorts.

Homo sapiens (HSA) genes tissue-specific CUB fingerprint

We firstly verified the hierarchical clustering of synonymous codon usage in all studied

genes with different tissue specificity (muscle, skin, and kidney) in HSA. We observed a tis-

sue-specific codon clustering, which we defined “CUB fingerprint”. Heat plot graphs (Fig 1)

show that clustering of frequently used (in red) and rarely used (dark blue) codons greatly

vary among human tissues. In muscle genes, extremely biased codons (low CU values, blue

key color, or high CU values, dark red key color) are tightly clustered in terms of both gene

and codon types, while intermediate CU values (light blue to yellow key color) are dispersed

in the trees (Fig 1A).

The CUB fingerprint of skin genes (Fig 1B) is characterized by predominant low CU values

(yellow dots) with a few dispersed red dots and a clear clustering of rarer (dark blue dots)

codons, while the few codons with intermediate or high CU values are unevenly distributed

among genes with high distances in the tree. Gene-related codon clusters are also less defined

compared to muscle and kidney (see below). In kidney genes, the CUB fingerprint differs from

the other two gene groups and the codon hierarchy is more defined (only two main lineages,

Fig 1C). Codons with intermediate values are clustered with gene-related trends, as visible in

PKD2, KCNJ1 and MIOX genes. The vast majority of genes have low or intermediate CU values

with wide and diffuse blue spot clusters. A small group of genes (UMOD, BSND, SLC22A8,

MIOX, AQP6, PKD1, SLC12A3, and GGACT) show high CU values of codon UGA, UAC,

UUC, AUC, GAC, AAC, AAG, GAG, UGC, CAC, and CAG, belonging to well defined line-

ages in the cluster (gene-codon specific CUB fingerprint).
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Looking at the codon clustering, the most used codons, CAG, AAG, UGC, GAG, UAC,

UUC, CAC, AAC, AUC and GAC, have an identical clustering and overlap in muscle and kid-

ney but not in skin genes (Fig 1A and 1C, left sides). Among muscle genes, only DMD does

not show any extreme CUB, since no red spots occur (Fig 1A), with the only obvious exception

of the unique stop codon UAG.

Looking at the gene clustering, muscle and kidney gene dendrograms show recognizable

fingerprints (vertical hierarchy in the heatmaps in Fig 1A and 1C), since genes with high or

low CU values (enriched with red or blue spots) are clearly clustered (13 genes in Fig 1A, and 8

genes in Fig 1C, left sides), while in skin genes this does not occur. Therefore, as noted above,

some gene-specific CU values were observed, depending on the tissue studied.

Fig 1. CU values in Homo sapiens muscle, skin, and kidney genes. Heat plots were generated using R package gplots. Rows were clustered based on

Euclidean distance. The color coding varies from dark blue to red with low to high CU values, respectively. Hierarchical clustering of synonymous

codon usage in all studied genes in different tissues (muscle, skin and kidney) in HSA was generated. The heat plot graphs show that the clustering of

frequently used codons (in red) and rarely used codons (dark blue) greatly varies among genes and tissues. In muscle genes, extremely biased codons

(low CU values, key color dark blue, or high CU values, key color dark red) are tightly clustered in terms of both gene and codon types, while

intermediate CU values (key color light blue to yellow) are more dispersed in the trees (panel A). Among muscle genes, only DMD does not show any

extreme CUB, since no red spots (corresponding to higher CU values) occur (Fig 1A). The CUB fingerprint of skin genes (panel B) shows a prevalent

low CU values codons (dark blue), with a few dispersed, not clustered, inhomogeneous distributed yellow-red spots (intermediate and high CU values).

CU clusters are less defined compared to muscle. In kidney genes (panel C), the CUB fingerprint also differs from the other two gene groups. The vast

majority of genes have low or intermediate CU values (wide and diffuse yellow-blue spot clusters) with a cluster of high CU values closely clustered and

related to UMOD, BSND, SLC22A8, MIOX, AQP6, PKD1, SLC12A3, and GGACT genes. Interestingly all of these genes are DC.

https://doi.org/10.1371/journal.pone.0265469.g001
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Stop codon usage values were also calculated in the three gene groups. In skin and muscle

genes, all stop codons are uniformly used, with UAA more frequently present. In kidney

genes, UAG is very rarely used, while UAA and UGA are equally represented.

CUB fingerprint across mammals

We analyzed CU values in all 20 tissue-specific genes across 15 mammalian species in the

metazoan phylogenetic tree (Fig 2A–2C) or CU values in all mammals and among the three

gene tissues (Fig 2D–2F). CU values across mammals show evident tissue-specific CUB finger-

prints due to different codon type usage (Fig 2A–2C).

CAG, AAG, CAC, GAC, GAG, AUC, AAC, UAC, UGC and UUC are the most frequently

used codons (red spots) in all gene tissues and across mammals, while UUA, CUA, UCG,

CGU, CUU, GUA, CGA, AUA, UCA, UUG and GCG are the rarest codons (blue spots) in

muscle and skin but not in kidney genes. Muscle and skin CUBs do have a similar behavior of

CU values clustering, although with lower CU values in skin (more yellow spots), similar to

kidney genes which show a different hierarchical clustering.

Looking at the gene clusters in all mammals (Fig 2D–2F), the CU values clusters cannot be

seen. All tissues have a different CUB fingerprint, also with different codon hierarchical clus-

tering. Gene-related dendrograms are also different since muscle (13/20), kidney (8/20) and

skin (4/20) genes cluster together with different CU values related to different codon types.

Considering all genes in all species codon types vary indeed. Therefore, although some tissue

-related CUB fingerprints are still recognizable in mammals, no clear tissue behavior or even

specific gene-related clustering can be observed. This finding further supports that CU values

show both mammal-and gene specific-related differences, which contribute to generate the

CUB fingerprints. Indeed, it has been observed that extreme codon bias occurs in genes which

underly specific functions, especially those functions related to processes which are unique in

a given evolutionary lineage [4].

CU values and CUB fingerprints in HSA DC and NDC genes

We grouped genes based on their propensity to be the site of pathogenic variations (mutations)

causing rare diseases (DC or NDC genes). We profiled CU values in DC and NDC genes, pre-

serving the tissue distinction (muscle, skin and kidney genes) across mammals. Fig 3, A to F

panels, shows absolute CU values in DC and NDC muscle, skin and kidney genes, respectively,

with no hierarchical clustering and identical codon type order. The CU values in these 6 panels

show that the most frequent or rarest codon types are very similar in all genes and across mam-

mals. We supported this observation in HSA by the Spearman correlation analysis, which

demonstrated that the DC and NDC gene CU values correlate significantly in muscle, skin and

kidney groups (p<0.05) (S1 Fig).

More CU value variability can be seen in codons with intermediate frequency, where some

gene and tissue trends can be seen. In particular, muscle NDC genes do have higher CU values

(a few yellow dots are visible, see Fig 3A and 3B), while muscle and kidney NDC and DC genes

(Fig 3, panels A, B, E, F) have very similar CU values. To be noted, CAG is the most frequently

used and UUA the less frequently used codon in all mammals.

Fig 3, panels G to L, show hierarchical clustering of CU values in the same gene categories

as above. When looking at DC and NDC genes, recognizable CUB fingerprints can be

observed. Muscle DC and NDC genes (Fig 3, panels G, H) show different fingerprints and

clustering. Muscle DC genes have a compact cluster of extremely frequent codons (AAG,

CAG, GAG) or extremely rare codons (UGG, UUA, CUA). CU values are homogeneous

across mammals with clearly defined codon groups in terms of tree distance. In muscle NDC
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Fig 2. CU values across mammals. Heat plots were generated using R package gplots. Rows were clustered based on Euclidean

distance. The color key of CU values varies from blue to red with low to high values of the CUB respectively. CU values in all 60

tissue-specific genes across 15 mammalian species in the metazoan phylogenetic tree are shown in panels A, B, and C, and CU

values of single genes in all species are shown in panels D, E, and F. Tissue-specific CUB fingerprints are very evident with a

conserved trend across mammals (panels A, B, C). Codons CAG, AAG, CAC, GAC, GAG, AUC, AAC, UAC, UGC, and UUC are

the most frequently used codons (red spots) in all tissues and across mammals, while codons UUA, CUA, UCG, CGU, CUU, GUA,

CGA, AUA, UCA, UUG, and GCG are the rarest codons (blue spots) in muscle and skin but not in kidney genes. Muscle (panel A)

and skin (panel B) CUBs do have a similar fingerprint, although muscle gens have much more codons with lower CU values
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genes, the CUB fingerprint changes. Dark blue and red spots dominate, with a few codons

with intermediate (yellow spots) CU values. This fingerprint indicates that a stronger CUB

occurred in muscle NDC genes. Accordingly, the codon-based dendrogram in NDC, but not

in DC, genes shows that higher and lower CU values are clustered together, underlining a pos-

sible different behavior across mammals.

Skin DC and NDC genes (Fig 3I and 3J) show similar CUB fingerprints with minor differ-

ences. Skin NDC genes show more codons with lower CU values (upper Fig 3J) and conversely

less codons with higher or intermediate CU values (lower Fig 3J), compared to DC genes. This

implies that CU intermediate values occur more frequently, an opposite finding of what seen

in muscle genes. Indeed, skin DC genes fingerprint is similar to the one seen in muscle DC

genes. We may conclude that both muscle and skin DC genes show a typical “no extreme

CUB” pattern.

Kidney DC and NDC gene (Fig 3K and 3L) fingerprints and codon dendrograms greatly

differ from the other two tissues, since the hierarchical distances between value clusters are

opposite. Although conservation of CU values across mammals also occurs, the dendrogram’s

hierarchy of kidney genes shows a common ancestor for intermediate and low CU values,

unlike muscle and skin genes, where two distinct lineages (high and low CU values) are visible,

as already observed before (Fig 1C). Kidney DC and NDC gene CUB fingerprints are similar,

although it has to be noted that NDC genes show a higher number of low CU values (yellow

dots).

We also compared CU values among high-, medium- and low-expressed HSA genes. DC

and NDC genes were therefore divided in three categories depending on gene expression level

(for RNA fold and protein cut-off values, see S2 Fig). CUB fingerprints have high similarity,

meaning that indeed, grouping genes for their expression level gets a similar CU values trend.

We also analyzed whether there might be codons used more depending on gene expression

level. Codons AAC, GAC, UGC, UAC, CAC, UUC, AUC, AAG, GAG and CAG are more fre-

quently used both in high- and medium-expressed genes, while GUG is present only in highly

expressed genes. Codons GAC, CAC, UUC, CAG, UAC, UGC, AAG, AUC, GAG, AAC, ACC,

GGC, GUC, UCC and GCG are more frequently used in low-level expressed genes. Notably,

while the majority of frequently used codons are similarly represented in highly, medium and

low expressed genes, therefore with a CU not influenced by expression level, only a few codons

with lower CU values such as UCC (Ser), ACC (Thr), GGC (Gly), GUC (Val) and GCG (Ala)

are present in low-expressed genes. Similarly, codons with low CU values are not the same in

high-expressed versus medium-expressed genes. Some highly expressed DC genes have more

codons with higher CU values, like DYS, LMNA and DES (in skeletal muscle), UMOD and

PKD1 (in kidney) and FGFR3 (in skin). The trend is opposite in medium-expressed genes,

where some NDC genes, like MLPF, TNNC2, TMEM3BA (in skeletal muscle), and NCLZ2,

MCX (in kidney), show higher CU values.

Interestingly, UAA, which is known to induce translation termination with higher speed

and accuracy at the ribosomal level and can be read by both release factors eRF1 and eRF2, is

compared to skin genes; kidney genes show a very different clustering. Panels D, E, and F show gene CU values grouping all

mammals. Although clear clustering is poorly visible, tissues have different CUB fingerprints characterized by different gene-

related dendrograms. Indeed, 13/30 genes in muscle (panel D), 4/40 genes in skin (panel E) and 8/20 genes in kidney (panel F)

show high CU values clusters. Codon types also vary accordingly to CU values since high CU values are clustered in the above listed

gene groups. This finding supports that CU values have a tissue-related fingerprint which is still maintained grouping all mammals,

and that some gene-specific CU values and codon types are observable.

https://doi.org/10.1371/journal.pone.0265469.g002
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Fig 3. Comparison of relative synonymous codon usage (CUB) values in disease-causing (DC) and non-disease-causing (NDC) genes across

species. Heat plots were generated using R package gplots. Rows were clustered based on Euclidean distance. The key color coding varies from blue to

red with low to high values of the CUB respectively. We grouped genes based on their propensity to be the site of pathogenic variations (mutations)

causing rare diseases (disease causing or DC genes). Panels A to F shows all types of codons with no hierarchical clustering, listed in the same order in

all genes and tissues, and sub-grouped in DC and NDC. CU values in these panels show that the most frequent or rarest codon types are overlapping in

gene groups. Two groups of dark blue and dark red color key codons occur in all 6 panels, indicating that absolute frequency of codon types is similar

also across genes and mammals, possibly supporting an evolutionary trend of CUB. Nevertheless, CU value higher variability can be seen in codons

with intermediate frequency (light blue to yellow key colors) which differ across gene groups. Muscle NDC genes (panel B) do have the lower number

of intermediate (yellow key color) CU values, followed by skin DC (panel C) and kidney NDC (panel F). CAG is the most frequently used and UUA is

the less frequently used codon in all genes and across mammals. Panels G-L show hierarchical clustering of CU values in the same categories and

groups. Clearly recognizable CUB fingerprints can be observed in DC and NDC genes. This is massively evident in muscle genes (panel G and H) and

also partially in kidney genes (panel K and L). DC muscle genes have compact clusters of extremely frequent codons (AAG, CAG, GAG) and extremely

rare codons (UGG, UUA, CUA), a trend conserved across mammals and with clearly defined codon groups in terms of tree distance. Dark blue and red

(more rare and frequent codons) colors predominate in muscle NDC genes, with a few codons with intermediate (yellow color key) values. This

suggests that a strong CUB has occurred in NDC genes. Accordingly, muscle NDC genes show higher and lower CU values clustered together,

suggesting a possible different evolutionary trend. Skin DC and NDC genes (panels I-J) show similar CUB fingerprints with a few differences. Skin

NDC genes show overall lower CU values (panel J, upper side) and conversely more codons with intermediate CU values (panel J, downside) compared

to DC genes. Kidney DC and NDC gene (panels K-L) CUB fingerprints greatly differ from the other two groups since the hierarchical clusters are

opposite. Although conservation of CU values across mammals also occurs, the hierarchy of kidney gene dendrograms shows a common ancestor for

intermediate and low CU values and not two distinct lineages (high and low CU values) as observable in muscle and skin genes. The two kidney CUB

fingerprints are somehow similar; however, DC genes show a higher number of very low CU values.

https://doi.org/10.1371/journal.pone.0265469.g003
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the most used stop codon in highly expressed genes [36, 37]. UAG and UGA have a similar fre-

quency in all genes.

Prioritization of the most differently used codons among tissue-specific

genes

We applied the same strategy of using CU values calculation to compare different human

genes to identify eventual codons which may be more differentially/preferentially used in cer-

tain disease-causing genes, compared to non-disease-causing genes. If confirmed, this may

imply that some synonymous codons may be preferred in the coding sequence of human

genes which mutations do cause rare diseases. This finding may represent an additional crite-

rion to be added to in silico tools or it may be also become a novel metric to design algorithm

useful for synonymous variants interpretation.

Based on the codon usage p-value (P< 0,05), we prioritized codons with very different CU

values among gene tissues (S11 and S12 Tables). Results are shown in Fig 4. Five codons were

prioritized, being used significantly differently in the three human tissues: CGU (Arg), CCA

(Pro), GAC (Asp), GAU (Asp) and GUA (Val) (Fig 4A–4E). CCA and CGU are the least fre-

quently used codons in muscle, GUA in kidney, and GAU and GAC are the most frequently

used codons in skin. Considering DC and NDC genes, further differences in CU values can be

observed for CGU and CCA, which are more frequently used in DC genes, and for GUA and

GAU, which, though less significantly, are more frequently used in NDC genes (Fig 4F–4L).

These data suggest that the CU values might be influenced by phenotype and gene propensity

to cause genetic diseases.

The CU value trend of these 5 codons seems to be conserved across mammals (Fig 4F–4L).

Finally, we counted the number of extremely biased codons in genes and across mammals.

We found that DC genes retain a higher multiple codon usage, with only a few extremely

biased codons, compared to NDC genes (Table 1, and Fig 5A and 5B).

DMD unique CUB behavior

We used the calculated CU values and we mapped 2828 known pathogenic missense and non-

sense mutations in the dystrophin (DMD) gene, taken from either public (LOVD) [38] or

internal databases [21], onto the DMD codons. We called our approach mutations’ “mapping-

on-codon”.

We verified whether rarely/frequently used DMD codons are consistently rarely/frequently

site of proven pathogenic missense and nonsense variations. This finding may suggest that

some codons might be more prone/less prone to be site of pathogenic variations in a gene spe-

cific (DMD, in this case) context, and perhaps the “more-less mutated codons” might be rele-

vant for the (DMD) gene translation capacity, and/or for other translation-related functions,

meaning that they should be considered when artificial gene codon optimization is carried

out.

The DMD gene does not have an extreme CUB and maintains all codon types used in its

coding sequence, also across the mammals studied. We counted the number of codon type in

DMD coding sequence and identified only 4 extremely biased codons, UCG, CCG, ACG and

GCG, accordingly to the known bias cut-off parameter, based on codon redundancy of 2, 3, 4

and 6 triplets [39], (Fig 6A).

Fig 6B shows the number of mutations occurring at all codon types. Each number, on the

top of the bars, represents how many times that specific codon was the site of a DMD missense

or nonsense variation. Interestingly, these numbers are not related to CU values. Although

CCG (Pro), UCG (Ser), GCG (Ala) and ACG (Thr) in red in Fig 6A and 6B, are, expectedly,
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Fig 4. The 5 extremely biased codons, differentially used by Homo sapiens in DC vs NDC genes, and among

tissues. Left graphs (A, B, C, D, E) show the codon frequency on the x-axis and the number of genes that use that

specific codon (with the frequency annotate in x-axis) on the y-axis. Right graphs (F, G, H, I, L) show CU values in all

studied mammals on the x-axis and codon usage values in gene tissues on the y-axis. Five codons were the most

differentially used in HSA, CGU (Arg), CCA (Pro), GAC (Asp), GAU (Asp), and GUA (Val). Pink bars indicate DC

genes, blue bars indicate NDC genes. CGU (A, F) is the least frequently used codon in NDC muscle genes; CCA (B, G)

is the least frequently used codon in DC muscle genes; GAC (C, H) is the most frequently used codon in DC skin

genes; GAU (D, I) is the most frequently used codon in NDC skin genes; GUA (E, L) is the least frequently used codon
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less frequently site of mutations, being the rarest codons used by the DMD gene, other codon

CU values do not correlate with mutation occurrence. This is the case of CAG (Glu), which

shows intermediate CU values but is the codon more frequently site of DMD mutations, and

UAU (Tyr) and UUU (Phe), which are the most frequently used DMD codons (Fig 6A) but

are rarely site of mutations (Fig 6B).

Discussion

We calculated CU values in three small groups of genes which are tissue-specific and mostly

expressed in skin, kidney and skeletal muscle. We then innovatively compared CU values

between DC and NDC genes, and across mammals, therefore using a disease-driven approach,

to explore CU values and CUB behavior.

We confirmed that tissue-specificity influences CUB, and by calculating CU values in high-

, medium- and low-expressed genes we observed a tissue-specific trend, in keeping with previ-

ous reports [14; 40]. Interestingly, some codons are more represented in high- or low-

expressed genes, a fact possibly related to a positive selection of codons with higher/lower

translational capacity during evolution, and which depends on gene role in specific tissues

and/or organs. Consistently with this hypothesis, highly expressed DC genes show higher CU

values, finding that might suggest a key role of some codons in tissue specific DC genes, by

conferring their more efficient translation rate in some tissues. Conversely, and supporting a

key role of CU, the UAA stop codon is preferentially used in muscle genes and, generally, in

highly expressed genes, probably reflecting the need of an optimal codon ribosomal recogni-

tion to efficiently stop translation [41]. We therefore confirmed that, by calculating CU values

and comparing them in small groups of selected, highly tissue-specific, human genes, CU val-

ues’ differences can be observed, and are associated with tissue and gene expression level.

Tissue-specific fingerprints in HSA genes

Comparing CU values by hierarchical clusters in muscle, skin, and kidney HSA genes, different

patterns can be seen. Rarely or frequently used codon types vary among the three tissues, mus-

cle and skin genes being more similar in terms of clusters and hierarchy of CU values. These

different CUB fingerprints may be due to the tissue specificity of the analyzed genes, and we

may speculate that those genes having tissue-related functions which may require higher or

lower translation efficiency, use different synonymous codons. Interestingly, many muscle and

kidney genes share the same clustered, frequently used, codons, supporting that these might be

key codons to regulate tissue-specific translation. Notably, muscle and kidney, together with

liver and lung, are parenchymal tissues. These tissue types undergo a similar poor organ regen-

eration ability, because of evolutionary trade-offs, which are especially related to balancing

effects between the immune system and the shape of physiological and pathological processes

[42]. Additionally, a similar high CU value clustering is even more evident for some muscle

(COL6A1, RPL3L, MYLPF, TMEM38A, TNNC2, LMNA, DES, LBX1, SGCA, ANKRD23,

CAPN3, DYSF, ACTN3) and kidney (UMOD, BSND, SLC22A8, MIOX, AQP6, PKD1,

SLC12A3, GGACT) genes, underlining some gene-specific and/or organ related functions.

in DC kidney genes. Comparing CU values of these 5 extremely biased codons between DC and NDC gene groups and

across mammals, the trend toward a heavy codon extremization during evolution can be appreciated. During

evolution, CGU and CCA became more used in DC muscle genes, GAC became more used in skin DC genes, while

GAU became more used in skin NDC genes, and GUA became more used in NDC kidney genes. This suggests a

codon type-specific, disease-driven CUB, apparently conserved across mammals.

https://doi.org/10.1371/journal.pone.0265469.g004
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Fig 5. Number of extremely biased codons (“zero-codons”) found in DC and NDC tissue-specific genes across mammals. Panel A and B show on

graphs the same data reported in Table 1, to better appreciate the CUB trend and the number of “zero codons”. Specifically, the number of extremely

biased codons (“zero-codons”) in NDC and DC gene tissues are shown in panel A and panel B, respectively. On the X-axis are listed the mammals’

species in an evolutionary order; in the Y-axis the cardinal number of “zero codons”. Blue, red, and green bars represent kidney, muscle, and skin

tissues genes, respectively.

https://doi.org/10.1371/journal.pone.0265469.g005
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These genes, interestingly, are all DC genes, fact that is consistent with our DC and NDC

genes comparison results (see below). Accordingly, most skin genes show low or intermediate

CU values, with the few higher CU values never clustered. Skin is known to be an “immuno-

logical microenvironment” which regulates cell regeneration, thus its opposite CUB trend,

compared to muscle and kidney genes, might reflect its different organ and developmental

function [43].

Fig 6. Human DMD gene codon usage and mutations “mapping-on-codon” approach. Panel A Human DMD codon usage values and

mutation percentages. The bars represent the CU values in DMD gene in HSA. On the x-axis, codon types and the relative amino acid are

listed, on the y-axis CU values are reported. Red bars represent the 4 DMD rarely used codons UCG, CCG, ACG and GCG, according to

our cut-off, which is based on codon redundancy of 2, 3, 4 and 6 triplets (see Methods). On the top of bars (right side), the numbers of

missense and nonsense mutations occurred at the relative DMD codons are reported. All codons are still used by the DMD human gene,

and the frequency of mutation occurrence is not related to the codon usage values. Examples are UAU, which is the most used codon, but

with only 36 “mapped” mutations, or CGA (Arg) which is rarely used but has 114 “mapped” mutations. Panel B. Mapping of human DMD

missense and nonsense mutations on codon types. On the x-axis, there are codons and the relative amino acid, on the y-axis, there is the

number of mutations which have occurred and “mapped”. Red bars represent the 4 rarely used codons in the DMD human gene according

to our cut-off. On the top of the bars there is the percentage of CU values. The number of occurring mutations and the CU values are not

strictly related. Examples are CAG, which is the “more frequently” mutated codon (56%), with high CU values, and UGC (Cys), rarely site

of mutations, but with very high CU value.

https://doi.org/10.1371/journal.pone.0265469.g006

PLOS ONE Codon usage comparison in disease genes shows disease-related clusters

PLOS ONE | https://doi.org/10.1371/journal.pone.0265469 March 31, 2022 16 / 25

https://doi.org/10.1371/journal.pone.0265469.g006
https://doi.org/10.1371/journal.pone.0265469


CUB fingerprints across mammals

CUB fingerprint differences we have observed in muscle, kidney and skin genes are also visible

across mammals. CUB evolutionary conservation has been widely studied in HSA, but not in

such a genetic granularity. Muscle and skin, but not kidney, genes show similar CUB patterns

with two major hierarchy lineages, one for more frequent and one for rarest codons. These

trends suggest that CUB in muscle and skin genes may have possibly followed some common

evolutionary pathways. Muscle genes are extremely important in mammals, where they con-

tribute to about 80% of body mass. In HSA, the acquisition of bipedalism has certainly

required a robust selective force to drive the muscle reshaping, especially for muscles related to

limb girdles [44]. Common origin between skin and striated muscle can be found in the panni-

culus carnosus, a thin striated muscular layer attached to the skin and fascia of most mammals,

which provides support for twitching and contraction muscle functions. Panniculus carnosus

is still conserved in humans, though it is considered of no functional significance, and it is a

remnant of evolution, reflecting the common origin of muscle and skin [45]. Supporting this

link, a cohort of rare musculocutaneous syndromes due to mutations in RAS/MAPK pathway

genes were described in humans and since of their similar CUB fingerprints, other muscle and

skin DC genes would deserve to be studied by our strategy [46].

CUB fingerprints in disease-causing genes

By comparing CU values in rare disease-causing genes, we showed that, although tissue-spe-

cific pathways are still well recognizable, some DC genes (especially in muscle) have different

CUB fingerprints compared to NDC genes.

In general, DC genes show less extreme CU values compared to NDC genes, fact very evi-

dent if we calculated CU values without hierarchical clustering. Muscle and, less evidently,

skin and kidney DC genes do show more intermediate values compared to NDC genes, sug-

gesting a different CUB behavior.

Above all, muscle DC genes show the most recognizable disease-related fingerprint, sug-

gesting that a “disease-driven” CUB may partly prevail on the tissue specificity CUB choices in

muscle. This is a novel observation which would deserve more analysis to understand the role

of codon choices in human disease genes.

Skin and kidney DC and NDC genes show less evident differences. Nevertheless, some

codons, such as AAG, CAG, and GAG, have higher CU values in DC genes, raising the possi-

bility that their frequency might be perhaps disease-driven.

It is known, although reasons not fully understood, that CUB increases during evolution

and becomes extreme with the complete lack of some codon representation, codons we

defined “zero codons” [47]. The disease-driven muscle DC genes CU fingerprint we observed

suggests a different natural selection pressure, as already identified in some human gene cate-

gories [48].

A gene-specific CUB was identified in a few human disease genes, suggesting that some

synonymous variations may have functional implications. In CFTR and GATA4 genes (which

mutations cause Cystic Fibrosis and a congenital heart disease, respectively), synonymous

mutations may alter translational kinetics and protein folding by introducing non-optimal or

rare codons [49, 50]; high ACT, AGG, ATT and AGC, or AGA CU values were seen in HPRT1
(which mutations occur in Lesch-Nyhan Syndrome) and GALC (which mutations cause

Krabbe disease) genes, [51, 52]; finally BRCA1 and BRCA2 (major genes involved in Mende-

lian breast cancers) genes show an extremely low CUB compared to other oncogenes [53].

Taking together these and our data, we may hypothesize that some DC genes may have under-

gone a different CUB pressure during evolution. In support of this evidence, it is known that
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some disease genes, such as the DMD gene [54], still have a high mutation rate, which might

impact on codon type frequency. Notably, it has been very recently shown that gene/protein

evolution might occur not only in terms of driving evolutionary forces but also in relationship

with the diseases their mutations may cause [55].

Therefore, in our studied DC genes we showed that CUB might be disease-driven, suggest-

ing that comparing CU values in these genes, which are more than 6000 already identified so

fare in humans, might be a good strategy to understand codon usage governing rules and their

relationship with diseases.

Codon prioritization and DMD gene CUB behavior

Five codons, GUA (Val), GAU (Asp), GAC (Asp), CCA (Pro), and CGU (Arg) showed the

most different CU values among HSA genes and among tissues.

GAC and GAU are the top used codons in skin genes, contrariwise CAA and CGU and

GUA are the least used codons in muscle and kidney genes, respectively. Interestingly, these

three last codons, together with codon ATC (Ile), have a significant positive correlation with

gene expression due to their high GC content [56]. This finding supports the tissue-oriented

over-usage of some codons, like the one we found for these 5 codons in our study, likely

reflecting a specific selection process.

Supporting our hypothesis about disease-driven CUB fingerprints, the tissue-specific usage

of these 5 top codons is also disease-driven. CCA and CGU are the most used muscle codons

with higher CU values in muscle DC genes. Similarly, GAC is a most-used skin DC genes

codon, while GAU codon is more frequently used in NDC genes. This disease-driven trend

seems to be also conserved across mammals.

A few available reports suggest that specific codon overrepresentation may characterize

Mendelian disorder genes [57, 58] and, according to the directional mutation pressure theory,

might be due to a negative selective pressure at codons conferring higher risk of mutation

rates occur [59]. It is also known that some HSA genes show stronger or lower CUB depending

on their function [41]. We therefore hypothesize that some DC genes with unique functions

may have had a different evolutionary transition in terms of CUB, for the reasons above

mentioned.

The DMD gene [60] is the only HSA gene which does not have any “zero codons” and still

uses all codons in its coding sequence. This trend is conserved across mammals. DMD muta-

tions, including nonsense and missense variations, cause Duchenne muscular dystrophy

(DMD, OMIM� 300377) a rare, severe and fatal muscle dystrophy, or the milder form, Becker

muscular dystrophy (BMD; OMIM �300376), both inherited as X-linked recessive diseases,

with an incidence of 1:5000 newborn males.

By our “mapping-on-codons” approach of the 2828 DMD pathogenic missense and non-

sense variations causing DMD or BMD, we found patchy correlations between variation fre-

quency at codons and CU values. The least frequently used DMD codons (UCG, CCG, ACG

and GCG) are GC-rich and indeed rarely host mutations, as expected [14]. However, other

GC-rich codons like CGC, are rarely used in DMD but are frequently site of mutations (67)

and, conversely, the very frequently used codon UGC only hosts 9 mutations. CAG is the most

frequently DMD mutated codon (56,5% with 249 mutations) but not the most used. Therefore,

rare codons might be often site of mutations, and vice versa. Interestingly, the DMD locus

architecture provides possible explanations of the unique lack of “zero codon” behavior. It is

known that length of introns and proteins, the expression patterns and the CUB values are

genomic variables that influence the gene evolutionary rate [59]. Genes with low mRNA/pro-

tein expression levels tend to evolve rapidly, have large introns, code for heavier proteins, and
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have very low CUB. The DMD gene meets all these rules: it has huge introns, encodes a high

molecular weight protein, which is highly tissue-specific but poorly abundant and consistently

shows an absence of extreme CUB and no “zero codons”. Based on these metrics, the DMD
gene may have rapidly evolved during evolution, and we may infer that a similar behavior has

occurred for other DC genes which show similar low-CUB characteristics like those observed

in many kidney and skin DC genes. Further supporting our theory, eukaryotes show a negative

correlation between gene length and CUB, while in mosquitoes, an antagonistic relationship

between CUB and the intron number and length was described and, more intriguingly,

intron-less genes have a very high CUB with high “zero codon” level [5, 61].

Our mapping-on-codon approach may also be useful in interpreting the functional mean-

ing of the many synonymous changes that occur in the DMD, and in other DC, genes, and

which remain of uncertain or unknown significance. In this study, we have analyzed only

pathogenic variations by our “mapping-on-codon” approach, but synonymous changes can be

studied as well, to evaluate whether a relationship exists between these variations and CU val-

ues of their codons. Indeed, a CUB-oriented, tissue-oriented, or even disease-driven, algorithm

to define the synonymous change meaning might be attractive to be developed.

As a final reflection, more understanding about CUB fingerprints in DC genes may have

implications in codon optimization methods. Indeed, DC genes, especially in muscle, show a

low CUB. This means that muscle DC genes still apply the full codon redundancy and, conse-

quently, that the corresponding synthetic genes designed for gene therapies will need a dis-

rupting codon optimization via Codon Adaptation Index (CAI) appliance [62, 63]. Oppositely,

NDC genes show spontaneous high CUB, which leads to many “zero-codons” in the coding

sequences, with poor codon redundancy. Since we showed that DC genes (especially muscle)

have a disease-driven CUB, true applicability to “all” disease genes of the currently used com-

putation algorithms for codon optimization and gene therapy approaches might be questioned

[64]. Indeed, some rare, non-optimal, codons may have to be preserved for protein translation

efficiency or, more interestingly, for gene- and tissue-specific expression regulation as

reported, although not in humans [19, 65], and CAI may benefit of using other novel metrics.

Conclusions

In our study, we presented a novel strategy to compare CU values in gene categories. We

found that CU values hierarchical clusters vary depending on tissue specificity but also on

gene-related phenotype, with a disease-driven trend, which seems to be conserved among the

mammals studied. We think that our preliminary findings are encouraging and suggest that

calculating and comparing CU values in many human disease genes might be valuable to

unravel novel codon usage characteristics. This knowledge may impact on synonymous varia-

tion interpretation and synonymous codon translation capacity when designing algorithms

for synthetic gene development.

Supporting information

S1 Fig. Spearman correlation analysis between DC and NDC genes in HSA muscle, skin

and kidney tissues’ genes. The test demonstrated that DC and NDC genes CU values correlate

significantly in muscle, skin and kidney (p<0.05).

(PDF)

S2 Fig. Heat plots were generated using R package gplots. Rows were clustered based on

Euclidean distance. The color coding varies from dark blue to red with low to high CU values

respectively. CUB fingerprint and CU values among high-, medium- and low-expressed HSA
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genes. DC and NDC genes were considered depending on their expression level. CUB finger-

prints have high similarity, meaning that indeed, grouping genes for their expression level

yields a similar CU value trend. Codons AAC, GAC, UGC, UAC, CAC, UUC, AUC, AAG,

GAG and CAG are more frequently used both in high- and medium-expressed genes while

GUG is only present in highly expressed genes. Codons GAC, CAC, UUC, CAG, UAC, UGC,

AAG, AUC, GAG, AAC, ACC, GGC, GUC, UCC and GCG are more frequently used in low-

level expressed genes. A few codons have lower CU values such as UCC (Ser), ACC (Thr),

GGC (Gly), GUC (Val) and GCG (Ala) in low-expressed genes. Some highly expressed DC

genes have more codons with higher CU values, like DYS, LMNA and DES (muscle), UMOD
and PKD1 (kidney) and FGFR3 (skin). In medium-expressed genes, the trend is opposite, with

some NDC genes that show higher CU values like MLPF, TNNC2, TMEM3BA (muscle) and

NCLZ2, MCX (kidney). Interestingly, UAA is the most used stop codon in highly expressed

genes since it induces translation termination with higher speed and accuracy at the ribosomal

level and can be read by both release factors eRF1 and eRF2 [31, 32]. UAG and UGA have a

similar frequency in all tissue genes and expression levels.

(PDF)

S1 Table. The table shows the list of considered species named in both the scientific and

common name (on the left) and their link in the NCBI browser (on the right).

(DOCX)

S2 Table. The table shows the list of Homo sapiens genes, prioritized in skeletal muscle tis-

sue, using the Human Protein Atlas database (https://www.proteinatlas.org/). In order to

prioritize muscle genes, we selected those with higher expressions from the skeletal muscle-

enriched genes list of the Human Protein Atlas database (https://www.proteinatlas.org/search/

tissue_specificity_rna:skeletal%20muscle;Tissue%20enriched+AND+sort_by:tissue+specific

+score+AND+show_columns:groupenriched). All data (RNA, TS, TPM, and Protein expres-

sion scores) were also obtained by the Human Protein Atlas database. �RNA TS TPM indicates

RNA level reported as mean TPM (transcripts per million), in referred tissue, skeletal muscle

in this case. ��Protein expression scores are based on a best estimate of the "true" protein

expression from a knowledge-based annotation in the selected tissue, skeletal muscle in this

case. ���Tissue specificity is based on data found in the graph called “HPA tissue dataset”, a

sub-category of the “RNA sample summary” section in the HPA site, for each gene. The RNA

summary section shows normal distribution of individual samples across the datasets of multi-

ple RNA-seq analyses visualized with box plots. “Only” is used for a gene transcript present

only in the specific tissue (skeletal muscle). “Predominantly” is used when the majority of a

gene transcript is present in the specific tissue (skeletal muscle). “All” is used for a gene tran-

script present in all tissues.

(DOCX)

S3 Table. The table shows the list of Homo sapiens genes, prioritized in skin tissue, using

the Human Protein Atlas database (https://www.proteinatlas.org/). In order to prioritize

skin genes, we selected those with higher expressions from the skin-enriched genes list of the

Human Protein Atlas database (https://www.proteinatlas.org/search/tissue_specificity_rna:

skin;Tissue%20enriched+AND+sort_by:tissue+specific+score+AND+show_columns:

groupenriched). All data (RNA, TS, TPM, Protein expression scores and Tissue specificity)

were also obtained by the Human Protein Atlas database. �RNA TS TPM indicates RNA level

reported as mean TPM (transcripts per million), in referred tissue, skin in this case. ��Protein

expression scores are based on a best estimate of the "true" protein expression from a knowl-

edge-based annotation in the selected tissue, skin in this case. ���Tissue specificity is based on
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data found in the graph called “HPA tissue dataset”, a sub-category of the “RNA sample sum-

mary” section in the HPA site, for each gene. The RNA summary section shows normal distri-

bution of individual samples across the datasets of multiple RNA-seq analyses visualized with

box plots. “Only” is used for a gene transcript present only in the specific tissue (skin). “Pre-

dominantly” is used when the majority of a gene transcript is present in the specific tissue

(skin). “All” is used for a gene transcript present in all tissues.

(DOCX)

S4 Table. The table show the list of Homo sapiens genes, prioritized in kidney tissue, using

the Human Protein Atlas database (https://www.proteinatlas.org/). In order to prioritize

kidney genes, we selected those with higher expression from the kidney-enriched genes list

of the Human Protein Atlas database (https://www.proteinatlas.org/search/tissue_

specificity_rna:kidney;Tissue%20enriched+AND+sort_by:tissue+specific+score+AND

+show_columns:groupenriched). All data (RNA, TS, TPM, Protein expression scores and

Tissue specificity) were also obtained by the Human Protein Atlas database. �RNA TS TPM

indicates RNA level reported as mean TPM (transcripts per million), in referred tissue, kid-

ney in this case. ��Protein expression scores are based on a best estimate of the "true" protein

expression from a knowledge-based annotation in the selected tissue, kidney in this case.
���Tissue specificity is based on data found in the graph called “HPA tissue dataset”, a sub-

category of the “RNA sample summary” section in the HPA site, for each gene. The RNA

summary section shows normal distribution of individual samples across the datasets of mul-

tiple RNA-seq analyses visualized with box plots. “Only” is used for a gene transcript present

only in the specific tissue (kidney). “Predominantly” is used when the majority of a gene

transcript is present in the specific tissue (kidney). “All” is used for a gene transcript present

in all tissues.

(DOCX)

S5 Table. The table reports the CUB and CU values for each amino acid in all the DC mus-

cle genes considered. Every gene is divided in a specific page (on the bottom) across species

(on the top).

(XLSX)

S6 Table. The table reports the CUB and CU values for each amino acid in all the NDC

muscle genes considered. Every gene is divided in a specific page (on the bottom) across spe-

cies (on the top).

(XLSX)

S7 Table. The table reports the CUB and CU values for each amino acid in all the DC skin

genes considered. Every gene is divided in a specific page (on the bottom) across species (on

the top).

(XLS)

S8 Table. The table reports the CUB and CU values for each amino acid in all the NDC

skin genes considered. Every gene is divided in a specific page (on the bottom) across species

(on the top).

(XLS)

S9 Table. The table reports the CUB and CU values for each amino acid in all the DC kid-

ney genes considered. Every gene is divided in a specific page (on the bottom) across species

(on the top).

(XLS)
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S10 Table. The tables report the CUB and CU values for each amino acid in all the NDC

kidney genes considered. Every gene is divided in a specific page (on the bottom) across spe-

cies (on the top).

(XLS)

S11 Table. The table lists all the codon usage p-value, calculated in all the considered

Homo sapiens genes, both DC and NDC genes in the three tissues (muscle, skin and kid-

ney).

(TXT)

S12 Table. The table lists all the codon usage p-value, calculated all the considered genes

across species, in the three tissues (muscle, skin and kidney).

(XLSX)
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