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Abstract

Wound healing complications affect thousands of people each

year, thus constituting a profound economic and medical

burden. Chronic wounds are a highly complex problem that

usually affects elderly patients as well as patients with co-

morbidities such as diabetes, cancer (surgery, radiotherapy/

chemotherapy) or autoimmune diseases. Currently available

methods of their treatment are not fully effective, so new

solutions are constantly being sought. Cell‐based therapies

seem to have great potential for use in stimulating wound

healing. In recent years, much effort has been focused on

characterizing of adipose‐derived mesenchymal stromal cells

(AD‐MSCs) and evaluating their clinical use in regenerative

medicine and other medical fields. These cells are easily ob-

tained in large amounts from adipose tissue and show a high

proregenerative potential, mainly through paracrine activities.

In this review, the process of healing acute and nonhealing

(chronic) wounds is detailed, with a special attention paid

to the wounds of patients with diabetes and cancer. In

addition, the methods and technical aspects of AD‐MSCs

isolation, culture and transplantation in chronic wounds

are described, and the characteristics, genetic stability and

role of AD‐MSCs in wound healing are also summarized.

The biological properties of AD‐MSCs isolated from
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subcutaneous and visceral adipose tissue are compared.

Additionally, methods to increase their therapeutic po-

tential as well as factors that may affect their biological

functions are summarized. Finally, their therapeutic po-

tential in the treatment of diabetic and oncological wounds

is also discussed.
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1 | INTRODUCTION

Wound healing is a complex process consisting of three main overlapping stages: the inflammatory phase, pro-

liferative phase, and remodeling phase, which occur in temporal sequence (Figure 1). It is regulated by different cell

types (e.g., keratinocytes, fibroblasts, stem cells, and immune cells), cytokines, growth factors, and extracellular

matrix components (ECM).1 The inflammatory phase usually lasts for the first 4 days after injury and begins with

the formation of a fibrin clot covering the wound which constitutes a temporary matrix enabling the migration of

inflammatory cells and protection against pathogens and fluid loss.2 Neutrophils are attracted to the wound within

24–36 h after injury by various factors secreted from the fibrin clot and damaged tissue, including transforming

F IGURE 1 Wound healing process in acute and chronic wounds [Color figure can be viewed at
wileyonlinelibrary.com]
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growth factor beta (TGF‐β), platelet‐derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast

growth factor (FGF), and interleukin (IL)‐8. Neutrophils secrete proteases, phagocyte bacteria present in the

wound and degrade necrotic tissue.3–5 They are followed by monocytes, which differentiate into macrophages able

to phagocytose cell debris and dead neutrophils.6 In the late inflammatory phase, macrophages secrete growth

factors (TGF‐β, EGF, PDGF, FGF) and the proinflammatory cytokines IL‐1 and IL‐6, thus activating keratinocytes,

fibroblasts and endothelial cells.7,8 The second, proliferative phase, which begins 3–4 days after injury and lasts

from 2 to 4 weeks, is stimulated by factors secreted in inflammatory phase. In the proliferative phase, angiogenesis

and epithelialization occur and ECM and granulation tissue are formed.9 Angiogenesis, which is essential for the

formation of granulation tissue, is induced by growth factors: vascular endothelial growth factor A (VEGF‐A),
FGF‐2, PDGF, and TGF‐β.10 Collagen secreted by fibroblasts gradually replaces the fibrin matrix. Fibroblasts also

differentiate into myofibroblasts expressing α‐smooth muscle actin, which enables wound contraction.11

Remodeling of the wound and surrounding tissues by fibroblasts, which is the final stage of wound healing, begins

approximately 3 weeks after injury and can last up to 2 years.12 During remodeling, all processes activated in the

earlier phases are terminated, and myofibroblasts, macrophages and endothelial cells undergo apoptosis.13

Collagen III is converted to collagen I by metalloproteinases, which, together with collagen rearrangement into an

organized structure, leads to strengthening of the wound.14 Typically, wounds reach approximately 20% strength

of healthy skin after 3 weeks, and 80% after 12 months.15

Many methods are used in the treatment of nonhealing wounds, including different kinds of dressings (e.g.,

films, hydrocolloids, foams, hydrogels, alginates, hydrofibers), tissue‐engineered skin substitutes, growth factors,

negative pressure therapy, and hyperbaric oxygen.16 However they are not fully efficient. In recent years, much

attention has been paid to the use of cell therapies in the treatment of wounds. For example, epidermal stem cells

were first used in wound treatment in 1981 and are now applied to promote healing of burns and chronic

wounds.17,18 Autologous genetically modified cultured epidermal stem cells were also successfully used in a clinical

trial for junctional epidermolysis bullosa.19,20 Recently, therapies with mesenchymal stromal cells (MSCs), espe-

cially adipose‐derived MSCs (AD‐MSCs), have been of great interest around the world.21 For many years, adipose

tissue has been considered medical waste but is in fact a great source of stem cells. AD‐MSCs are easy to obtain

and have similar properties to bone marrow‐derived MSCs (BM‐MSCs).22 Adipose tissue is a more effective source

of stem cells, which can be extracted in large amounts (500‐fold greater than BM‐MSCs when counted per unit

volume of fat) without ethical concerns. Additionally, AD‐MSCs show higher proliferative capacity, longer life‐span
and shorter doubling time than BM‐MSCs.23 Stem cells have great potential for chronic wound healing due to

increased cell migration, high proliferative potential and release of cytokines and biological factors that regulate

angiogenesis, induce repair processes, and inhibit inflammatory and immune responses.24,25

There is some inconsistency regarding the nomenclature of MSCs and mesenchymal stem cells. According to the

International Society for Cellular Therapy (ISCT) the term “mesenchymal stromal cells” refers to the plastic‐adherent
fraction of cells showing immunomodulatory, secretory and homing properties, while “mesenchymal stem cells” refer to

the population expressing progenitor properties such as self‐renewal and differentiation potential to multiple cell li-

nages.26 The abbreviation “MSC” should be used with additional information of the tissue source origin of the cells, for

example, AD‐MSCs (adipose tissue‐derived MSCs) and a functional definition should be provided to clarify whether it

refers to stem or stromal cells (i.e., stemness confirmation with in vivo and in vitro tests).27 Additionally, becauseMSCs act

therapeutically by homing in on the injury site and secreting immunomodulatory and regenerative factors, which makes

them therapeutic drugs, Caplan28 suggested naming them “medicinal signaling cells.”

In this review, we summarized current knowledge about chronic wound treatment with the use of AD‐MSCs

with a particular focus on wound healing complications in diabetic and oncological patients. Diabetes and cancer

are civilization diseases and the number of patients suffering from them is constantly growing. Wound healing

problems are a common complication of diabetes and oncological treatment. Intensive research is underway all

over the world on new drug compounds and methods of supporting wound healing in cancer patients and patients

with diabetes. The review summarizes not only the biological characteristic of AD‐MSCs but also the technical
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aspects of their isolation, cell culture and transplantation to nonhealing wounds. A comparison of AD‐MSCs from

different sources (subcutaneous and visceral adipose tissues [SAT and VAT]) was also made. Additionally, factors

that can affect AD‐MSCs as well as ways to enhance their therapeutic potential were described.

2 | CHRONIC WOUND CHARACTERISTICS AND CLINICAL NEED

Chronic wounds are wounds that do not heal through normal wound healing phases in an orderly and timely manner for

at least 1 month.29 Medical conditions, for example, diabetes, autoimmune diseases, vascular pathologies, obesity, neu-

ropathy or infections, as well as therapeutics, such as cancer chemotherapeutic agents, radiation therapy, nonsteroidal

antiinflammatory agents or glucocorticoids, can affect the wound healing process and lead to the formation of nonhealing

or chronic wounds. Patient age, nutrition, smoking status and alcohol consumption are also important extrinsic factors.30

A distinction is made between wounds of various etiologies: venous and ischemic ulcers, diabetic foot syndromes,

posttraumatic and postoperative wounds, pressure sores and burn wounds (Figure 2.).31–34

Chronic wounds constitute not only a medical issue but also a large economic issue. In developed countries,

1%–2% of the general population has chronic nonhealing wounds.35 With an aging society and a growing popu-

lation of patients suffering from diabetes, obesity and vascular diseases, these numbers are expected to rapidly

increase.36 The quality of life of patients with chronic wounds is significantly impaired and they show high mor-

bidity and mortality rates.37 In addition, treating these wounds is a serious economic burden, estimated to com-

prise approximately 1%–3% of medical budgets in developed countries.38

Chronic wounds of different etiologies possess several common features, such as elevated levels of proinflammatory

cytokines, proteases, reactive oxygen species (ROS) or senescent cells, dysfunction or deficiency of stem cells, decreased

levels of growth factors, abnormalities in ECM functions and weak blood supply.39,40 Their healing process is mainly

arrested in the inflammatory phase, and antimicrobial and phagocytic activity of the immune cells appears to be lower in

chronic wounds than in acute wounds, which likely leads to the accumulation of necrotic tissue on the wound edges.41 The

level of growth factors essential for proper wound healing can also be important in the formation of chronic wounds. For

example, bFGF, PDGF, TGF‐β, and EGF levels are reduced in chronic pressure ulcers compared to acute wounds.42 In

addition, chronic wounds are often gradually colonized by various bacteria, for example, Staphylococcus aureus,

Enterococcus faecalis, and Pseudomonas aeruginosa, all of which form a biofilm enabling them to become not only resistant

to antibiotics, other antimicrobial agents and the body's defense mechanisms but also more susceptible to other bacterial

and fungal infections.43–45 The presence of bacteria and their toxins causes excessive inflammatory reactions and tissue

damage and results in intensified local pain.46 In addition, immune cells and bacteria produce proteases that degrade ECM

and growth factors in the wound.47

2.1 | Wound healing in diabetes

Diabetes mellitus is a chronic metabolic disease characterized by hyperglycemia. According to the World Health

Organization, 422 million adults suffered from diabetes in 2014, and 1.5 million people died of diabetes‐related
complications in 2012.48 It is estimated that the population of diabetic individuals will grow to 592 million by

2035.49 In 2017, the cost of diabetes in the United States was 237 billion dollars, one‐third was allocated to the

treatment of diabetic foot ulcers (DFUs).50 These wounds are one of the most common and serious complications

of diabetes and a major cause of morbidity and mortality in individuals with diabetes. Ischemia, neuropathy and

infection, often occurring together, constitute the etiological triad, which leads to complications of DFUs.51 Ap-

proximately 15% of people suffering from diabetes have diabetic ulcer during their lifetime, and 85% of ampu-

tations in diabetic patients are caused by foot ulceration, which further deteriorates to severe infection. Besides,

50%–70% of all lower limb amputations performed are the result of diabetes.52,53
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Hyperglycemia can affect wound healing through different mechanisms. Tissue loss may be aggravated by a neu-

ropathic lack of sensation, and wound healing may also be delayed by dysfunctional epithelialization caused by impaired

cell proliferation and resistance to growth factors.54 Impairment in many key processes for proper wound healing

including the production of growth factors, the proliferation and migration of keratinocytes and fibroblasts, the angiogenic

response, collagen accumulation or the balance between ECM component accumulation and remodeling, plays main roles

in the pathophysiology of DFUs (Figure 1).55 In diabetic wounds, macrophage transition from a proinflammatory to an

antiinflammatory state does not occur, and these cells remain mainly in a proinflammatory state.56 Prolonged in-

flammation is also caused by IL‐1β and tumor necrosis factor α (TNFα), whose levels are increased during the in-

flammatory phase and remain elevated in wounds for a longer time. The stability and activity of hypoxia‐inducible factor 1
affected by hyperglycemia results in the suppression of its target genes, for example, VEGF, and impaired in endothelial

progenitor cell recruitment caused by decreased production of nitric oxide (NO) contributes to reduced angiogenesis.57–59

F IGURE 2 Chronic wounds of different etiology. (A) Posttraumatic chronic wound of lateral ankle, diabetic
foot syndrome; (B) Postoperative wound of abdomen, operation of hernia in postoperative scar complicated by
infection and necrosis of the abdominal wall, (C) Posttraumatic chronic wound of shank, ischemic wound [Color
figure can be viewed at wileyonlinelibrary.com]
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In addition, keratinocytes from the margins of diabetic ulcers are activated and highly proliferative (increased expression

of Ki67) and do not express the differentiation markers keratins 2 and 10 (K2, K10). They also do not migrate and show

reduced expression of the precursor of the α3 chain of laminin 5 (LM‐3A32), which is a molecule present in migrating

epithelial cells.60 In vitro cell cultures of fibroblasts isolated from DFUs showed reduced motility, altered secretion of

cytokines (lower levels of C‐X‐C motif ligand 1, IL‐6, IL‐8, IL‐23, monocyte chemoattractant protein 1 (MCP‐1), and
stromal cell‐derived factor 1) and a drop in the maximummitogenic response to growth factors compared to those of cells

from nondiabetic patients.61,62 Additionally, in diabetic wounds, reduced levels of many growth factors including PDGF,

KGF, VEGF, insulin‐like growth factors 1 and 2 (IGF‐1, IGF‐2), nerve growth factor, TGF‐β1 and KGF, were observed,

which may contribute to the delayed healing of these wounds.63 The results from a prospective cohort study on diabetic

patients showed that serum levels of TNF‐α, MCP‐1, matrix metalloproteinase 9 (MMP‐9) and FGF‐2 were higher in

patients with nonhealing ulcers than in those whose ulcers had healed. Moreover, increased immune cell infiltration and

expression of MMP‐9 and protein tyrosine phosphatase 1B (PTP1B) were observed in skin biopsies of diabetic patients.

These factors are associated with, for example, increased inflammation. MMP‐9 is involved in the degradation of proteins

and growth factors, while PTP1B takes part in negative regulation of insulin, leptin, and growth factors signaling (e.g.,

PDGF, VEGF, and EGF). Increased expression of extracellular MMP‐9 and intracellular PTP1B may not only lead to local

inactivation and resistance to the activity of growth factors but also, in a way similar to elevated levels of insulin in insulin

resistance, to an increase in circulating growth factors levels.64 Additionally, impairment in the regulation of ECM was

confirmed in diabetes. For example, reduced levels of collagen and elastin were found in biopsies from DFU edges. This

changes probably arose as a result of persistent inflammation and fibroblast senescence as well as poor vascularization of

the wound.65 Hyperglycemic conditions may also directly contribute to increased production of MMPs and a reduction of

tissue inhibitors of metalloproteinases (TIMPs), which results in disruption of the structures essential for proper wound

healing.66,67

2.2 | Wound healing in oncological patients

Cancer is one of the greatest challenges of modern medicine and the numbers of newly diagnosed cases and cancer‐
related deaths are rapidly growing worldwide. It is estimated that 18.1 million new cases of cancer were diagnosed and

that 9.6 million patients died because of cancer in 2018.68 In the treatment of cancer, chemotherapy and/or radiotherapy

can be given to patients preoperatively (neoadjuvant therapy) or after surgical resection of the tumor (adjuvant therapy).

Despite having many advantages, such as increased 5‐year survival rates and decreased numbers of local recurrence,

neoadjuvant treatment may also cause postoperative complications in wound healing, resulting in reduced blood supply to

the wound and regenerative potential as well as a higher incidence of infections. Usually, surgery is postponed to 4–6

weeks after neoadjuvant treatment, but it does not fully prevent the risk of such complications.69,70 In oncological

patients, skin manifestations, wound healing complications and tissue loss may either be caused by the tumor itself or

result from the method of treatment used (Figure 3). A common problem is also infections at the surgery site, for example,

after breast surgery, which can also delay healing.71

Chemotherapeutic drugs may interrupt processes responsible for proper wound repair by inhibiting cell di-

vision; metabolism and angiogenesis; the synthesis of DNA, RNA, and proteins; cell migration into the wound and

the formation of wound matrix. In addition, they impair fibroblast growth, and inhibit collagen production and

wound contraction.72 These drugs are designed to target rapidly dividing cells, so macrophages and fibroblasts are

as susceptible to their activity as cancer cells.73 In addition, chemotherapy weakens patients' immune system

which may interfere with the inflammatory phase of wound healing and increase the possibility of wound infec-

tions.74,75 Targeted therapeutics such as epidermal growth factor receptor (EGFR) or VEGF inhibitors should be

less toxic to normal cells, but their therapeutic targets involved in cancer growth also participate in wound healing,

so the use of these therapeutics is associated with adverse reactions, including skin toxicity.76 Blocking EGFR

signaling in healthy keratinocytes results in inhibition of their growth, proliferation, and migration.77 The use of
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bevacizumab, a monoclonal anti‐VEGF antibody, to block angiogenesis, may cause wound dehiscence, bleeding, and

infections resulting from the limited delivery of cells, nutrients and oxygen. To avoid wound healing complications,

it is recommended to perform surgery 60 days or 6–8 weeks after treatment with this drug and not to take

bevacizumab at least 28 days after surgery.78–80

The side effects of radiotherapy can be categorized as acute (hours to weeks after exposure) and late (months to

years after exposure). Acute injury includes hyperpigmentation and early ulceration, while late effects present as tissue

fibrosis, necrosis, atrophy, vessel damage, and chronic ulcers.81 Skin damage is one of the most frequent acute side effects

F IGURE 3 Skin complications in oncological patients. (A) 57‐year‐old patient after a radical mastectomy and
postoperative radiotherapy due to breast cancer. The figure shows skin discoloration in the irradiated area, that is,
at the breast and armpit. In the postoperative course, features of marginal necrosis of the wound treated in an
outpatient setting were observed; (B) 35‐year‐old patient after a radical surgery of soft tissues sarcoma of a right
lower leg above the ankle and a postoperative radiotherapy. Due to ischemia, the wound in the lower limb, in the
area from the back and below the ankle, was accompanied by prolonged healing. The figure shows the place of
impaired healing visible as a depression with a fragment of an atrophic wound (arrow); (C) 47‐year‐old patient with
the ulceration of the back (dimensions:17 ×10 cm) resulting from skin cancer before the radical procedure. This
type of neoplastic ulcer is associated with infection and necrosis. During radical surgery, the most important
element is to protect the operated site from infection of the postoperative wound. The arrow marks the site of
ulceration as a place with increased risk of postoperative wound infection; (D) Tissue loss of the left tight in a
63‐year‐old patient after a radical surgery of soft tissues sarcoma and postoperative radiotherapy. A fragment of
the thigh bone with a defect in the thigh muscles is visible. It is the most difficult variant to heal, due to the
extensive tissue loss and the condition after undergoing oncological treatment. The arrow marks the exposed
femur [Color figure can be viewed at wileyonlinelibrary.com]
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of radiotherapy, with 90% of patients who undergo radiotherapy developing skin reactions.82 The cytotoxic effect of

radiation is a result of direct DNA ionization and interaction of produced ROS with DNA. Base alterations, the formation

of dimers and DNA double‐strand breaks result in damage to basal keratinocytes and a reduction in the self‐renewing
properties of the epidermis. Overexpression of proinflammatory factors, including TNF‐α, interferon gamma (IFN‐γ), IL‐1,
IL‐3, IL‐5, IL‐6, IL‐8, and adhesion molecules, including intercellular adhesion molecule 1, vascular cell adhesion molecule,

and E‐selectin sustain the inflammatory phase. Wound strength is decreased by the prevention TNF‐α and IFN‐γ‐
mediated collagen deposition, the production of highly disorganized collagen and alterations in the production of ECM

proteins resulting from changes in fibroblasts.83–86 Moreover, elevated levels of TGF‐β in the serum of irradiated patients

correlated with a higher risk of radiation‐induced fibrosis.87 Low levels of angiogenic factors (FGF, HGH, and VEGF) in

irradiated skin may be responsible for inappropriate vascularization, disrupted angiogenesis and reduced blood supply.88

Persistent high concentrations of MMP‐2 and MMP‐9 and an imbalance of the expression of TIMPs and decreased

angiogenesis may be the reason why these wounds fail to heal.89

3 | CELLS AND TISSUE SOURCES

Adipose tissue may be obtained in two ways: surgical resection of excess fat tissue (Figure 4) or liposuction of lipoaspirate.

The techniques of fat harvesting are summarized in Table 1. Lipoaspirate from liposuction can be directly clinically used

without previous AD‐MSCs in vitro culturing.90 The harvesting procedure uses a tumescent solution of the acidic pH

F IGURE 4 Fat collection through surgical resection. (A, 1) Collection of subcutaneous adipose tissue.
Visualization of surgical wound during the process of fat tissue sample collection from subcutaneous tissue. Arrow
points at the base of the wound which consists of fascial tissue of abdominal wall. (A, 2) Collection of visceral

adipose tissue. Visualization of surgical wound after laparotomy procedure. The fat tissue sample is collected from
the round ligament of the liver, arrow points at round ligament of the liver. (B, 1) Subcutaneous adipose tissue.
(B, 2) Visceral adipose tissue. The photo shows intraperitoneal adipose tissue, the fragment is coated with the
serosa (arrow) [Color figure can be viewed at wileyonlinelibrary.com]
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including which includes Klein solution (see below), lidocaine or epinephrine which may induce a perioperative and

postoperative burning sensation. The latest studies show that the presence of lidocaine decreases AD‐MSCs survival by

an apoptosis increase. The neutralization of the tumescent solution by adding sodium bicarbonate can increase the

survival of AD‐MSCs (by an increase in the number of viable cells and apoptosis decrease) and the stromal vascular

fraction (SVF, up to 53%) and attenuates perioperative and postoperative pain.91 Avoiding in vitro manipulation of clinical

material seems to be safer and bypasses some legal regulation.92

The type of harvesting procedure influences the yield, viability and proliferation of AD‐MSCs. There are few main

isolation methods: mechanical‐assisted liposuction (MAL), power‐assisted liposuction (PAL), laser‐assisted liposuction

(LAL), ultrasound‐assisted liposuction (UAL) and surgical resection. PAL has been identified as the best method because

cells isolated using this technique show high proliferation potential and low senescence. A comparison between MAL and

UAL‐derived AD‐MSCs did not indicate significant changes in the expression of MSCmarkers (CD13, CD29, CD73, CD90,

CD105; only the level of CD166 was higher in UAL‐derived cells). Other comparisons (surgical resection, PAL, and LAL)

confirmed that different harvesting methods do not change the expression of basic mesenchymal markers (such as CD90

and CD40).93–95 AD‐MSCs obtained from the abdomen through resection or liposuction yield more cells than either UAL

or fat tissue collected from the hip/thigh district.96

3.1 | Isolation of AD‐MSCs

Cell isolation is a critical step in obtaining cells for experimental and therapeutic procedures. Enzymatic or

nonenzymatic methods of AD‐MSCs isolation are described in the literature; the enzymatic method utilizing

collagenase (Figure 5) is most frequently used. However, proteolytic enzymes, for example, trypsin‐EDTA, dispase

or collagenase may negatively affect the viability and surface antigen expression on AD‐MSCs.97 Moreover, similar

to fetal bovine serum (FBS) utilization, there are safety issues regarding the use of xenogeneic collagenase. To

overcome this problem, nonenzymatic methods such as sonication, explant culture, and centrifugation were de-

veloped. However, none of the proposed nonenzymatic methods isolated the same number of cells as the enzy-

matic method.98 Comparison of the explant culture method and enzymatic method showed that the former had

higher hematopoiesis potential, a lower percentage of CD34 expression and better quality, but required a large

amount of lipoaspirate and resulted in lower overall yield of recovered cell.99 The enzymatic method elicited a

significantly higher number of cells, higher colony‐forming efficiency (higher Nanog and Oct4 expression) and

better differentiation capability.100 As we believe that the isolation efficacy is critical, we assume that enzymatic

TABLE 1 Techniques of fat harvesting

Method of fat

harvesting Advantages Disadvantages

Vacuum aspiration Short time to harvest a larger volume of fat

tissue

Small scar

High negative pressure results in trauma to

the adipocytes

Necessity to have vacuum equipment

Syringe aspiration

Coleman technique

Gentle negative pressure, which minimizes

trauma to the adipocytes

Small scar

The possibility of taking a large amount of fat

tissue in local anesthesia

Longer time to obtain same amount of fat

tissue compared to the vacuum aspiration

method

Surgical excision Maintains the structure and viability of

harvested fat tissue by avoiding damage

to the adipocytes

Bigger scar

General anesthesia must be used to excise

more fat tissue

Lower tissue plasticity
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isolation is the best way of obtaining cells for clinical use. Therefore, it is important to develop protocols for

AD‐MSCs isolation with clinical grade collagenase. Carvalho et al.101 showed that xeno‐free enzymatic products

containing collagenases (e.g., Liberase TM) are as effective as research‐grade products in the isolation of AD‐MSCs.

They did not notice statistically significant differences in cell properties (proliferation, differentiation, cell surface

markers) among the cells isolated with different enzymatic products (CLS1 [Worthington], CLSAFA [Worthington],

NB4 [Serva], Liberase [Roche]). Moreover, in 2013, a clinical trial using ex vivo expanded AD‐MSCs isolated with

clinical collagenase NB 6 good manufacturing practice (GMP) grade (SERVA Electrophoresis GmbH) was per-

formed to analyze the effect of fat grafts enrichment with AD‐MSCs on graft survival. The procedure showed good

feasibility and safety.102

The efficiency, proliferation and pluripotency of AD‐MSCs depends on the donor site area. Analysis of cells

from adipose tissue taken by liposuction from the abdomen, flanks, thighs, and medial knees showed that the

abdominal region and inner thighs (expanding region during excess caloric intake) produce the highest yield of AD‐
MSCs. The superficial abdominal depot is less sensitive to apoptosis and has higher differentiation potential

F IGURE 5 Isolation of AD‐MSCs by enzymatic method. AD‐MSC, adipose‐derived mesenchymal stromal cell
[Color figure can be viewed at wileyonlinelibrary.com]
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compared to other subcutaneous depots.103,104 AD‐MSCs can also be obtained from atypical locations, for ex-

ample, buccal fat pads. Cells from this area express high levels of osteogenic markers; therefore, they seem to be

more appropriate for treating bone defects.105 Comparison of AD‐MSCs lipoaspirates taken from the abdomen and

hump showed differences: hump‐derived AD‐MSCs are smaller in size and narrower in overall appearance than are

abdominal AD‐MSCs.106 Additionally, some differences have been observed between subcutaneous AD‐MSCs

taken from the medial thigh or trochanteric area and those taken from the upper arm, which express higher levels

of peroxisome proliferator‐activated receptor gamma (PPAR‐γ‐2).107

3.1.1 | SVF versus AD‐MSCs

The advantage of SVF over AD‐MSCs is its heterogeneous cellular composition (preadipocytes, fibroblasts, vas-

cular smooth muscle, endothelial cells, macrophages, and lymphocytes), which is responsible for better therapeutic

outcomes, comparable safety and less regulatory criteria. During culture expansion, AD‐MSCs can change surface

marker expression and cells morphology. However, AD‐MSCs can be used in allogeneic and autologous treatments,

while SVF can be used only in autologous treatment (Table 2).108–110 Allogeneic AD‐MSCs carry minimal rejection

risk, and obtaining AD‐MSCs is less deleterious than obtaining other types of MSC.111 Furthermore, fluids secreted

by acute and chronic wounds have an impact on AD‐MSCs and may regulate their regenerative potential.112

For clinical application, it is important to properly store the SVF and AD‐MSCs for later therapeutic use. Only

an elongated period of cryopreservation at −70°C (>2 years) reduces the number of live cells and their viability.113

Compared to fresh lipoaspirate‐derived SVF, SVF from cryopreserved lipoaspirate has reduced cell viability and a

lower colony‐forming‐unit percentage (16‐fold).114 It was shown that cryopreservation media containing human

serum (HS) albumin, HS, or knockout serum replacement has no influence on AD‐MSCs conditions (gene ex-

pression, immunophenotype, and differentiation ability) for up to 3–4 freeze‐thaw cycles. However, their pro-

liferation was significantly reduced, and it was suggested to perform no more than two freeze‐thaw cycles on cells

for clinical application.115

4 | CHARACTERIZATION OF AD‐MSCs

The characterization of AD‐MSCs is critical before their application in not only laboratory research but also the

clinic. Culture conditions can affect the properties of these cells and thus their therapeutic potential.

4.1 | Markers and differentiation potential of AD‐MSCs

Since the discovery and isolation of MSCs populations from adipose tissue, much effort has been paid to their

characterization, especially in the identification of their surface markers. According to the statement from the

ISCT, MSCs are defined by minimal criteria, including adherence to plastic, specific expression pattern of markers

(positive [>95%]: CD105, CD73 and CD90, negative [<2% positive]: CD45, CD34, CD14, or CD11b, CD79a or

CD19 and HLA Class II) and multipotent differentiation potential (differentiation into adipocytes, osteoblasts and

chondroblasts under standard differentiation conditions).116 Later, the ISCT with the International Federation for

Adipose Therapeutics and Science (IFATS) published guidelines for the characterization of AD‐MSCs. According to

these guidelines, cells in SVF should be identified by the following markers: CD45−CD235a‐CD31‐CD34+ and

additional expression of CD13, CD73, CD90, and CD105. In turn, AD‐MSCs in cell culture should have expression

pattern akin to that of other MSCs: positive for CD90, CD73, CD105, and CD44 and negative for CD45 and CD31

(Table 3). Expression of CD36 and a lack of CD106 expression can be used to distinguish AD‐MSCs and BM‐MSCs.
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In addition, the differentiation potential of AD‐MSCs into adipocytes, osteocytes and chondrocytes should be

qualitatively analyzed by histological staining, and additional quantitative analyses with biochemical methods

(Western blot, enzyme‐linked immunosorbent assay) or RT‐PCR should be considered (Figure 6).117

There is some controversy regarding the CD34 marker, whose expression on AD‐MSCs is unstable.

MSCs should be negative for these markers, however, the results of various studies indicate their differential

expression.118 In the SVF, a large percentage of cells (up to 85%) were shown to be CD34+.119,120 Some authors

confirmed that cultured AD‐MSCs do not express CD34,121–123 while others reported some fractions of AD‐MSCs

to be CD34+.124,125 Comparison of sorted fractions of early passages of cultured human AD‐MSCs showed that the

CD34+ cells had greater proliferative potential and colony‐forming ability whereas CD34− cells were characterized

by greater differentiation potential into osteocytes and adipocytes.126 In our studies, in flow cytometric and

quantitative polymerase chain reaction (qPCR) analyses, we observed little or no CD34 expression in AD‐MSCs

cultured in vitro up to the sixth passage.127 CD34 expression was confirmed to be affected by culture conditions

(e.g., plating density and culture medium) and decreased during cell culture.128,129

4.2 | Genetic stability of AD‐MSCs and effect of FBS deprivation on AD‐MSCs

The genetic stability of AD‐MSCs during cell culture should be addressed due to their clinical application. In clinical trials,

cells up to the second passage are usually used, but sometimes longer in vitro culture is required. During cell culture, the

proliferative and differentiation potential of cells can diminish. Reduced DNA synthesis and DNA repair efficiency may

lead to the accumulation of DNA damage, genetic instability, cell senescence, and functional changes and consequently

affect the therapeutic efficacy and patient safety.130 Rubio et al.131 showed that AD‐MSCs can undergo spontaneous

transformation in in vitro cell culture. However, the culture was continually passaged for 4–5 months. Our studies showed

that in a long‐term (up to sixth passage) in vitro cell culture, AD‐MSCs from different donors (plastic surgery and

oncological patients) maintain their differentiation potential (i.e., ability to differentiate into adipocytes, osteocytes

and chondrocytes) and retain their phenotype based on the expression of key surface markers at the transcript (qPCR)

and protein level (flow cytometry). These results confirm AD‐MSCs stability and safety during long‐term culture.127

AD‐MSCs stability was also demonstrated by other research teams. Neri et al.132 observed an expected slowdown of the

proliferation rate during long‐term culture but no instances of genetic changes (alterations in chromosome or short

repeated sequences), replicative senescence (telomere attrition, expression of significant amounts of active telomerase) or

anchorage‐independent growth ability, which indicates the therapeutic safety of AD‐MSCs. It was also indicated that

AD‐MSCs do not show signs of senescence up to the seventh passage regardless of culture conditions (oxygen tension

and medium supplementation with FBS or human platelet lysate).133

TABLE 2 Comparison of AD‐MSCs and SVF

Treatment Cell population Cell types Properties Ex vivo exposure

AD‐MSCs Allogenic and

autologous

Homogenous AD‐MSCs Immunomodulatory,

differentiative

High (weeks)

SVF Only autologous Heterogenous AD‐MSCs,

fibroblasts,

vascular smooth

muscle,

endothelial cells,

macrophages,

lymphocytes

Immunomodulatory,

differentiative,

angiogenic

Low (hours)

Abbreviations: AD‐MSC, adipose‐derived mesenchymal stromal cell; SVF, stromal vascular fraction.
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Another important issue regarding AD‐MSCs application is the evaluation of the effect of FBS deprivation on these

cells. Traditionally, cells are cultured in medium supplemented with FBS. However, it is recommended to avoid FBS during

the culture of cells for preclinical and therapeutic applications. To be considered safe, cells have to be cultured according

to GMP standards, so animal‐related products need to be eliminated. This is due to the risk of cell product contamination

with infectious agents. In addition, FBS contains various growth factors, hormones, nutrients and other components, and

its composition varies significantly between batches. FBS use may lead to unspecific activation of cell differentiation and

proliferation as well as immune responses.134–136 Accordingly, FBS is removed from cell culture before clinical application

and during testing of drug candidates.137,138 The available results show, that AD‐MSCs maintain their stem cell char-

acteristics in serum‐deprived medium; they survive, proliferate and are able to differentiate.139,140 Our research on

AD‐MSCs after the second passage, which were cultured in the absence of FBS for 48 h, comprised whole transcriptome

sequencing followed by gene expression analysis and showed that FBS‐deprived AD‐MSCs, at the transcription level,

show lower metabolic and proliferative activity but retain the expression of key surface markers. Additionally, we did not

find evidence of apoptosis and necrosis. These observations suggest that FBS deprivation does not induce changes that

could preclude the clinical application AD‐MSCs.127

To overcome the problem of FBS use in cell culture, media containing a combination of recombinant growth

factors are used. For example, commercially available chemically modified STK2 medium (DS Pharma Biomedical),

which contains FGF2, PDGF, EGF, insulin, lipids, nutrients and minerals, is provided for AD‐MSCs in vitro cell

expansion.141 AD‐MSCs cultured in STK2 medium showed a higher proliferation rate, increased expression of MSC

surface markers and reduced senescence than AD‐MSCs grown in DMEM supplemented with FBS.142 However,

serum‐free media are mainly applied in laboratory research and not in clinical trials, and the safety of serum‐free
media in the clinic needs to be evaluated.143 Other supplements, such as pooled human AB serum, platelet lysates,

cord blood serum or thrombin‐activated platelet rich plasma (tPRP) were tested as alternatives for FBS in

AD‐MSCs cell culture. Dessels et al.136 proved that compared to cells cultured in medium with FBS, AD‐MSCs

expanded in pooled human platelet lysates (pHPLs) were characterized by higher expression levels of genes

involved in the cell cycle, proliferation and division. Additionally, pHPL supplementation did not affect the ex-

pression levels of genes responsible for the differentiation of specific developmental processes. Similar findings

were also presented in other studies.144,145 In addition, Kocaoemer et al.146 reported that AD‐MSCs culture in

TABLE 3 Immunophenotype of SVF and AD‐MSCs according to IFATS and ISCT117

SVF AD‐MSCs

Positive markers Primary stable CD13,

CD29,

CD44,

CD73,

CD90 (>40%),

CD34 (>20%)

Primary stable CD13,

CD29,

CD44,

CD73,

CD90,

CD105 (>80%)

Primary unstable CD34 (present at variable levels)

Other markers CD10,

CD26,

CD36,

CD49d, CD49e

Negative markers Primary negative CD31 (<20%),

CD45 (<50%)

Primary negative CD31, CD45, CD235a (<2%)

Other markers CD3, CD11b, CD49f, CD106,

PODXL

Abbreviations: AD‐MSC, adipose‐derived mesenchymal stromal cell; SVF, stromal vascular fraction; IFATS, International

Federation for Adipose Therapeutics and Science; ISCT, International Society for Cellular Therapy.
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medium supplemented with pooled human AB serum or tPRP increased their proliferative capacity without

compromising their immunophenotype and differentiation potential. However, cells cultured in tPRP‐
supplemented medium showed decreased adhesion. Additional whole genome gene analysis revealed significantly

higher expression levels of 90 genes in AD‐MSCs cultured in FBS‐supplemented medium. Moreover, cells grown in

medium containing human supplements showed lower expression of adhesion‐ and ECM‐associated molecules.147

In turn, Lindroos et al.148 indicated that AD‐MSCs cultured in allogeneic HS (allo‐HS) and FBS show comparable

proliferative potential and phenotypes, but there were differences in the gene expression patterns between those

culture methods (overexpression of cell cycle pathway genes in allo‐HS culture and BMP receptor‐mediated

signaling in the TGF‐β pathway in FBS culture). Culture conditions can affect AD‐MSCs properties, therefore, there

is still a need to look for appropriate xeno‐free culture media that will provide the right number of cells for clinical

application without affecting their therapeutic potential.

F IGURE 6 Fat grafting by Coleman technique. (A) Infiltration cannula; (B) Harvesting canula; (C) Fat transfer canula;
(D) Syringe for fat harvesting connected with insulin syringe for fat transfer with a Luer‐ Lock connector; (E) Harvesting
fat tissue—Coleman technique; (F) Lipoaspirate; (G) Autologous fat grafting into the chronic wound (our preliminary trials
in patients, approved by the Independent Bioethics Commission for Research of the Medical University of Gdansk—
permission number NKBBN/707/2018‐2019) [Color figure can be viewed at wileyonlinelibrary.com]
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4.3 | SAT versus VAT

Subcutaneous adipose tissue (SAT) and VAT have different characteristics and functional roles in metabolic reg-

ulation, for example, VAT has a higher inflammatory response than SAT.149 Differences between these kinds of fat

tissue are probably based on other developmental origins: SAT originates from somatic lateral mesoderm while

VAT originates from splanchnic lateral mesoderm.150 AD‐MSCs obtained from visceral (V‐AD‐MSCs) or sub-

cutaneous fat tissue (S‐AD‐MSCs) exhibit no difference in reconstructive potential, but collecting VAT is more

invasive for patients (Table 4).103 Single‐cell RNA‐seq analysis showed different transcriptomic features between

S‐AD‐MSCs and V‐AD‐MSCs (S‐AD‐MSCs have larger DPP4‐positive subpopulation). AD‐MSCs from both tissues

show diverse fibrosis, adipogenesis, vascularization and inflammation outcomes and have different, heterogeneous

gene expression profiles. V‐AD‐MSCs are more adipogenic and proinflammatory while, S‐AD‐MSCs are more like

progenitor cells with antiinflammatory properties.151,152

S‐AD‐MSCs and V‐AD‐MSCs share similar surface markers and cell viability but differ in functions (depending

on the surrounding microenvironment), motility, focal adhesion dynamics, secretion of inflammatory cytokines, and

expression of stemness‐related genes.153 Compared to V‐AD‐MSCs, S‐AD‐MSCs have a higher potential to

differentiate into adipogenic and osteogenic cells but V‐AD‐MSCs secrete higher levels of inflammatory cytokines

(IL‐6, IL‐8) and TNF‐α.154

Raajendiran et al.155 identified three distinct human adipocyte progenitor cell (APC) subtypes according to the

expression of CD34 (CD34−, CD34low, CD34high). Performed analysis showed that AD‐MSCs in visceral fat tissue depot

have an equal number of CD34− and CD34hi, while in abdominal, subcutaneous depot AD‐MSCs are highly enriched

with CD34−, followed by CD34hi and CD34lo. S‐AD‐MSCs are specifically characterized by CD10 expression, while

V‐AD‐MSCs predominantly by CD200.156 The adipogenic capacity in cells is correlated with CD10 positivity and CD200

negativity, which agree with better differentiation of S‐AD‐MSCs than V‐AD‐MSCs in response to in vitro adipogenic

stimuli.156,157 V‐AD‐MSCs proliferate slower and need stronger stimulation to differentiate.157 Its weaker capacity to

differentiate into new adipocytes could partly explain the hypertrophy of existing adipocytes in VAT as a response to fat

accumulation in obesity.158 Additionally, V‐AD‐MSCs show a reduction of CD90, which could mediate metabolic disorder.

S‐AD‐MSCs express a high level of CD90 and show an increase in proliferation, mitotic clonal expansion, and adipogenic

differentiation, together with AKT activation and G1‐S phase transition, which may contribute to metabolic homeostasis

via preventing adipocyte hypertrophy in SAT.159

Wada et al.160 indicate differences in the angiogenesis and inflammatory cytokines release pattern between

S‐AD‐MSCs and V‐AD‐MSCs. The secretion of cytokines, for example, CHI3LI; IL‐1β; EGF; MCP‐1; CST3; IL‐6; IL‐8;
PTX3; TGF‐β; PLAUR, and TNF‐α was smaller in the supernatants of the S‐AD‐MSCs. Researchers also show that

the S‐AD‐MSCs proliferate 1.75 times faster than the V‐AD‐MSCs. The insulin‐producing cells (IPCs) for glucose

stimulation, generated from the V‐AD‐MSCs, and S‐AD‐MSCs, showed that insulin secretion capacity was higher in

the subcutaneous IPCs than the visceral IPCs.

TABLE 4 Comparison of S‐AD‐MSCs and V‐AD‐MSCs

Kind of white fat

tissue Developmental origin

Inflammatory

cytokines Type of cell

Differentiation into

adipocytes/osteocytes

S‐AD‐MSCs Subcutaneous Somatic lateral

mesoderm

Antiinflammatory Progenitor Lower

V‐AD‐MSCs Visceral Splanchnic lateral

mesoderm

Proinflammatory Adipogenic Higher

Abbreviations: AD‐MSC, adipose‐derived mesenchymal stromal cell; V‐AD‐MSC, AD‐MSC obtained from visceral adipose

tissue; S‐AD‐MSC, AD‐MSC obtained from subcutaneous adipose tissue.
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Both S‐AD‐MSCs and V‐AD‐MSCs from obese and Type‐2‐diabetic patients show higher migration, invasion,

and phagocytosis capacity than those from lean subjects. The weight loss in visceral and subcutaneous fat depots is

able to at least partially restore their metabolic homeostasis.158

The above differences should be considered in regenerative therapies.

4.4 | BAT versus WAT AD‐MSCs

Brown adipose tissue (BAT) which develops early in life is most prominent in human newborns and until recently, it

was widely believed that BAT disappears by adulthood.161 In adults human, it is concentrated in the supraclavi-

cular, neck, axillar, and paravertebral regions and it is inversely correlated with body mass index (BMI).162–164

Brown adipocytes are characterized by the presence of a large number of mitochondria, multilocular lipid

droplets, sympathetic innervations, and the expression of uncoupling protein‐1 (UCP1) which allows generating

heat with little ATP production.161,165 Brown adipose develops from paraxial mesoderm (dermomyotome) similar

to muscles and dorsal dermis.166

The Ebf2 (early B‐cell factor 2) transcription factor is a highly specific marker expressed in both BAT and beige/brite

precursors, used for BAT identity and efficient brite/beige cell formation.164,166 WAT can change to BAT in response to

cold exposure or other stimuli (i.e., β‐adrenergic) that increase sympathetic tone.161 Cells from white fat tissue that show

Ebf2 expression differentiate into brown‐like (or beige) adipocytes, what's more loss of Ebf2 in brown preadipose cells

reduce the expression levels of brown preadipose‐signature genes. These results indicate that Ebf2 specifically marks and

regulates the molecular profile of brown preadipose cells.166 Human abdominal subcutaneous white‐fat preadipocytes
have greater brown‐adipocyte lineage commitment potential following BMP‐7 induction than preadipocytes isolated from

visceral white fat.162 The mesenchymal progenitors that give rise to beige adipocytes express a unique set of cytokines

and transcriptional regulators involved in immune cell modulation of adipose tissue browning. An iron accumulation

and withstanding with oxidative stress suggest that beige/brite adipocytes are adapted to mitochondrial

biogenesis and fatty acid oxidation upon thermogenic stimulation.167

WAT to BAT conversion is induced in response to β‐adrenergic receptor stimulation by β‐adrenergic agonist

(e.g., norepinephrine,168 PPAR agonists,169 mirabegron,170 CL‐316,243,171 BRL 26830A172).

Multipotent metabolically active BAT‐derived stem cells were identified in adult humans mediastinum.173

BAT‐derived MSCs (BAT‐MSCs) differ from stem cells derived from WAT in the origin and lineage characteristics,

particularly, WAT‐stem cells originate from Myf5 (myogenic regulatory factor) negative progenitors, whereas

BAT‐MSCs express Myf5 and originate from myogenic lineage.173,174 BAT‐MSCs are metabolically active, can be

expanded in vitro, exhibit multilineage differentiation potential and can be functionally differentiated into meta-

bolically active brown adipocytes. The BAT‐MSCs compared to the WAT stem cells have a unique gene expression

profile, especially the higher expression of genes associated with BAT such as PPAR‐γ coactivator 1‐alpha
(PGC‐1a), PR domain containing 16 (PRDM16), CAMP responsive element binding protein one (CREB1), and UCP1.

Cells exhibit the capacity to undergo osteogenesis, chondrogenesis, and both brown and white adipogenesis.173

5 | FACTORS THAT CAN AFFECT AD‐MSCs

Obesity, age and related chronic diseases can negatively affect AD‐MSCs. The properties of AD‐MSCs differ among fat

depots and change with age.175 Cells from younger patients proliferate faster, are more successful in differentiating into

mature adipocytes and have more lipolysis activity.176 Higher adipogenesis was shown in the middle‐aged group (40–45

years old vs. compared with 25–30 years old and 55–60 years old). The younger group demonstrated lower apoptosis

susceptibility, the lowest of which was observed in the superficial abdominal depot. Cells isolated from elderly patients

have lower function and adipogenic potential, while those isolated from younger individuals (25–30 years old) have a
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higher growth rate and paracrine activity. Additional comparisons showed that in the elderly patients, higher differ-

entiation potential stays substantial only in the arm and subcutaneous thigh.107,177

5.1 | Obesity

AD‐MSCs from obese patients show reduced function and differentiation potential compared to those from lean

controls.178 Louwen et al.179 showed that obesity has an unfavorable impact on AD‐MSCs, that is, defective functionalities

and properties (differentiation, angiogenesis, motility, multipotent state, metabolism, and immunomodulation).

Additionally, the undifferentiated multipotent state of AD‐MSCs is impaired in obese individuals. AD‐MSCs from obese

individuals have upregulated adipogenic and inflammatory genes, enhanced epithelial‐mesenchymal transition, reduced

expression of multipotency‐associated genes (e.g., OCT4, SAL4, SOX15, and KLF4), and decreased telomerase activity and

telomere length (self‐renewal capacity). A higher BMI decreases AD‐MSCs osteogenesis potential and impairs angiogenic

potential. Obesity also alters AD‐MSCs secretome profile due to its association with the proinflammatory environment,

which can negatively impact on AD‐MSCs differentiation potential and regenerative capability.180,181 Compared to obese

AD‐MSCs, lean‐derived AD‐MSCs showed reduced immunosuppressive activities and weaker suppression of lymphocyte

proliferation, which protects against obesity‐associated inflammation and insulin resistance.182

5.2 | Cancer

AD‐MSCs and cancer cells show bidirectional effects. Tumor cells change the AD‐MSCs phenotype and function in

a paracrine way. In coculture with lung cancer cells (H358), AD‐MSCs differentiate into myofibroblasts.183 Similar

differentiation of AD‐MSCs was observed with cells cultured in presence of breast cancer exosomes, breast tumor‐
derived factors and ovarian cancer exosomes.184 Wang et al.185 showed that AD‐MSCs adipogenesis and

adipogenic‐specific genes are strongly inhibited by internalization of lung cancer‐derived exosomes. AD‐MSCs

from patients with urological neoplasms show equivalent mesenchymal surface markers, exosome miRNA content,

molecular karyotyping and similar growth kinetics to AD‐MSCs from healthy subjects, thus confirming the proper

use of autologous stem cell transplantation in clinical treatment.186 In our experiments, we also did not observe

differences in the differentiation potential and expression of key MSC markers at the transcriptome and protein

levels in in vitro cultured AD‐MSCs from plastic surgery and oncological patients.127

Some in vivo and in vitro preclinical studies indicate AD‐MSCs as a factor that increases tumor growth and

progression.187 The interaction between AD‐MSCs and the tumor microenvironment has been confirmed in pa-

tients with obesity, colorectal tumors, prostate tumors, melanoma and breast cancer, all of which show a higher

quantity of circulating AD‐MSCs. Tumor stroma and inflammatory cells can release factors (e.g., SD‐1 and MCP‐1)
that stimulate AD‐MSCs migration to the cancer microenvironment.188 AD‐MSCs can increase prooncogenic risk

but do not differentiate or stimulate angiogenesis in cancer cells.189 It is suggested that AD‐MSCs promote tumor

progression and invasiveness, but clinical trials have failed to demonstrate their prooncogenic potential.163

By contrast, some studies have shown that ASC exosomes exert anticancer immunomodulatory functions and

decrease cancer growth, migration and colony formation.190

5.3 | Chemotherapy/radiotherapy

It is important to evaluate the impact of oncological treatment on AD‐MSCs in the context of their potential autologous

transplantation into the wounds in these patients. In mouse model, it was shown that whole‐body irradiation can damage

adipose tissue and reduce the cell number and proliferative potential of AD‐MSCs.191 In vitro external radiation reduced
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the proliferation of AD‐MSCs, but the effect was smaller than that for normal human fibroblasts (NHFs). In the coculture

of these cells, external radiation did not significantly reduce cell proliferation, which suggests that AD‐MSCs may protect

NHFs and promote their growth.192 AD‐MSCs cocultured with NHF and microvascular endothelial cells (HDMECs)

showed increased expression of cytokines and adhesion molecules (in NHFs and HDMECs) after radiation, which suggests

that AD‐MSCs may have a stabilizing effect on irradiated wounds.193 The injection of AD‐MSCs is a promising therapeutic

strategy in wound healing, especially after laryngectomy combined with radiotherapy.194 Fat transfer can lead to the

healing of chronic ulcers resistant to other forms of postradiation treatment 195

Chemotherapeutic agents may also affect AD‐MSCs. Tamoxifen, a hormonal therapeutic widely used in breast

cancer treatment, was shown to inhibit proliferation and induce apoptosis of AD‐MSCs in a time and dose‐
dependent manner. Additionally, their ability to differentiate into adipocytes and osteocytes was impeded.196 On

the other hand, AD‐MSCs are relatively resistant to commonly used chemotherapeutic agents (cisplatin, vincris-

tine, and camptothecin) in vitro. After exposure to cisplatin and camptothecin at concentrations that reflect

clinically relevant doses, AD‐MSCs maintained their stem characteristics (surface markers and osteogenic and

adipogenic differentiation). They were also able to fully recover after treatment with high doses of cisplatin,

vincristine, and camptothecin, which indicates that they are resistant to genotoxic damage in vitro.197

It is worth noting, that most of the research regarding the effect of chemotherapy or radiotherapy on

AD‐MSCs was conducted in in vitro cell or in vivo animal models. This research is valuable but does not fully reflect

the state of these cells in the human body. Thus, it is important to perform more extensive and detailed analyses of

the properties of AD‐MSCs isolated from adipose tissues obtained from patients subjected to oncological

treatment.

6 | THE ROLE OF AD‐MSCs IN WOUND HEALING

AD‐MSCs play an essential role in wound healing, however, the mechanism of their action is still under in-

vestigation. Endogenous AD‐MSCs may be activated after wounding. During the proliferative phase mature adi-

pocytes and their precursors, together with fibroblasts, populate the wound site.198 AD‐MSCs can also

differentiate into fibroblasts, keratinocytes and endothelial cells and secrete various factors (e.g., cytokines and

growth factors) that stimulate the proliferation and migration of these cells. In addition, through the secretion of

growth factors (e.g., VEGF, bFGF, EGF, PDGF, hepatocyte growth factor, TGF‐α), cytokines (e.g., IL‐6, and IL‐8) and
chemokines in a paracrine manner, AD‐MSCs can promote angiogenesis, the immune response, epithelial re-

generation, and wound remodeling.199 They were also reported to exert antioxidant effects in wound healing.200

6.1 | Fat grafting by the Coleman technique

Fat grafting was first described by Coleman as a cosmetic facial filler in the 1980s. In 1994, Coleman first

introduced his technique of processing fat for structural fat grafting. This technique is called the Coleman tech-

nique (Figure 6) or structural fat grafting or “lipostructure” and uses syringes, cannulas, centrifuges and cen-

trifugation protocols. Fat can be harvested under local or general anesthesia, depending on patient preference,

pain tolerance and the volume of fat needed.201–203

The first step is to prepare fat tissue for harvesting and transplantation. For this purpose, fat tissue needs to be

infiltrated through the miniature holes in skin, with a specialized cannula (Figure 6A) with a solution, known as

Klein solution, which consists 0.5% lidocaine, 1:1000 epinephrine, sodium bicarbonate and Ringer's solution.204,205

The next step is to uptake fat tissue by gentle manual suction of fat with 10ml Luer‐Lock syringes and the

specialized Coleman cannula (Figure 6B). The plunger of the syringe is gently pulled back to create light negative
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pressure to harvest the fat. This method produces a very low and constant vacuum that minimizes the destruction

of adipocytes (Figure 6E).206

The lipoaspirate is processed for removal of the lipid and aqueous portions to isolate the adipose stroma for

grafting. There are a few techniques for this isolation process, such as centrifugation, decantation, sedimentation,

filtration, and mesh/gauze rolling; the Coleman protocol recommends centrifugation. Freshly harvested fat is

centrifuged using appropriate gravitational force (3000g for 3 min) to separate the fat from unnecessary pollutants

and nonviable components. Processed fat is transferred to 1ml syringes and is ready for placement using the

specialized cannulas (Figure 6D). There are several types of cannulas with different diameters, lengths and ends

depending on the tissues into which the lipoaspirate is grafted.207–209

Coleman fat grafts have a greater number of viable adipocytes and sustain better cellular function than fat

grafts harvested with other methods, and the Colman technique is currently the most common method of auto-

logous fat transfer.210,211 This procedure can also be used in wound healing (Figure 6G).

6.2 | Clinical application of AD‐MSCs in wound healing

The first evidence of ASC use in regenerative medicine was published in 2004. In this case, AD‐MSCs in a fibrin

glue in combination with bone grafts were used to treat widespread traumatic calvarial defects in a 7‐year‐old girl

who suffered severe head trauma.212 Since then, AD‐MSCs have been widely tested for their therapeutic potential

in the treatment of numerous diseases. According to ClinicalTrials.gov, 335 clinical trials regarding AD‐MSCs use

are registered (https://clinicaltrials.gov/, 12.11.2020, search term: adipose‐derived stem cells) and address a wide

range of medical conditions including delayed wound healing, burns, Crohn's disease, diabetes and diabetic

wounds, chronic obstructive pulmonary disease, cardiovascular diseases, rheumatoid arthritis, bone and cartilage

damage and many others. Interestingly, clinical trials evaluating AD‐MSCs potential in treatment of COVID‐19 are

also registered.

To achieve therapeutic potential, AD‐MSCs can be transplanted in various forms: lipoaspirate, SVF, cell sus-

pension of in vitro expanded cells or scaffolded cells. Scaffolds are designed to provide a 3D microenvironment for

cell proliferation and differentiation as well as to enhance cell viability, which is beneficial for the regulation of

regeneration. Currently much attention is paid to the use of constructs based on AD‐MSCs and scaffolds. Scaffolds

should possess several features, such as nontoxicity, nonimmunogenicity, good biodegradability and biocompat-

ibility, and be easy to handle. Additionally, they should also exhibit good chemical and mechanical surface prop-

erties (i.e., high porosity) to support cell resistance; promote the adhesion, proliferation, and differentiation of stem

cells and allow retention of metabolic futures.213–215 Clinical trials of fat grafting and SVF application in wound

healing are described in Table 5, and clinical trials of AD‐MSCs application in wound healing are summarized in

Table 6. Out of 335 identified studies only those specifically regarding the treatment of wounds and additional

studies describing the use of fat transfer for wound healing, tissue reconstruction in traumatic injury and onco-

logical patients were summarized. However, another interesting trial—the ACellDREAM II—that is currently re-

cruiting may provide new insight into this topic (NCT03968198). There, Investigators plan to assess the efficacy of

use of AD‐MSCs for critical limb ischemia. Inclusion criteria and primary endpoints of the mentioned trial do not

require presence of a chronic wounds, as patients only with rest pain and no wounds may be included as well, but

this study may provide new evidence on the topic of AD‐MSCs use in wound. Of note, this trial has been processed

by a feasibility study (ACellDREAM, NCT01211028) which showed promising results in regard to wound heal-

ing.216 Clinical trials proved the efficiency of AD‐MSCs in stimulating DFU healing. For example, in a randomized,

controlled clinical trial in Korea (clinical trial reg. no.: NCT02619877), the effects of an allogeneic AD‐MSCs sheet

(allogeneic AD‐MSCs in a hydrogel, ALLO‐ASCs) were evaluated for the treatment of DFUs. Control patients

received treatment with polyurethane film. At Week 8, complete wound closure was observed in 47% and 73% of

patients in the control and treatment groups, respectively. At the end of the evaluation (12 weeks) 82% of wounds
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were completely closed in the group receiving the ALLO‐ASCs sheet, while only 53% were closed in the control

group.217

Attempts to transplant AD‐MSCs into radiotherapy‐ or cancer‐damaged tissues were also made. For example,

fat transfer followed by split‐thickness skin grafting was performed in a 67‐year‐old woman with a chronic,

nonhealing ulcer on her leg resulting from squamous cell carcinoma excision and radiotherapy, this resulted in

complete healing of the ulcer.195 Fat transfer was also used in patients after radiotherapy for breast or head and

neck cancers (Table 7).

6.3 | Allogeneic versus autologous therapy and the immunological
properties of AD‐MSCs

The use of allogeneic cells gives rise to the possibility of rapid application of cells to the patient and enables full cell

characterization before therapy. Additionally, a small number of donors would provide treatment for many patients;

hence, immunogenicity tests and analyses of transplantation safety in allogeneic systems are very important. Allogeneic

transplants allow the pooling of cells from many donors and standardization of the cell product.222 The application of

allogeneic, stored cells is already in use. However, there are still some issue to be considered, for example, a lack of

standardized parameters for handling frozen cells. Another issue is the lack of uniform guidelines for all AD‐MSCs banking

processes, such as donor recruitment, manipulation, banking procedures, exemption and specific postthaw qualification

tests. It would ensure multiple treatment of the patients, avoiding recurrent liposuction.223,224

AD‐MSCs are suitable candidates for allogeneic cell therapies due to their low immunogenic profile, which was

demonstrated by low expression of major histocompatibility complex (MHC) Class II molecules, and T and B cell

costimulatory molecules CD80, CD86, and CD40 in vitro.225 However, in vivo studies have shown that AD‐MSCs

can induce a humoral and cellular immune response; hence, they are not fully immunologically privileged cells.

AD‐MSCs may also be under the influence of inflammation‐based signaling and induce the expression of MHC II

molecules and Toll‐like receptors. In addition, AD‐MSCs may also increase first‐ and second‐class MHC expression

as a result of differentiation.226–228In vitro cell culture can also influence immunogenicity; for example, cell culture

with bovine serum slightly reduces cell immunogenicity compared to that in culture without serum.229

Following modulation of the local inflammatory environment, it is believed that the final determination of

immunomodulatory responses is likely elicited by the differentiation of cells, a combined action of direct cell–cell

contacts and the secretion of soluble factors.229,230 The immunological properties of AD‐MSCs are also dependent

on the donor's concomitant diseases. Cells derived from obese Type 2 diabetes (T2D) patients show increased

expression of inflammatory markers, activation of the NLRP3 inflammasome, and a greater capacity for migration

and phagocytosis than those derived from lean donors. Interestingly, AD‐MSCs derived from obese and T2D

individuals also show a reduction in typical immunosuppressive activities attributed to MSCs.231 Moreover, it has

recently been proven that Crohn's disease disturbs the immune activities of AD‐MSCs, which is related to in-

flammasome activation.232

7 | MSCs INTERACTIONS WITH IMMUNE CELLS

It should be noted that MSCs also take part in regenerative processes by affecting the immune system. MSCs cells

produce number of modulating and immunosuppressive cytokines as well as they can affect immune cells through

direct interactions.233,234 MSCs may inhibit the activity of natural killer (NK) cells, lymphocytes Tc and dendritic

cells (DCs).235 MSCs can also induce the transition of M1 macrophages into M2 macrophages, thus promoting

tissue regeneration. M2 produce various cytokines and growth factors such as IL‐10, TGF‐β1, PDGF, IGF‐1, and
VEGF, which may stimulate cell proliferation, granulation tissue formation, angiogenesis and wound healing.7,8 One
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of the immunosuppressive mechanisms of MSCs activity is also the production of indoleamine 2,3‐dioxygenase,
which is involved in the L‐tryptophan catabolism. This process leads to a reduction in the level of tryptophan in the

microenvironment at the same time increasing the level of kynurenine which inhibits the activity of T cells, NK

cells, and DCs.236 MSCs also use other immunosuppressive and antiinflammatory agents such as nitric oxide

synthase (iNOS), TNF‐α‐stimulated gene‐6 (TSG6) and prostaglandin E2 (PGE2). MSCs have been shown to in-

crease the expression of iNOS in response to proinflammatory cytokines (TNF‐α, IL‐1) and IFN‐γ.237,238 Another

factor produced by MSCs is a glycoprotein TSG‐6 (35 kDa). It is believed that TSG‐6 counteract inflammatory

effects of TNF and IL‐1 thus inhibiting inflammation. Interestingly, proper expression of the TSG‐6 is crucial to

achieve the therapeutic effect of MSC cells.239 PGE2 is also involved in modulating the activity of the immune

system by inhibiting the inflammatory response and stimulating Treg lymphocytes.233,240

8 | STRATEGIES FOR STIMULATING OF AD‐MSCs ACTIVITIES IN
WOUND HEALING

Numerous clinical trials investigating the therapeutic potential of autologous or allogenic AD‐MSCs in the treat-

ment of different diseases have been conducted. However, their results are unsatisfactory, which creates a need to

search for new strategies of AD‐MSCs stimulation to enhance their activity and translate AD‐MSCs‐based
therapies to everyday clinical practice. Several strategies, including preconditioning with bioactive molecules,

genetic engineering of AD‐MSCs, modification of culture conditions and direct application of exosomes or ex-

tracellular vesicles, were established to overcome these problems. The impact of these strategies on improving of

AD‐MSCs potential in wound healing was evaluated in in vitro and in vivo experiments.241

It was shown that AD‐MSCs cultured in endothelial growth medium enhance their proangiogenic properties,

which may increase their therapeutic potential in ischemic diseases, for example, ischemic wounds.242 In another

study, AD‐MSCs administrated with bFGF via sustained release from a gelatin hydrogel showed increased se-

cretion of angiogenic growth factors and vessel maturation in a murine ischemic hind limb model.243 Moreover,

priming of AD‐MSCs with deferoxamine upregulated VEGF expression in a time and dose‐dependent manner,

which was mediated by augmentation of HIF‐1 activity in AD‐MSCs, and increased their paracrine effect on

endothelial cells (i.e., increase in migration).244 PDGF‐D can also be used for AD‐MSCs preconditioning before

transplantation because it increases their proliferation and migration; upregulates expression of growth factors

(such as VEGFA, FGF1, FGF5, bone morphogenetic protein 8B [BMP8B], leukemia inhibitory factor [LIF], inhibin

beta A [INHBA], IL11, and heparin‐binding EGF‐like growth factor [HBEGF]) in AD‐MSCs and enhances their

regenerative potential.245

The preconditioning of AD‐MSCs and modifications of other culture conditions can affect the effectiveness of

AD‐MSCs in wound healing. In traditional 2D cell culture cells are grown in a monolayer; however, this method does not

fully reflect conditions prevailing in normal tissue, such as cell‐to‐cell or extracellular interactions. In recent years, 3D

spheroid cell culture was developed, which better reflects these interactions and can be helpful in improving of AD‐MSCs

the therapeutic potential.246 Cheng et al.247 cultured AD‐MSCs in spheroids and then expanded them in monolayers to

determine whether they exhibit superior pro‐regenerative activity. They found that compared to 2D‐cultured AD‐MSCs,

spheroid‐cultured AD‐MSCs show higher expansion, less senescence, higher levels of pluripotency markers, C‐X‐C che-

mokine receptor type 4 (CXCR4) and angiogenic growth factors and enhanced migration and expression of MMP‐9 and

MMP‐13. Moreover, in a murine model of impaired wound healing, the spheroid‐cultured cells caused faster healing and

increased angiogenesis with better cell engraftment in the wound as well as evidence of their differentiation into

epidermal and endothelial lineages. Amos et al.248 showed that AD‐MSCs formulated in multicellular aggregates had

better acceleration of diabetic wound closure than did an equal number of cells delivered via suspension. In addition,

AD‐MSCs cultured in hypoxic conditions were shown to have enhanced proregenerative potential owing to their in-

creased proliferation rate and secretion of growth factors (VEGF, bFGF). It was also proved that hypoxia upregulated
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VEGF and bFGF expression on messenger RNA and protein level. Additionally, the conditioned medium from AD‐MSCs

cultured in hypoxic conditions compared to normoxia‐cultured AD‐MSCs conditioned medium, stimulated collagen

synthesis and migration of human dermal fibroblasts as well as accelerated wound closure in a mice full‐thickness wound
model.249 Culturing MSCs under hypoxic conditions also helps to improve their self‐renewal capacity and retain un-

differentiated phenotype.250

Genetic modifications were also shown to increase AD‐MSCs activity in wound healing. Kim et al.251

proved that overexpression of CXCR4 in AD‐MSCs leads to an increase in their homing and engraftment into

ischemic areas after transplantation. These cells also promoted long‐term engraftment and muscle tissue

regeneration in diabetic mice with hindlimb ischemia. Similarly, AD‐MSCs with gene transfer of manganese

superoxide dismutase (SOD2) that were transplanted into syngeneic mice elicited cytoprotective effects and

improved survival and engraftment rates.252 Additionally, overexpression of Oct4 and Sox2 in AD‐MSCs

increases their proliferation and differentiation and can be helpful in expanding and enhancing their

stemness.253

Direct application of AD‐MSCs‐derived exosomes may also have therapeutic potential in cutaneous wound

healing. Conducted studies revealed that their application accelerates wound healing in a murine model by opti-

mizing fibroblast functions. AD‐MSCs exosomes stimulate the production of collagen I and III in the early stages of

wound healing and reduce scar formation by decreasing collagen expression in the late stages.254 In a continued

study, it was found that AD‐MSCs‐derived exosomes promote scarless wound healing through regulation of ECM

remodeling (increases in TGFβ3:TGFβ1 and MMP3:TIMP1 ratios and prevention of myofibroblast differentiation),

and the mechanism involves activation of the ERK/MAPK pathway.255 It was also demonstrated that stimulation

with inflammatory cytokines (TNF‐α/IFN‐γ) can enhance the immunosuppressive and antiinflammatory potential of

AD‐MSCs‐derived exosomes.256

9 | CONCLUSIONS

AD‐MSCs seem to be a promising tool for the treatment of various types of diseases. They are successfully

used, among others, in the treatment of chronic or complicated wounds of various etiologies, for example,

diabetic wounds. These cells secrete a number of cytokines and growth factors that stimulate the processes

responsible for proper wound healing. They are also a good model for testing the activity of new

proregenerative compounds. However, despite the large number of studies on the biology and characterization

of AD‐MSCs and the existence of clinical trials evaluating their therapeutic potential, the topic of their safety

is still widely discussed, particularly in relation to cancer patients. There is still a lack of an adequate number of

clinical trials on the effectiveness of AD‐MSCs in the treatment of oncological wounds. The number of

complicated wounds and tissue defects arising as a result of cancer and oncological treatment is a major

problem in the daily work of oncologists, these adverse event significantly worsen the patients' quality of life.

However, it seems that these cells should be used with extreme caution in cancer patients, once the patient is

made aware of the risk. The issue of their safety and effectiveness in stimulating wound healing in cancer

patients should certainly be further investigated and relevant clinical trials should be performed. It is also

worth mentioning that some limitations of cellular therapies are their high costs, restrictive legal regulations

and the time needed for cell expansion. In conclusion, the applications of these cells are very attractive, but

they still require more basic and clinical investigations.
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