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Abstract: In recent years, numerous deep-learning approaches have been developed for the analysis
of histopathology Whole Slide Images (WSI). A recurrent issue is the lack of generalization ability of
a model that has been trained with images of one laboratory and then used to analyze images of a
different laboratory. This occurs mainly due to the use of different scanners, laboratory procedures,
and staining variations. This can produce strong color differences, which change not only the
characteristics of the image, such as the contrast, brightness, and saturation, but also create more
complex style variations. In this paper, we present a deep-learning solution based on contrastive
learning to transfer from one staining style to another: StainCUT. This method eliminates the need
to choose a reference frame and does not need paired images with different staining to learn the
mapping between the stain distributions. Additionally, it does not rely on the CycleGAN approach,
which makes the method efficient in terms of memory consumption and running time. We evaluate
the model using two datasets that consist of the same specimens digitized with two different scanners.
We also apply it as a preprocessing step for the semantic segmentation of metastases in lymph nodes.
The model was trained on data from one of the laboratories and evaluated on data from another.
The results validate the hypothesis that stain normalization indeed improves the performance of
the model. Finally, we also investigate and compare the application of the stain normalization step
during the training of the model and at inference.

Keywords: stain normalization; generative adversarial network; contrastive learning; digital pathology

1. Introduction

In recent years, numerous deep-learning methods have been proposed to create
Computer-Aided Diagnostic (CAD) systems to assist histopathologists [1–3]. These meth-
ods are trained using digital glass slides, known as Whole Slide Images (WSI), from one
or more laboratories. The ultimate goal is to learn to generalize and perform well on
images obtained from different laboratory environments including those that were not
used during training.

One crucial step in pathological tissue preparation is the staining process, where dyes
alter the intensity of tissue elements to make cellular structures distinguishable. The most
common stain is Hemotoxylin and Eosin (H&E), where the hemotoxylin gives cell nuclei
a blue or purple appearance and the eosin gives a pinkish hue to the cytoplasm and the
extracellular matrix [4,5].

There are many variables in the process of staining that change the appearance of
the same tissue [6], for example, the concentration of the stain, time, manufacturer, and
temperature at which the stain is applied. However, this process of staining is not the
only source of variability in tissues, the digitization process can also introduce changes
and variability in the tissue appearance. For example, Figure 1 shows the same physical
specimen scanned using two different scanners. Pathologists are trained to be able to cope
with those staining variations, for deep-learning methods, it is typically more difficult to
cope with variations of staining and image appearance [7]. Therefore, preprocessing the
input images to have the same appearance can potentially increase stability and robustness.
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Figure 1. Patches at resolution 20×. (a, b, c, d) from Aperio Scanner and (e, f, g, h) from Hamamatsu Scanner.
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Figure 1. Patches at resolution 20×. (a–d) From Aperio Scanner and (e–h) from Hamamatsu Scanner.

Summary of Contributions

In this paper, we introduce a new deep-learning-based method for stain normalization
of histopathological images. Our approach produces images with high similarity to the
target domain and is inspired by the work of Park et al. [8] (contrastive learning for
image–to–image translation). In Section 2, we present an overview of other existing stain
normalization approaches.

We describe the architecture and contrastive learning-based training of our method in
Section 3. In Section 4, we evaluate and compare against several state-of-the-art methods by
using two datasets that consist of the same specimens but are digitized with two different
scanners. We use image registration to create ground truths for the evaluation and four
different metrics to compare the results.

Additionally, in Section 5, we evaluate our method as a preprocessing step in a clinical
use case for the segmentation of breast cancer metastases in lymph nodes. The experiment
is also performed using some of the approaches from Section 4, and we compare the
application of the stain normalization at two different stages—namely, during training
and during inference. To the best of our knowledge, such a comparison has not yet been
investigated in the literature. Finally, in Section 6, we discuss the results, and in Section 7,
we present and analyze some limitations of the method. For all the results, we performed
statistical tests to validate if the observed differences were statistically significant or not.
All the tables for the obtained p-values can be found in the Appendices B and C.

2. Related Work

One of the first methods for stain normalization was proposed by Reinhard et al. [9].
The approach is based on the transfer of color between an image taken as a reference and a
color varied image using the statistical mean and variance of the two images. This method
transforms the images, in a way that the contrast of the source image is similar to the
reference image, and the image is transformed to the CIELAB color space in which the
stains cannot be separated. Each channel is treated independently for alignment. The
drawbacks of this approach have been discussed in [10,11].

The algorithms proposed by Macenko et al. [12] find the stains vectors for each image,
using the color present in the reference image. This stain separation method is based on the
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fact that the color of the pixels in a histopathology image is a linear combination of two
stain vectors (Eosin and Hematoxylin), where the weights of both of them are non-negative.
This approach has few parameters, and no optimizations are required.

Ruifrok et al. [13] presented a novel supervised Color Deconvolution method; this
approach maps the color distribution of a stained image to a stained target image. This
method preserves the information of the source image. It uses a linear transformation in
the CIELAB color space to match the statistics of each color channel in the two images
in that color space. Prior information is needed in this method to estimate the color
appearance matrix.

Khan et al. [10] proposed a method based on the nonlinear mapping of a source image
to a target image using a representation derived from color deconvolution. A supervised
color classification method, Relevance Vector Machine, is used to identify the locations
where each stain is present. From these sets of classified pixels, the color appearance matrix
and stain depth matrix are estimated. This method works at the pixel level and achieves a
good result for stain separation.

The method by Vahadane et al. [14] for color normalization decomposes the image
into a sparse and non-negative stain density map. This approach has two steps: stain sepa-
ration by sparse nonnegative matrix factorization (SNMF), and structure–preserving color
normalization. The sparseness added to the optimization equation of nonnegative matrix
factorization helps to reduce the solution space; however, it increases the computational
complexity. This approach preserves the structure of the source image; however, it does
not preserve all the color variations of the source image, and the solution provided for the
optimization problem may correspond to local minima rather than global minima.

Tam et al. [15] proposed a fully automated stain normalization method to reduce
batch effects. They performed intensity centering and histogram equalization (ICHE) to
normalize the intensity range of the image using centroid alignment. The image is divided
into blocks, and each block’s intensity histogram is mapped to the target histogram.

With the development of deep-learning techniques in recent years, generative mod-
eling paradigms, such as generative adversarial network (GAN) [16] and variational au-
toencoder (VAE) [17], and some methods for stain normalization has been proposed that
can learn non–linear approaches. Zanjani et al. [18] presented three unsupervised methods
for stain normalization based on different deep generative models: GAN, VAE, and deep
convolutional Gaussian mixture model (DCGMM). Their approach does not require any
labeled data and can generate non–linear transformations of the original image staining.
Experiments by the authors show that the best score of the DCGMM method outper-
forms state–of–the–art methods by a 10–15% in color constancy on a dataset with several
stain variations.

StainGAN [19] uses CycleGAN [20] for one–to–one domain stain transfer. Their ap-
proach can be trained end–to–end, eliminating the need for an expert to choose a reference
image. Their method provided an improvement in tumor classification when applied
during preprocessing. In [21], the authors also used a CycleGAN [20] approach, with a
modified generator, and some changes in the loss function. They were able to improve
the stability and performance of the segmentation of renal histopathology on slides ob-
tained from different centers. Their results show a significant improvement when stain
normalization is used in conjunction with standard data augmentation.

Cycle consistency, used in CycleGAN [20], has the underlying assumption that the
relation between the two domains is a bijection, which can be overly restrictive in some
contexts, as indicated in [8]. The assumption that the transformed image contains all the
information to recover the original one is not always true, and this may result in certain
features of the original image being preserved in the transformed image. However, in the
context of stain normalization, this might not necessarily be a disadvantage.

Ciompi et al. [22] also investigated the importance of stain normalization using
the Macenko method as a preprocessing step for tissue classification, showing how it
can increase the performance of the models they evaluated. In [23], the authors also
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implemented the CycleGAN approach and included it as a preprocessing step for their
nuclei segmentation method.

3. StainCUT

In this section, we introduce a new method for stain transfer/normalization, which
is based on a modification of the method by Park et al. [8] for unpaired image–to–image
translation. Unpaired image–to–image translation is a class of vision problems where the
goal is to find a mapping from an input domain X to an output domain Y . In our case,
X ⊂ RH×W×C and Y ⊂ RH×W×C correspond to RGB images with two different stains,
respectively. Since this method does not need paired images from both domains, we will
work with two datasets X = {x ∈ X} and Y = {y ∈ Y} of unpaired images from both.

The generator function G : X → Y , will be split in two components: an encoder
Genc and a decoder Gdec, which are applied in sequence to obtain an output image
ŷ = Gdec(Genc(x)). In [8], the authors show that, with their method, the encoder learns
to capture domain–invariant concepts, i.e., the “content”, and the decoder learns to map
the representations learned by the encoder to synthesize domain–specific features, i.e.,
the “style”.

As introduced in [16], the adversarial loss

LGAN(G, D, X, Y) = Ey∼Y log D(y) +Ex∼X log(1− D(G(x))) (1)

is used to force the output of the generator to look similar to the images from the target
domain. Here, D is a neural network that outputs a single scalar. D(z) represents the
probability that z came from Y rather than as output of G.

Since corresponding patches in x and G(x) need to share some content, the authors
proposed a way to force the network to preserve it using a contrastive learning objective
function. The idea of contrastive methods is to learn representations by enforcing similar
elements to be equal and not similar elements to be different. The Noise Contrastive
Estimator (NCE) is used to achieve that

lNCE(v, v+, v−) = − log

[
exp(v · v+/τ)

exp(v · v+/τ) + ∑N
n=1 exp(v · v−n /τ)

]
(2)

In the equation above, v+ is a data point similar to v, which means that the observations
v and v+ are correlated, and the pair (v, v+) represents a positive example. v− is a vector
of examples not similar to v, and each pair (v, v−n ) forms a negative example. The reason to
have a set of N negatives is that empirical results have shown that having many negative
samples is good to obtain better representations. The factor τ = 0.07 is used to scale the
cosine similarity given by the dot product of the representations. This similarity measure
is responsible for reducing the difference between positive pairs and maximizing the
difference between negative ones.

Some L layers in the generator encoder Genc are selected, and their feature maps
are passed through a multi–layer perceptron (MLP) with one hidden layer Hl , simi-
lar to the setting introduced in SimCLR [24]. The output of Hl is a stack of features
{zl}L = {Hl(Gl

enc(x))}L, where Gl
enc represents the output of the l–th layer that was se-

lected. To force the encoder to learn representations where patches in the same position of
x and G(x) preserve content, the authors used a patch–wise contrastive loss.

The idea is that since a spatial location in the output of each layer of the encoder
corresponds to a downsampled patch of the original input, the same locations in Gl

enc(x)
and Gl

enc(G(x)) should be similar, and non–similar if they are in different locations. To
make this observation formal, let index each layer l ∈ {1, 2, . . . , L} and the spatial locations
s ∈ {1, 2, . . . , Sl} within the layer. For each position we, have a feature map zs

l ∈ RCl , the

rest of positions give us other features zS\s
l ∈ R(Sl−1)×Cl , being Cl the number of output
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channels in the encoder l–th layer. In a similar way, we can encode the output image
ŷ = G(x) into {ŷl}L = {Hl(Gl

enc(ŷ))}L.
The PatchNCE loss is introduced as

LPatchNCE(G, H, X) = Ex∼X

L

∑
l=1

Sl

∑
s=1

lNCE(ẑs
l , zs

l , zS\s
l ) (3)

This loss attempts to match corresponding input–output patches representations at a
specific location using the remaining positions as negative samples for the contrastive loss.
The final objective is that translated images need to share content at the same patches but
also need to look realistic, and this is given by

LGAN(G, D, X, Y) + λXLPatchNCE(G, H, X) + λYLPatchNCE(G, H, Y) (4)

This method is known in the literature as Contrastive Unpaired Translation (CUT);
therefore, we call our method for stain transfer based on contrastive learning: StainCUT.

3.1. Network Architecture

The generator we used is a modified UNet [25] (see Figure 2). The input is passed
through an encoder, which downsamples the input image after each convolutional layer
until a bottleneck is reached. The features encoded are then upsampled to generate an
output image of the same dimensions as the original. Typical skip connections after each
downsample are added, and these intermediate outputs are concatenated in a normal
fashion in this type of architecture. Instead of using 3× 3 convolutions two times, as in
the original UNet [25], we only use a single convolutional layer for each downsampling
operation, with a kernel–size of 4, a stride of 2, and padding of 1.

Each convolution applied reduces the size of the image by a factor of 2. After
each convolution, an instance normalization layer was used, and after the normaliza-
tion, LeakyRELU activation function with a negative slope equal to 0.2 was applied. For
upsampling in the decoder transposed convolutions were used, with the same hyperpa-
rameters: kenel–size 4, stride 2, and padding 1. Furthermore, instance normalization layer
and LeakyReLU were applied in each block in the decoder.

Before applying the encoder, a single convolution was applied to generate an image
with 64 channels. After each encoder block, the number of channels is increased by a
factor of 2, until a maximum possible of 512 channels, after which the number of channels
stays the same. Each decoder block then reduces the number of channels by a factor of 2
accordingly after each step.

Since we applied a convolution to adjust the number of channels in the first layer of the
encoder, the last layer of the decoder uses a transpose convolution in the same fashion to
obtain a 3-channel output image. After this layer, a Tanh activation function was used. The
maximum number of channels depends on the number of blocks selected for the network,
in some of our experiments (Section 4) we use encoders with different numbers of blocks.

The discriminator used is a standard 70× 70 PatchGAN introduced in [26] without any
modification. For the calculation of the patch–wise contrastive loss, 256 random locations
were sampled in each selected layer and a hidden layer MLP was applied to obtain a
256-dimension final features. Evenly distributed layers of the encoder in the generator
were used to extract features for the MLP and PatchNCE loss computation.
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Figure 2. Modified UNet architecture used as a generator.

4. Stain Transfer on the MITOS-ATYPIA Dataset

The goal of this experiment is to map images from slides scanned in different centers.
The dataset used is publicly available as part of the MITOS-ATYPIA 14 challenge. It contains
selected and annotated a set of breast cancer biopsy slides, each stained with hematoxylin
and eosin (H&E) and scanned by two different scanners: Hamamatsu Nanozoomer 2.0-HT
(Hamamatsu Photonics K.K., Hamamatsu City, Japan) and Aperio Scanscope XT (Leica
Biosystems, Deer Park, TX, USA).

In every slide, the pathologist selected frames at magnification 20× located inside the
tumor. The frames at 20× were divided into four frames at magnification 40×. The Aperio
scanner has a resolution of 0.2455µm per pixel. The other scanner has a better resolution
of 0.227299µm (horizontal) and 0.227531µm (vertical) per pixel, and thus a pixel is not
exactly a square in the scanned slides. Detailed information about the resolution of both
scanners and the size of the frames is given in Table 1.

Table 1. Resolution of the scanners and dimensions of frames on the MITOS-ATYPIA dataset.

Aperio Scanscope XT Hamamatsu Nanozoomer 2.0-HT

Resolution at 40× 0.2455µm per pixel
0.227299µm per pixel (horizontal)

0.227531µm per pixel (vertical)

Dimensions of a 20× frame
1539× 1376 pixels

755.649× 675.616µm2
1663× 1485 pixels

755.9965× 675.7671µm2

Dimensions of a 40× frame
1539× 1376 pixels

377.8245× 337.808µm2
1663× 1485 pixels

337.9982× 337.8835µm2

4.1. Classic Methods

For comparison, four state–of–the–art methods were evaluated using public imple-
mentations: Macenko (https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/)

https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/
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(accessed on 13 July 2022) [12], Reinhard [9], Khan [10], and Vahadane (https://github.com
/abhishekvahadane/CodeRelease_ColorNormalization) (accessed on 13 July 2022) [14].

We used three reference images as a template for those methods. All of these have
the same dimensions as the original frames at 20×magnification and were generated by
tiling patches extracted from different frames. The aim is to have a greater variety of color
distribution across all the data present in the templates. The total number of tiles in each
template is 3× 4, 9× 8, and 19× 16, respectively. The size of the tiles in each template was
calculated according to the dimension of the template size 1539× 1376. These templates
are shown in Figure 3.

Version June 19, 2022 submitted to J. Imaging 7 of 28
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Figure 3. Downsampled template frames used in the classical methods. (a) Contains 3× 4 tiles,
(b) contains 9× 8, and (c) contains 19× 16 tiles. The size of the tiles in each template are 344× 513 (a),
172× 171 (b) and 86× 81 (c), respectively.

4.2. Image Registration

For the experiments, we used all frames at resolution 20×. From those, we selected
300 for training, and the remaining 124 were used to test the performance of the method.
Since each slide was scanned with two different scanners, not only the dimensions are
different but also some misalignment due to rotation, and translation is present. For some
of the metrics that we used, it is crucial to compare aligned images, in the sense that the
content is the same at each position.

To handle this issue, we performed image registration using the MATLAB routine
‘imregtform’ (https://de.mathworks.com/help/images/ref/imregtform.html) (accessed
on 13 July 2022), with affine transformations consisting of translation, rotation, scale, and
shear. The optimization algorithm used for registration could handle well images with
different brightness and contrast. After the registration, all frames have a size of 1539× 1376.
For the training set, we extracted 9000 random patches of size 600× 600. The evaluation
was performed at the frame level, using the 124 frames at 20× provided for the test. Figure 1
shows patches on the same positions in selected frames taken by the two scanners.

To evaluate the accuracy of the automatic registration method, we selected a random
sample of 36 frames and register them manually using control points. For each case, the
registration method creates a transformation matrix of dimensions 3× 3. To compare the
automatic and the manual registration we computed the average of the distances (in µm)
between the locations, after registration, of the control points from the source image and
their correct position on the target image. The mean of the distances was 0.8867µm with a
standard deviation of 0.3377µm. The distribution of the distances is shown in Figure 4.

https://github.com/abhishekvahadane/CodeRelease_ColorNormalization
https://github.com/abhishekvahadane/CodeRelease_ColorNormalization
https://de.mathworks.com/help/images/ref/imregtform.html
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Figure 4. Boxplot showing the distribution of the average distances between control points after
image registration. Each box is drawn from the first to the third quartile. The horizontal line represents
the median value, and the triangle represents the mean. The whiskers indicate the minimum and
maximum value of the distribution.

4.3. Training

We trained our model using three generators with the architecture as described in
Section 3.1 and three different complexities: 4, 6, and 8 down-sampling blocks. In the rest
of the manuscript, we refer to them as StainCUT UNet 4B, 6B, and 8B, respectively. For
comparison, we also evaluated StainGAN [19] using the implementation of the authors
(https://xtarx.github.io/StainGAN/) (accessed on 13 July 2022). Table 2 shows the number
of parameters and the number of floating point operations (FLOPs) performed in every
forward pass for each of the models used as a generator, i.e., the discriminator networks
are not considered here, and for the StainGAN only one generator is taken into account. As
it can be observed in Table 2, despite having fewer parameters than most of the evaluated
StainCUT generators, the StainGAN generator performs more operations.

Table 2. Floating point operations (FLOPs) performed in every forward pass and number of param-
eters in the generators of the compared deep–learning architectures. The input size for the FLOPs
computation was 512× 512. For the StainGAN, only the FLOPs and the parameters that correspond
to one of the generators are considered.

Model FLOPs (G) Params (M)

StainCUT UNet 4B 65.21 15.870
StainCUT UNet 6B 70.85 45.298
StainCUT UNet 8B 72.61 70.466

StainGAN 227.55 28.286

The model was trained for 30 epochs, using a batch–size of 4 and the Adam optimizer
with a learning rate of 0.0002. The patches were randomly cropped to size 512× 512 in the
training step to give as input to the networks. The computations were made in one NVIDIA
GeForce RTX 3080 Graphics card with a memory size of 10GB, while the StainGAN genera-
tor has few parameters than our UNet generator, the memory consumption for training
using the contrastive learning approach is less than the StainGAN consumption. This is
because the CycleGAN uses two generators and two discriminator networks, whereas the
StainCUT approach uses only one.

Training the StainGAN with images of size 512× 512 in our graphics card was not
possible due to insufficient memory, not even with batch size 1; however, it was possible
with the StainCUT method with batch size 4. The StainGAN method was trained then
on images of size 384× 384 with a batch–size of 2, and the rest of the hyperparameters
were the same as the ones used for the StainCUT training. In the StainGAN paper [19], the
authors reported training the method with images of size 256× 256 with a batch size of 4
in a graphics card with a memory size of 12 GB. The classical methods can stain images
with the dimensions of the frames at 20× level of magnification; however, training the

https://xtarx.github.io/StainGAN/
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deep-learning approaches with images from that size was not possible due to insufficient
memory in the graphics card.

For that reason, we trained the methods with smaller tiles and stained the frames
following a local strategy, i.e, staining small tiles from the frame independently and recon-
structing the whole frame accordingly. The detailed approach goes as follows: the original
frame was split into overlapping tiles, and each of them was stained using the generator;
the overlapping is necessary to avoid artifacts between neighboring tiles. Since each pixel of
the original frames can be in several tiles, the final value of a pixel is a weighted average of
the values in each of the tiles where the pixel is present. For example, if a pixel is contained
in four tiles, and the values of the pixel in those stained tiles are x1, x2, x3, x4; the final value
of the pixel in the reconstruction will be:

x =
w1x1 + w2x2 + w3x3 + x4x4

w1 + w2 + w3 + w4

where w1, w2, w3, w4 are weights that measure how close to the border of the corresponding
tile the pixel is, and thus the tiles were the pixel is closed to the center of the tile contribute
more to the final value.

The proposed method can be used to stain images of any dimensions and does not
require a graphics card. In Table 3, we can see the average time spent by every method to
stain a single frame of our test dataset. Our method is almost 2× faster than the StainGAN
at evaluation time in the GPU and almost 4× in the CPU.

Table 3. Time per frame required by every method (mean ± std). For the deep-learning approaches,
the time was measured using either only the CPU or both CPU and GPU. The methods that do not
rely on neural networks were executed using only the CPU.

Method Time (s/frame)

Macenko 1.103± 0.076
Reinhard 1.034± 0.104

Khan 106.018± 2.104
Vahadane 18.359± 1.437

StainCUT UNet 4B (CPU) 2.937± 0.212
StainCUT UNet 6B (CPU) 3.024± 0.077
StainCUT UNet 8B (CPU) 3.392± 0.165

StainGAN (CPU) 12.731± 0.392
StainCUT UNet 4B (GPU) 0.619± 0.044
StainCUT UNet 6B (GPU) 0.637± 0.009
StainCUT UNet 8B (GPU) 0.665± 0.012

StainGAN (GPU) 1.107± 0.054

4.4. Results on Stain Transfer

The performance of the methods was evaluated by comparing against the ground
truths using four similarity measures: the Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [27], Feature Similarity Index (FSIM) [28]) and the Learned Per-
ceptual Image Patch Similarity (LPIPS) [29]. More information about these metrics can
be found in Appendix A. The metrics’ results are provided in Table 4. Box-plots for the
distribution of the results of the SSIM metric are depicted in Figure 5 and the ones for the
other three metrics can be found in Appendix A. Finally, the results of the statistical tests
are provided in Appendix B.

The statistical tests show that, in general, StainCUT with the different generators
performs significantly different than Macenko, Reinhard, and Khan. However, when
compared to Vahadane, there are cases when the more simple generators (UNet 4B and
UNet 6B) do not give significantly different results. In the SSIM metric, StainCUT UNet 4B
gives results not significantly different from Vahadane a (p-value = 0.186), and Vahadane
c (p-value = 0.678). In the FSIM metric, StainCUT UNet 4B gives results not significantly
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different from Vahadane a (p-value = 1.000), Vahadane b (p-value = 1.000), and Vahadane
c (p-value = 1.000). In all other metrics, StainCUT has significantly different results than
all the classical methods.

The tests show that there is no statistical difference between StainCUT UNet 6B and
StainCUT UNet 8B with StainGAN. However, in the case of StainCUT UNet 4B, there are
two metrics (SSIM and FSIM) where the results are significantly different from StainGAN.

Table 4. Evaluation metrics (mean± std) for the stain transfer using the images from the Hamamatsu
Scanner as reference. Bold highlights the best results for each metric.

Methods SSIM FSIM PSNR LPIPS

Macenko a 0.621± 0.098 0.639± 0.047 19.356± 1.700 0.126± 0.026
Macenko b 0.616± 0.100 0.640± 0.048 19.034± 1.669 0.126± 0.027
Macenko c 0.619± 0.100 0.641± 0.048 19.172± 1.725 0.125± 0.027

Reinhard a 0.632± 0.102 0.641± 0.047 19.309± 1.731 0.114± 0.023
Reinhard b 0.623± 0.104 0.642± 0.047 18.866± 1.653 0.115± 0.024
Reinhard c 0.625± 0.104 0.641± 0.047 18.999± 1.717 0.114± 0.024

Khan a 0.493± 0.076 0.581± 0.033 16.497± 1.447 0.212± 0.020
Khan b 0.537± 0.079 0.600± 0.036 17.638± 1.458 0.195± 0.018
Khan c 0.532± 0.079 0.597± 0.036 17.523± 1.467 0.197± 0.018

Vahadane a 0.646± 0.105 0.647± 0.050 18.783± 2.120 0.114± 0.031
Vahadane b 0.638± 0.113 0.646± 0.056 18.993± 2.380 0.117± 0.042
Vahadane c 0.645± 0.111 0.648± 0.055 19.268± 2.401 0.113± 0.041

StainCUT UNet 4B 0.669± 0.097 0.652± 0.047 20.686± 2.056 0.092± 0.021
StainCUT UNet 6B 0.677± 0.098 0.658± 0.048 20.575± 1.961 0.090± 0.020
StainCUT UNet 8B 0.695 ± 0.096 0.663± 0.046 21.176 ± 2.036 0.083 ± 0.019

StainGAN 0.689± 0.098 0.666 ± 0.047 20.754± 1.949 0.084± 0.019
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Figure 5. Boxplots from the evaluation of the SSIM metric for all compared methods on the MITOS-
ATYPIA dataset. Each box is drawn from the first to the third quartile. The horizontal line represents
the median value, and the triangle represents the mean. The whiskers indicate the minimum and
maximum value of the distribution.
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An example of the application of the compared methods is shown in Figure 6. There,
one can observe that the StainCUT and StainGAN results are visually more similar to the
ground truth than the ones obtained with the classic methods.
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(a) Source (b) Target (c) Macenko c (d) Reinhard c (e) Khan b

(f) Vahadane c (g) StainCUT Unet 4B (h) StainCUT Unet 6B (i) StainCUT Unet 8B (j) StainGAN

Figure 5. Stain normalization of source patch (a) to target patch (b) using different methods. For the classical methods the
we show only the result the corresponds to the reference frame with the best SSIM score.

Figure 6. Stain normalization of source patch (a) to target patch (b) using different methods. For
the classical methods, we show only the result the corresponds to the reference frame with the best
SSIM score.

5. Use Case: Semantic Segmentation of Metastasis in Lymph Nodes

Our aim with this set of experiments is to evaluate the impact of using stain normal-
ization in the context of semantic segmentation for the detection of breast cancer metastasis
in lymph nodes. We trained a binary semantic segmentation model on WSIs from the
CAMELYON16 (https://camelyon16.grand-challenge.org/) (accessed on 13 July 2022)
dataset [30]. The WSIs come from two different medical centers in the Netherlands: Rad-
boud University Medical Center (RUMC) and Utrecht University Medical Center (UMCU).
An example of digitized slides from these centers can be seen in Figures 7 and 8.

We performed two experiments, and in each of them, we used the slides of one of the
centers to train a segmentation network, whereas the other center was used for testing.
To perform the binary semantic segmentation, a standard UNet [25] with a ResNet18 [31]
encoder was used. The network was not pretrained with other data beforehand. To
create the training dataset, we sampled patches at a magnification of 20×, with a size of
512 px × 512 px. In all cases, the network was trained using data augmentations, which
included a composition of several elastic, flip, rotation, Gaussian blur and noise, fog, HSV
color shift, brightness, and contrast transformation; see Figure 9.

Additionally, for each experiment, we used the stain transfer network in two different
settings. In Setting (1), we performed the stain normalization during the training of the
semantic segmentation network; i.e, we applied the stain normalization to the images used
for training to make them look similar to the test images. In Setting (2), we performed
the stain normalization to the test set at inference time; i.e, right before performing the
inference with the segmentation model, we transform the images using the stain transfer
method to make them look similar to the ones that were used for training. Setting (2) is
what is typically found in the literature [22,23]; however, to the best of our knowledge, its
comparison to Setting (1) has not yet been performed.

For each setting and each experiment, the stain transfer was performed with three
different methods: Vahadane [14], StainGAN [19], and the introduced StainCUT approach.
This way we are able to compare not only which method can better translate to another

https://camelyon16.grand-challenge.org/
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staining style but also their ability to capture and translate the essential features and
whether it has an impact on the training and evaluation of a segmentation network.
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Figure 9. Augmentations used during training applied to a single patch.

The StainGAN and StainCUT methods were trained with the same hyper-parameters
as described in Section 4. For the StainCUT, we used eight blocks in the generator, i.e.,
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StainCUT UNet 8B. For the Vahadane method we used a mosaic of 4× 4 tiles, each of size
128 px × 128 px. In Setting (1), the data augmentations were applied to the training patches
after applying the stain transfer. Additionally, we trained the segmentation network using
only data augmentations without any stain transfer to validate whether using the stain
transfer indeed improves the performance of the model.

The data from each center was split into two datasets: one for the training of the
stain normalization network and another for the training (when testing with the other
center) and testing (when training with the other center) of the semantic segmentation task.
To evaluate the segmentation, we used the dice coefficient corresponding to the tumor
class, calculated using the probability heatmaps generated at magnification of 2.5× and the
corresponding ground truth masks. The dice coefficient is calculated as:

DICE =
2|X ∩Y|
|X|+ |Y| ,

where X is the predicted set of pixels and Y is the ground truth.

Results on Semantic Segmentation Use Case

In this section, we mainly present results on the performance of the segmentation
model. In contrast to the dataset from Section 4, there are no ground truths for the stain
transfer evaluation. Nevertheless, the quality of the stain transfer can be visually in-
spected. Some examples obtained with the StainCUT stain transfer approach are included in
Figures 10 and 11.
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Figure 10. Exemplary tiles from the RUMC dataset (top row) and the transformed tiles after applying
the stain normalization for the UMCU dataset (bottom row) using StainCUT.
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Figure 11. Exemplary tiles from the UMCU dataset (top row) and the transformed tiles after applying
the stain normalization for the RUMC dataset (bottom row) using StainCUT.
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The results of the semantic segmentation using Setting (1) are shown in Table 5, and
using Setting (2) in Table 6. Each table shows the mean of the dice coefficient score from
the tumor class calculated by comparing the generated masks and the ground truth masks.
Box plots to visualize the distribution of those values are depicted in Figure 12. We also
performed similar statistical tests to the ones from Section 4, and the results can be found
in Appendix C.

Additionally, to determine if the application of the staining at training (Setting 1) or
evaluation (Setting 2) time significantly affects the results, we performed a paired t-test [32]
on the results for each of the compared methods; see Tables A12 and A13 in Appendix C.
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Table 5. Mean values of the dice coefficient score for the segmentation of both datasets, when
the stain normalization is applied during training (Setting 1). The dice coefficient is calculated
comparing the generated masks and the ground truth masks for each WSI. The corresponding
statistical tests can be found in Tables 8 and 9 in Appendix C.

Name Stain transformed Dice coefficient RUMC Dice coefficient UMCU

Baseline ✗ 0.5684 0.4851
Vahadane ✓ 0.5629 0.5950
StainGAN ✓ 0.6589 0.6176
StainCUT ✓ 0.7175 0.6178

Table 6. Mean values of the dice coefficient score for the segmentation of both datasets, when the
stain normalization is applied during evaluation (Setting 2). The dice coefficient is calculated by
comparing the generated masks and the ground truth masks for each WSI. The corresponding
statistical tests can be found in Tables 10 and 11 in Appendix C.

Name Stain transformed Dice coefficient RUMC Dice coefficient UMCU

Baseline ✗ 0.5684 0.4851
Vahadane ✓ 0.5854 0.2919
StainGAN ✓ 0.6475 0.4439
StainCUT ✓ 0.6970 0.5576

Baseline Vahadane StainGAN StainCUT
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(a) RUMC – Setting (1)
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(b) UMCU – Setting (1)
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(c) RUMC – Setting (2)

Baseline Vahadane StainGAN StainCUT
0.0
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Figure 11. Distribution of the dice coefficient score for the segmentation of both datasets RUMC
and UMCU, when the stain normalization is applied during training (Setting 1), and when
stain normalization is applied during inference (Setting 2). The dice coefficient is calculated by
comparing the generated segmentation masks and the ground truth masks for each WSI. In the
boxplots, each box is drawn from the first to the third quartile. The horizontal line represents
the median value and the triangle represents the mean. The whiskers indicate the minimum and
maximum value of the distribution.

Figure 12. Distribution of the dice coefficient score for the segmentation of both datasets RUMC
and UMCU, when the stain normalization is applied during training (Setting 1), and when stain
normalization is applied during inference (Setting 2). The dice coefficient is calculated by comparing
the generated segmentation masks and the ground truth masks for each WSI. In the boxplots, each
box is drawn from the first to the third quartile. The horizontal line represents the median value,
and the triangle represents the mean. The whiskers indicate the minimum and maximum value of
the distribution.

Table 5. The mean values of the dice coefficient score for the segmentation of both datasets, when the
stain normalization is applied during training (Setting 1). The dice coefficient is calculated comparing
the generated masks and the ground truth masks for each WSI. The corresponding statistical tests
can be found in Tables A8 and A9 in Appendix C. Bold highlights the best results that are not
significantly different.

Name Stain Transformed Dice Coefficient RUMC Dice Coefficient UMCU

Baseline 7 0.5684 0.4851
Vahadane 3 0.5629 0.5950
StainGAN 3 0.6589 0.6176
StainCUT 3 0.7175 0.6178
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Table 6. The mean values of the dice coefficient score for the segmentation of both datasets, when
the stain normalization is applied during evaluation (Setting 2). The dice coefficient is calculated
by comparing the generated masks and the ground truth masks for each WSI. The corresponding
statistical tests can be found in Tables A10 and A11 in Appendix C. Bold highlights the best results
that are not significantly different.

Name Stain Transformed Dice Coefficient RUMC Dice Coefficient UMCU

Baseline 7 0.5684 0.4851
Vahadane 3 0.5854 0.2919
StainGAN 3 0.6475 0.4439
StainCUT 3 0.6970 0.5576

6. Discussion

In the MITOS-Atypia, the StainCUT approach with a UNet 8 Blocks generator had
a better performance than all classic state-of-the-art methods (all p-value < 10−3). This
was further confirmed in the segmentation use case. The combination of the segmentation
model with the StainCUT UNet 8 Blocks approach obtained significantly different results
than the combination with Vahadane for both centers and both settings; see Tables A8–A11
(highest p-value was 0.046, which is still below the limit of 0.05).

One of the advantages of deep-learning-based methods, such as StainGAN and Stain-
CUT, in comparison with the classic methods, is that they do not use a unique reference
mosaic image, as those presented in Figure 3; they rather use a large dataset of images,
which allows the models to better capture the distribution of the training data. Additionally,
the method contains many parameters that are optimized by evaluating the performance
of the model on the individual training images over several thousands of iterations. One
can also adapt its complexity by varying the number of parameters. In the end, the model
complexity allows the model to adapt the staining depending on the context or the patterns
present in each of the input patches.

Although in all cases, the StainCUT approach obtained better results in the evaluated
metrics than the StainGAN, both in the MITOS-Atypia dataset and in the semantic segmen-
tation use case, in most of the cases there was not enough statistical evidence to claim that
the results were significantly different. Nevertheless, in the segmentation use case with
Setting (2), there was a significant difference in RUMC: 0.6475 vs. 0.6970 (p-value = 0.013),
and UMCU: 0.4439 vs. 0.5576 (p-value < 10−3).

Additionally, the architecture of the generator used for StainCUT and the implemented
contrastive learning approach provides a faster and more memory-efficient way to train
and evaluate a stain normalization method. We believe that being able to train with
larger patches does impact the quality of the model and its ability to better understand
structures and patterns present in the image. Ideally, the model should learn how each
of the different structures or types of nuclei present in histopathology images in the two
different domains to be able to translate from one to the other. This also impacts the
running time and in conjunction with a generator that performs a much lower number of
FLOPs—see Table 2—results in a much more time-efficient method, as confirmed by our
experiments; see Table 3.

The most important observation from the results of the semantic segmentation
experiments—see Tables 5, 6 and A8–A11—is that, in the two analyzed settings, combining
both stain normalization and color augmentation yields, in most of the cases, a statistically
significant improvement over only using color augmentation: from 0.5684 to 0.7175 in
RUMC (p-value < 10−3) and from 0.4851 to 0.6178 in UMCU (p-value < 10−3) with Setting
(1); from 0.5684 to 0.6970 in RUMC (p-value < 10−3) with Setting 2. For the UMCU center,
in Setting 2, there was an improvement from 0.4851 to 0.5576; however, the p-value = 0.076
indicates that the distribution of the errors is not significantly different. Nevertheless, we
believe that the performed experiments confirm that it is a step that boosts the performance
of the model and that using only color augmentations results in a sub-optimal performance.
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The results also show that the phase at which the stain normalization is applied—during
the training of the model (Setting 1) or at inference time (Setting 2)—makes a difference. In
general, for the StainCUT method, the experiments using Setting (1) exhibit a higher mean
dice coefficient score. The statistical tests show that the differences for the center RUMC
when using StainCUT are not significant (see Table A12 (p-value = 0.4639)); however, for
the center UMCU, they are statistically significant for all the three compared methods; see
Table A13 (all p-values < 10−3).

In Setting (1), the segmentation network is being trained on data with a similar
appearance to the data that will be used for inference, which might influence the way the
model is trained. On the other hand, it has the disadvantage that the training process can be
longer if we apply the staining just before passing the image to the segmentation network.
This can be solved by staining all the images in the training dataset and storing them on the
hard drive. Moreover, both the segmentation network and the stain normalization network
have to be trained again for every different lab.

Setting (2) has the advantage that once the segmentation network has been trained,
the only necessary step is to train the stain normalization network to transfer from the
staining of the new images (from a different laboratory) to the staining of the images that
were used during training. Therefore, Setting (2) is what is typically used in practice.
Nevertheless, the results show it might be sub-optimal compared to Setting (1), i.e., using
the stain normalization during training of the model might yield a better performance.

7. Limitations and Future Work

One of the main limitations of the deep-learning-based methods, such as StainGAN
and StainCUT, is that there is no theoretical guarantee that the content will be preserved.
The stain transfer is performed by the generator network, which was trained with a large
dataset. However, if the input tile presents some anomaly or rare feature that was not
present in the training data, it might happen that the result does not preserve the content of
the image.

All though we did not find such a problem in any of the images we used for evaluating,
the synthetic examples from Figures 13 and 14 illustrate this behavior, where the StainCUT
and StainGAN approaches have some issues. Even though it is a synthetic example, it
is something that can happen; for example, in a WSI, the background is white, and thus
there are many tiles that contain part of the tissue and part of the background. One could
overcome this particular issue from the examples by also training the stain transfer with
more images that contain a white background.
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(a) Source (b) Vahadane c (c) StainCUT UNet 8B (d) StainGAN

Figure 12. Example of applying the stain transfer (trained with the MITOS-Atypia dataset) to an
out of distribution synthetic image (random salt and pepper noise with density 0.03). As it can be
observed the result when applying the Vahadane method seems to be consistent, however, the
StainCUT and StainGAN methods seem to try to create some tissue pattern.

Figure 13. Example of applying the stain transfer (trained with the MITOS-Atypia dataset) to an
out of distribution synthetic image (random salt and pepper noise with density 0.03). The result
when applying the Vahadane method seems to be consistent; however, the StainCUT and StainGAN
methods appear to attempt to create some tissue pattern.
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(a) Source (b) Vahadane c (c) StainCUT UNet 8B (d) StainGAN

(e) Source (f) Vahadane c (g) StainCUT UNet 8B (h) StainGAN

Figure 13. Example of applying the stain transfer (trained with the MITOS-Atypia dataset) to
two out of distribution images. In the training dataset all images where full of tissue. We have
taken one of those images and made 3 quarters of it to be white. In the first case (top row), the
result when applying the Vahadane method seems to be consistent, however, the StainCUT and
StainGAN methods introduce a pink color in the white area. In the second case (bottom row),
the StainCUT has a similar problem, however, Vahadane introduced some noise and StainGAN
produced some artifacts.

::
In

::::
the

:::::::::::
experiments

:::
on

::::
the

:::::::::::::::
MITOS-ATYPIA

:::::::
dataset,

::::
the

:::::
cases

:::::
with

::::
low

::::::
scores

:::
in468

:::
the

:::::::
metrics

:::
are

::::
due

:::
to

:
a
:::::::::
mismatch

:::::
with

::::
the

:::::
target

::::::
style.

:::
An

::::::::
example

:::
of

:::::
such

:
a
::::
case

:::
is469

::::::::
depicted

::
in

::::::
Figure

:::
14.

::::::
There

:::
are

:::::::
several

::::::
factors

::::
that

::::::
could

:::::
cause

:::::
such

:::::::::
behavior.

::
If

:::::
there470

:::
are

::::::
several

:::::
stain

:::::::::
variations

:::::::
within

:::
the

:::::::
training

:::::::
images

::
of

:::
the

::::::
target

::::::::
domain,

::
in

:::::::::
principle,471

::::::::::::
transforming

:::
the

::::::
source

::::::
image

::
to

::::
any

::
of

:::::
those

::::::::::
variations

::::::
would

:::
be

:::::::
correct.

:::::::::
However,

::
if472

:::
the

::::::::
assigned

:::::::
ground

:::::
truth

:::
(in

::::
this

::::
case

::::
the

:::::
same

::::::
image

::::::::
scanned

::::
with

::::::::
another

::::::::
scanner)473

:::::::
exhibits

:::::::
another

:::::::::
variation,

:::
the

:::::
score

::::
will

:::
be

::::
low.

::::::::
Another

:::::
factor

:::::
could

:::
be

::::
that

:::::
there

:::::
were474

:::
not

:::::::
enough

:::::::
images

::
in

::::
the

:::::::
training

:::
set

::::
that

:::::::::::
correspond

::
to

::::
the

:::::
tissue

::::::::
patterns

:::::::
present

:::
in475

:::
the

::::::
source

::::::
image.

:
476

::::::::
Another

:::::::::
limitation

::
of

:::
the

:::::::
current

:::::::::
algorithm

::
is

::::
that

:
it
::::
can

::::
only

::::
map

:::::
from

::::
one

:::::::
staining477

::::
style

::
to

::::::::
another.

:::::::::
However,

::
it

::::::
would

::
be

:::::
very

::::::::::
convenient

::
to

:::::
have

:
a
:::::::::
universal

::::
stain

:::::::::::::
normalization478

:::::::
method,

:::::
that

:::
can

::::::
bring

::::
any

:::::::
staining

::::::
style,

:::::::::
including

::::
new

:::::
ones

::::::
never

:::::
seen,

::
to

::
a

::::::
target479

::::::::
reference

::::::::
staining

:::::
style.

::::
This

::::::
would

::::::
mean

:::
that

:::
for

::::::::::
deploying

:::
the

::::::::::::
segmentation

:::::::::
network,480

:::
like

::::
the

:::
one

::::::::::
presented

::
in

:::::::
Section

::
C,

::
to

::
a
::::
new

::::::::::
laboratory

:::::
there

::
is

:::
no

:::::
need

::
to

:::::
train

:
a
:::::
new481

::::
stain

::::::::
transfer

::::::::
network,

:::::::
which

::::::
would

:::::::
reduce

:::
the

:::::::::::
complexity

::
of

::::
the

::::::
whole

::::::::
process.

:::
A482

:::::
future

:::::
step

::::::
would

:::
be

:::
to

:::
try

::
to

:::::
train

::::
the

:::::
stain

:::::::
transfer

::::::::
network

:::::
with

:::::
data

:::::
from

::::::
many483

::::::::
different

:::::::
staining

::::::
styles,

:::::
map

::
to

:::
the

:::::::::
reference

:::::
style,

::::
and

::::
then

::::::::
evaluate

::
if

::
it

::::::
works

:::
for

:::
an484

::::::
unseen

::::::::
staining

:::::
style.

:
485

:::
On

::::
the

:::::
other

::::::
hand,

:::::::::
extending

::::
the

::::::::
method

::
to

:::::
work

:::::
with

::::::
other

:::::
types

:::
of

::::::::
staining486

::::
such

::
as

::::::::::::::::
immunostaining

::::::
would

::::
only

:::::::
require

:::::
using

::
a

:::::::
training

:::::::
dataset

:::::
with

:::::::
patches

:::::
from487

:::
that

::::::::
specific

::::::::
staining.

:::::::::
However,

:::
the

:::::::::
proposed

:::::::
method

:::::
only

:::::
aims

::
to

:::::::::::
standardize

:::::::
images488

::::
with

::::::::
different

:::::
stain

:::::::::
variations

::::::
within

::::
the

:::::
same

:::::::
staining

:::::
type,

::::
e.g.,

::
H

::
E.

::
A

::::::
proper

::::::::
transfer489

::::
from

::
H

::
E

::
to

:::::::::::::::
immunostaining

::
is

:::
not

::
be

::::::::
possible

:::::
since

:::::::::::::::
immunostaining

:::::
relay

::
on

::::::::::
biological490

::::::::
reactions

::::
that

:::
do

:::
not

:::::
occur

::::::
when

::::::::
staining

::::
with

::
H

::
E.

:::::::::::::
Nevertheless,

:::::::::::
transferring

::::::::
between491

::
H

:
E

::::
and

:::::::::::::::
immunostaining

:::::
could

:::
be

:::::
used

::
as

::
a

:::::::::
technique

::
to
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generate

:::::::::
synthetic

:::::
data.492

Figure 14. Example of applying the stain transfer (trained with the MITOS-Atypia dataset) to two out
of distribution images. In the training dataset, all images were full of tissue. We have taken one of
those images and made three quarters of it white. In the first case (top row), the result when applying
the Vahadane method appears to be consistent; however, the StainCUT and StainGAN methods
introduce a pink color in the white area. In the second case (bottom row), the StainCUT has a similar
problem; however, Vahadane introduced some noise, and StainGAN produced some artifacts.

In the experiments on the MITOS-ATYPIA dataset, the cases with low scores in the
metrics are due to a mismatch with the target style. An example of such a case is depicted
in Figure 15. There are several factors that could cause such behavior. If there are several
stain variations within the training images of the target domain, in principle, transforming
the source image to any of those variations would be correct. However, if the assigned
ground truth (in this case the same image scanned with another scanner) exhibits another
variation, the score will be low. Another factor could be that there were not enough images
in the training set that correspond to the tissue patterns present in the source image.

Another limitation of the current algorithm is that it can only map from one staining
style to another. However, it would be convenient to have a universal stain normalization
method, that can bring any staining style, including new ones never seen, to a target
reference staining style. This would mean that, for deploying the segmentation network,
such as the one presented in Appendix C, to a new laboratory there is no need to train a
new stain transfer network, which would reduce the complexity of the whole process. A
future step would be to attempt to train the stain transfer network with data from many
different staining styles, map to the reference style, and then evaluate if it works for an
unseen staining style.

On the other hand, extending the method to work with other types of staining, such
as immunostaining would only require using a training dataset with patches from that
specific staining. However, the proposed method only aims to standardize images with
different stain variations within the same staining type, e.g., H&E. A proper transfer from
H&E to immunostaining is not possible since immunostaining relies on biological reactions
that do not occur when staining with H&E. Nevertheless, transferring between H&E and
immunostaining could be used as a technique to generate synthetic data.
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(a) Source (b) Target

(c) Vahadane c (d) StainGAN (e) StainCUT UNet 8B
PSNR: 16.4947, SSIM: 0.5776 PSNR: 17.2451, SSIM: 0.6298 PSNR: 17.6807, SSIM: 0.6524

Figure 14. Exemplary source frame (a) where the stain transfer results (c, d, and e) do not quite
match the expected one (b). The content of the image is preserved in all cases. The images
correspond to whole frames, i.e., the results frames are the result of combining several stained
patches by the method described in Section 4.3.

8. Conclusions493
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Our results show that the proposed method gives comparable results to state–of–the–art503

approaches, having the advantage that it provides an end–to–end method that learns504

the distribution of the whole data. Additionally, it is more memory efficient and has505

lower running-time than the StainGAN despite having more parameters.506

We followed with a clinical
:::
We

::::
also

::::::::::
presented

:
a
::::::::
realistic use–case application of507
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::::
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::::::::
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:::::::::
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Moreover,
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results
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:::::
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:::::::::::
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:::
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::::::
model

::::::
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::::
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::
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:::::::::
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:::::
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::::::
which519

:
is
:::::
what

::
is
:::::::::
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::::
done

:::
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:::
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literature.520

Extending the method to work with other types of staining such as immunostaining521

would only require using a training dataset with patches from that specific staining.522

However,
::::
Our

::::::
results

:::::
show

::::
that

:
the proposed method only aims to standardize images523

with different stain variations but within the same staining type, e. g., HE. A proper524

transfer from HE to immunostaining is not be possible since immunostaining relay525

on biological reactions that do not occur when staining with HE, i.e. it would be526

Figure 15. Exemplary source frame (a) where the stain transfer results (c–e) do not quite match the
expected one (b). The content of the image is preserved in all cases. The images correspond to whole
frames, i.e., the result frames are the result of combining several stained patches by the method
described in Section 4.3.

8. Conclusions

We introduced a deep-learning-based method for solving the problem of stain nor-
malization. The method was trained with unpaired images of two different laboratories or
stain variations. It is based on the contrastive learning technique and a simplified UNet
architecture. We evaluated its performance first in two different ways: using images of
the same physical samples that were digitized with scanners from two different manufac-
turers and as part of the pipeline for the segmentation of metastasis of breast cancer in
lymph nodes.

We also presented a realistic use-case application of our method—namely, the semantic
segmentation of breast cancer metastases in lymph nodes. The model was trained with
WSIs of one center and evaluated on WSIs of another center with a different staining
variation. We trained the segmentation model using data augmentation in conjunction
with (or without) stain normalization. The results show that stain normalization indeed
boosts the performance in the two settings analyzed. Moreover, the results show that it
might be more convenient to use the stain normalization step during the training of the
model rather than at the inference time, which is what is typically done in the literature.

Our results show that the proposed method StainCUT with a UNet 8 Blocks generator
outperformed classic state-of-the-art methods. It also achieved similar performance to
another deep-learning-based approach: StainGAN, and in some of the experiments of
the segmentation use case, the proposed method outperformed StainGAN with statistical
significance. Additionally, the proposed method was faster to train and had a lower
evaluation time than StainGAN despite having more parameters.
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Appendix A. Metrics

In the following, we describe the metrics used in the results section:
Peak Signal-to-Noise Ratio (PSNR) is calculated as:

PSNR(x, y) = 20 log10(L)− 10 log10(MSE(x, y)) (A1)

where MSE(x, y) is the mean square error between the x and y, and L is the maximum
possible pixel value of the image, i.e., L = 255.

Structural similarity index measure (SSIM) [27] is a perceptually based metric and
considers changes in structural information rather than calculating the absolute errors
as in PSNR. Structural information is the idea that pixels have strong interdependencies,
particularly when they are spatially close. The SSIM index is calculated on various windows
of an image. The measure between two windows x and y of size n× n is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(A2)

where

• µx is the average of the pixels in x,
• µy is the average of the pixels in y,
• σ2

x is the variance of the pixels in x,
• σ2

y is the variance of the pixels in y,
• σxy is the covariance of the pixels in x and y,
• c1 = (k1L)2 and c2 = (k2L)2 are to two constants to stabilize the division,
• L is the maximum possible pixel value of the image, i.e., L = 255, and
• k1 = 0.01 and k2 = 0.03 are fixed by default.

Additionally, we evaluated the Feature-based similarity index (FSIM) [28] and the
Learned Perceptual Image Patch Similarity (LPIPS) [29] metrics.

All metrics, except for the LPIPS metric were evaluated using the ‘image-similarity-
measures’ Python package (https://pypi.org/project/image-similarity-measures/) (ac-
cessed on 13 July 2022). For the LPIPS metric, we used the official repository (https:
//github.com/richzhang/PerceptualSimilarity) (accessed on 13 July 2022).

https://pypi.org/project/image-similarity-measures/
https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
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Figure A1. Boxplots of the evaluation of the PSNR metric for all compared methods on the MITOS-
ATYPIA dataset. Each box is drawn from the first to the third quartile. The horizontal lines represent
the median value, and the triangle represents the mean. The whiskers indicate the minimum and
maximum value of the distribution.
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Figure A2. Boxplots of the evaluation of the FSIM and LPIPS metrics for all compared methods on
the MITOS-ATYPIA dataset. Each box is drawn from the first to the third quartile. The horizontal
lines represent the median value, and the triangle represents the mean. The whiskers indicate the
minimum and maximum value of the distribution.
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Appendix B. Statistical Tests on the Metrics of the MITOS-ATYPIA Dataset

We performed statistical tests on each metric to validate the results. First, to determine
if there are differences between the methods, we performed a Friedman test [33]. After the
statistical test rejected the null hypothesis that the group measurements are similar, we
performed the Nemenyi test [34] to find which groups differ. The significance level chosen
was 0.05 in all cases.

Table A1. The Friedman rank sum test for each of the metrics used.

Metric Chi-Square df p-Value

SSIM 1628.7 15 <2.2× 10−16

FSIM 1476.0 15 <2.2× 10−16

PSNR 1226.9 15 <2.2× 10−16

LPIPS 1560.4 15 <2.2× 10−16

Table A2. Rows/Columns corresponding to methods in the stain transfer experiment.

Method Renamed Method

Macenko a 1
Macenko b 2
Macenko c 3
Reinhard a 4
Reinhard b 5
Reinhard c 6
Khan a 7
Khan b 8
Khan c 9
Vahadane a 10
Vahadane b 11
Vahadane c 12
StainCUT UNet 4B 13
StainCUT UNet 6B 14
StainCUT UNet 8B 15
StainGAN 16

Table A3. p-values obtained from the Nemenyi test applied to the SSIM results. Row/Column names
are listed in Table A2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.668 - - - - - - - - - - - - - -
3 1.000 0.964 - - - - - - - - - - - - -
4 0.907 0.005 0.516 - - - - - - - - - - - -
5 0.629 1.000 0.952 0.004 - - - - - - - - - - -
6 0.997 1.000 1.000 0.128 1.000 - - - - - - - - - -
7 0.000 0.000 0.000 0.000 0.000 0.000 - - - - - - - - -
8 0.000 0.000 0.000 0.000 0.000 0.000 0.038 - - - - - - - -
9 0.000 0.000 0.000 0.000 0.000 0.000 0.921 0.942 - - - - - - -
10 0.000 0.000 0.000 0.052 0.000 0.000 0.000 0.000 0.000 - - - - - -
11 0.022 0.000 0.002 0.902 0.000 0.000 0.000 0.000 0.000 0.973 - - - - -
12 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 1.000 0.619 - - - -
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.186 0.001 0.678 - - -
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.506 - -
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.095 -
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.716 1.000
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Table A4. p-values obtained from the Nemenyi test applied to the FSIM results. Row/Column names
are listed in Table A2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.980 - - - - - - - - - - - - - -
3 0.361 0.999 - - - - - - - - - - - - -
4 1.000 0.973 0.326 - - - - - - - - - - - -
5 0.034 0.810 1.000 0.028 - - - - - - - - - - -
6 0.861 1.000 1.000 0.833 0.966 - - - - - - - - - -
7 0.000 0.000 0.000 0.000 0.000 0.000 - - - - - - - - -
8 0.000 0.000 0.000 0.000 0.000 0.000 0.018 - - - - - - - -
9 0.000 0.000 0.000 0.000 0.000 0.000 0.847 0.930 - - - - - - -
10 0.000 0.000 0.005 0.000 0.114 0.000 0.000 0.000 0.000 - - - - - -
11 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 1.000 - - - - -
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.803 1.000 - - - -
13 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 1.000 1.000 1.000 - - -
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.052 0.001 - -
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.847 -
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.081 0.996

Table A5. p-values obtained from the Nemenyi test applied to the PSNR results. Row/Column names
are listed in Table A2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.018 - - - - - - - - - - - - - -
3 0.810 0.949 - - - - - - - - - - - - -
4 1.000 0.225 0.999 - - - - - - - - - - - -
5 0.000 0.568 0.005 0.000 - - - - - - - - - - -
6 0.000 1.000 0.427 0.017 0.982 - - - - - - - - - -
7 0.000 0.000 0.000 0.000 0.000 0.000 - - - - - - - - -
8 0.000 0.000 0.000 0.000 0.081 0.000 0.002 - - - - - - - -
9 0.000 0.000 0.000 0.000 0.000 0.000 0.537 0.912 - - - - - - -
10 0.000 0.964 0.069 0.001 1.000 1.000 0.000 0.006 0.000 - - - - - -
11 0.011 1.000 0.907 0.163 0.668 1.000 0.000 0.000 0.000 0.983 - - - - -
12 0.934 0.840 1.000 1.000 0.001 0.246 0.000 0.000 0.000 0.028 0.761 - - - -
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - - -
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 - -
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.035 -
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 1.000 0.446

Table A6. p-values obtained from the Nemenyi test applied to the LPIPS results. Row/Column
names are listed in Table A2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.000 - - - - - - - - - - - - - -
3 1.000 0.999 - - - - - - - - - - - - -
4 0.578 0.506 0.995 - - - - - - - - - - - -
5 0.840 0.786 1.000 1.000 - - - - - - - - - - -
6 0.300 0.246 0.946 1.000 1.000 - - - - - - - - - -
7 0.000 0.000 0.000 0.000 0.000 0.000 - - - - - - - - -
8 0.000 0.000 0.000 0.000 0.000 0.000 0.099 - - - - - - - -
9 0.000 0.000 0.000 0.000 0.000 0.000 0.678 1.000 - - - - - - -
10 0.003 0.002 0.106 0.897 0.668 0.986 0.000 0.000 0.000 - - - - - -
11 0.001 0.001 0.052 0.770 0.486 0.946 0.000 0.000 0.000 1.000 - - - - -
12 0.000 0.000 0.000 0.005 0.001 0.022 0.000 0.000 0.000 0.697 0.847 - - - -
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 - - -
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.966 - -
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.668 -
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.752 1.000
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Appendix C. Statistical Tests on the Semantic Segmentation Use–Case

Table A7. Friedman rank sum test for each of the settings and centers used.

Experiment Chi-Square df p-Value

Setting (1) RUMC 33.39 3 2.665× 10−7

Setting (1) UMCU 50.04 3 7.847× 10−11

Setting (2) RUMC 36.93 3 4.761× 10−8

Setting (2) UMCU 101.96 3 <2.2× 10−16

Table A8. p-values obtained from the Nemenyi test applied to the RUMC with Setting (1).

Baseline Vahadane StainGAN

Vahadane 0.998 - -
StainGAN 0.037 0.022 -
StainCUT 0.000 0.000 0.160

Table A9. p-values obtained from the Nemenyi test applied to the UMCU with Setting (1).

Baseline Vahadane StainGAN

Vahadane 0.039 - -
StainGAN 0.000 0.001 -
StainCUT 0.000 0.046 0.605

Table A10. p-values obtained from the Nemenyi test applied to the RUMC with Setting (2).

Baseline Vahadane StainGAN

Vahadane 1.000 - -
StainGAN 0.133 0.110 -
StainCUT 0.000 0.000 0.013

Table A11. p-values obtained from the Nemenyi test applied to the UMCU with Setting (2).

Baseline Vahadane StainGAN

Vahadane 0.000 - -
StainGAN 0.182 0.000 -
StainCUT 0.076 0.000 0.000

Table A12. Paired t-test to compare Setting (1) to Setting (2) in center RUMC.

Experiment t-Statistic p-Value

Vahadane −0.8746 0.3872
StainGAN 0.5864 0.5610
StainCUT 0.7398 0.4639

Table A13. Paired t-test to compare Setting (1) to Setting (2) in center UMCU.

Experiment t-Statistic p-Value

Vahadane 9.0977 1.7507× 10−13

StainGAN 8.5734 1.6063× 10−12

StainCUT 3.4820 8.6176× 10−4
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