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SUMMARY

Advances in high-throughput sequencing technologies now yield unprecedented
volumes of OMICs data with opportunities to conduct systematic data analyses
and derive novel biological insights. Here, we provide protocols to perform dif-
ferential-expressed gene analysis of TCGA and GTEx RNA-Seq data from human
cancers, complete integrative GO and network analyses with focus on clinical and
survival data, and identify differential correlation of trait-associated biomarkers.
For complete details on the use and execution of this protocol, please refer to
Chen and MacDonald (2021).

BEFORE YOU BEGIN

Timing: 0.5–1 h

1. The hardware specifications for the computing platform used to estimate the timing for each step

are provided in the key resources table.

2. The R software environment for statistical computing and graphics is required for this protocol.

The latest R version (4.1.2), downloaded from https://CRAN.R-project.org/bin/windows/base/,

was used to perform the protocol below. This protocol describes the specific steps for network

analysis of TCGA colon cancer gene expression. Tissue-specific parameters for the extension

of the protocol application to 18 additional human cancers are also contained within this

document.

3. The R Studio integrated development environment (IDE), that provides a graphical interface to R,

can be downloaded from https://www.rstudio.com/products/rstudio/.

4. R packages utilized in this protocol are listed under the Software and algorithms heading of the

key resources table. To install the listed R packages, first install BiocManager with commands:

5. Then, run the following command to install the R packages listed under the Software and

algorithms heading of the key resources table.

> chooseCRANmirror();

> install.packages("BiocManager")
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6. R is always pointed at a designated directory. Specify a working directory at the start of each R

session with the following command:

7. In addition to R, the Cytoscape (3.9.0) software platform and the stringApp add-on (1.7.0) are

required to retrieve molecular networks from the STRING database. Cytoscape 3.9.0 can be

downloaded from https://cytoscape.org/download.html. Then, start Cytoscape and go to App

> App Manager to search for and install stringApp (1.7.0).

KEY RESOURCES TABLE

> BiocManager::install("Name_of_Package")

> setwd("Path_to_the_Desired_Folder")

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TcgaTargetGtex_gene_expected_count Xena Toil data hub https://toil-xena-hub.s3.us-east-1.amazonaws.com/
download/TcgaTargetGtex_gene_expected_count.gz

TcgaTargetGTEX_phenotype Xena Toil data hub https://toil-xena-hub.s3.us-east-1.amazonaws.com/
download/TcgaTargetGTEX_phenotype.txt.gz

COAD_clinicalMatrix Xena TCGA data hub https://tcga-xena-hub.s3.us-east-1.amazonaws.com/
download/TCGA.COAD.sampleMap%2FCOAD_
clinicalMatrix

TCGA_survival_data Xena Toil data hub https://toil-xena-hub.s3.us-east-1.amazonaws.com/
download/TCGA_survival_data

Software and algorithms

Windows OS 10 Home, 64-bit Microsoft https://www.microsoft.com/

R (4.1.2) The R Project https://CRAN.R-project.org/bin/windows/base/

RStudio (2021.09.1 Build 372) RStudio Team https://www.rstudio.com/products/rstudio/

BiocManager (1.30.16) Morgan (2021) https://CRAN.R-project.org/package=BiocManager

UCSCXenaTools (1.4.7) Wang and Liu (2019) https://CRAN.R-project.org/package=UCSCXenaTools

data.table (1.14.2) Dowle and Srinivasan (2021) https://CRAN.R-project.org/package=data.table

R.utils (2.11.0) Bengtsson (2021) https://CRAN.R-project.org/package=R.utils

dplyr (1.0.7) Wickham et al. (2021) https://CRAN.R-project.org/package=dplyr

limma (3.48.3) Ritchie et al. (2015) https://bioinf.wehi.edu.au/limma/

edgeR (3.34.1) McCarthy et al. (2012) and
Robinson et al. (2010)

https://bioinf.wehi.edu.au/edgeR/

topGO (2.44.0) Alexa and Rahnenführer (2021) https://bioconductor.org/packages/topGO/

grex (1.9) Xiao et al. (2019) https://CRAN.R-project.org/package=grex

biomaRt (2.48.3) Durinck et al. (2005, 2009) https://bioconductor.org/packages/biomaRt/

ggplot2 (3.3.5) Wickham et al. (2016) https://ggplot2.tidyverse.org/

RegParallel (1.10.0) Blighe and Lasky-Su (2021) https://github.com/kevinblighe/RegParallel

survminer (0.4.9) Kassambara et al. (2021) https://CRAN.R-project.org/package=survminer

Cytoscape (3.9.0) Shannon et al. (2003) https://cytoscape.org/

stringApp (1.7.0) Doncheva et al. (2019) https://apps.cytoscape.org/apps/stringapp

DGCA (1.0.2) McKenzie et al. (2016) https://CRAN.R-project.org/package=DGCA

org.Hs.eg.db (3.13.0) Carlson (2021) https://bioconductor.org/packages/org.Hs.eg.db/

GOstats (2.58.0) Falcon and Gentleman (2007) https://bioconductor.org/packages/GOstats/

HGNChelper (0.8.1) Oh et al. (2020) https://CRAN.R-project.org/package=HGNChelper

plotrix (3.8-2) Lemon (2006) https://CRAN.R-project.org/package=plotrix
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Note: The R packages listed under the Software and algorithms heading are current as of

December 20, 2021.

MATERIALS AND EQUIPMENT

The analyses outlined in this protocol utilize publicly available RNA-Seq, clinical, and survival data-

sets and several well-established CRAN and BioConductor R packages. All human subjects have

been de-identified. The ethical principles set forth by the International Ethical Guidelines for

Health-related Research Involving Humans (CIOMS, 2016) should preside over any activities that

fall under health-related research with humans, such as biobanking and epidemiological studies.

Researchers who study these data should also comply with TCGA and GTEx policies such as main-

taining participants’ privacy, accessing data securely, and following TCGA and GTEx publication

guidelines. To cite R packages, run the following command in R.

STEP-BY-STEP METHOD DETAILS

Data import, cleaning, and preprocessing

Timing: 1–4 h

Note: The Methods S1 file ‘‘R Markdown Code Script for UCSCXenaTool‘‘ contains the exact

script used to generate the expected outcomes for this section.

1. Download Genes.xlsx (Piovesan et al., 2019) from https://osf.io/edjzv/ and save the down-

loaded file as zz_gene.protein.coding.csv to your working directory.

2. Download the ID/gene mapping for the TcgaTargetGtex_gene_expected_count dataset

of the TCGA TARGET GTEx cohort (see key resources table for link) and save the downloaded file

as zz_gencode.v23.annotation.csv to your working directory.

3. Load the following R packages: 1) UCSCXenaTools, 2) data.table, 3) R.utils, and 4)

dplyr.

4. Generate a record of datasets hosted on UCSC Xena Data Hubs via the UCSCXenaTools

R package (Wang and Liu, 2019).

Note: Datasets from UCSC Xena Data Hubs can be filtered by their XenaHostNames,

XenaCohorts, and/or XenaDatasets. The object XenaData provides information on the contents

of each dataset and can be saved to the working directory to assist in the selection of target

datasets.

5. Retrieve gene expression, clinical, survival, and phenotype data from the UCSC Xena platform via

the UCSCXenaTools R package (Wang and Liu, 2019). For network analysis of TCGA colon cancer

gene expression, we selected and downloaded:

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

ID/gene mapping GENCODE project https://toil-xena-hub.s3.us-east-1.amazonaws.com/
download/probeMap%2Fgencode.v23.annotation.
gene.probemap

Genes.xlsx Piovesan et al. (2019) https://osf.io/edjzv/

Computing Platform (e.g., Alienware
Aurora R12 desktop; 11th Gen Intel�
Core� i7-11700F @ 2.50GHz processor
with 32 GB, 2316GB, 3200 MHz, VMR memory)

Dell Technologies https://www.dell.com/

> citation("Package_Name")
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a. The TcgaTargetGtex_gene_expected_count dataset for the TCGA TARGET GTEx cohort

from host toilHub.

b. The COAD_clinicalMatrix dataset for the TCGA Colon Cancer cohort from host

tcgaHub by setting the filters paraCohort ="TCGA Colon Cancer" and paraDatasets =

"TCGA.COAD.sampleMap/COAD_clinicalMatrix".

c. The TCGA_survival_data dataset for the TCGA TARGET GTEx cohort from host toilHub.

d. The TcgaTargetGTEX_phenotype dataset for the TCGA TARGET GTEx cohort from host

toilHub.

Note: Within the TcgaTargetGtex_gene_expected_count dataset, GTEx normal tissue

data complimentary to TCGA tumor data are available for 16 primary sites (see Table 1). This

protocol can be used (with minor modifications) to conduct paired comparison on these 16

primary sites. Table 2 can be used to set values for the arguments paraCohort and

paraDatasets (defined during step 5.b) to retrieve dataset(s) that contain clinical informa-

tion of the desired cancer type.

6. Subset the gene expression matrix to include only observations of desired tissue type(s).

a. The Genotype-Tissue Expression (GTEx) project provides gene expression data from healthy,

cancer-free individuals. For differential gene expression analysis, we selected GTEx normal

colon tissue samples by setting the filters paraStudy = "GTEX", paraPrimarySiteGTEx =

"Colon" and paraPrimaryTissueGTEx = "^Colon" to the TcgaTargetGTEX_pheno-

type dataset. Table 3 can be used to set values for the arguments paraPrimarySiteGTEx

and paraPrimaryTissueGTEx.

b. The Cancer Genome Atlas (TCGA) program provides gene expression data from

primary tumors. For differential gene expression analysis, we selected TCGA colon cancer

primary tumor samples by setting the filters paraSampleType = "Primary Tumor",

paraPrimarySiteTCGA ="Colon", and paraHistologicalType = "Colon Adeno-

carcinoma". Table 4 can be used to set values for the arguments paraPrimarySiteTCGA

and paraHistologicalType.

c. The TcgaTargetGtex_gene_expected_count dataset from the toilHub data hub com-

bines RNA-Seq data from TCGA and GTEx by uniformly realigning reads to the hg38 genome

and re-calling expressions using RSEM and Kallisto methods (Vivian et al., 2017). To compare

gene expression between GTEx normal and TCGA tumor for network analyses, subset the

Table 1. List of primary sites where complimentary GTEx normal tissue samples can be found for TCGA tumor

samples. Numbers represent count of sample IDs

Primary site GTEX normal tissue TCGA primary tumor

Adrenal gland 126 77

Bladder 9 404

Brain 1148 660

Breast 178 1090

Colon 307 282

Esophagus 652 181

Kidney 28 884

Liver 110 369

Lung 288 1011

Ovary 88 419

Pancreas 167 177

Prostate 100 494

Skin 555 102

Stomach 174 410

Testis 165 132

Uterus 78 57
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TcgaTargetGtex_gene_expected_count dataset via lists generated during step 6.a and

step 6.b.

Note:When generating the GTEx and TCGA sample lists to subset the gene expressionmatrix

TcgaTargetGtex_gene_expected_count, the subset function may not compute, or

may return zero observations. Please refer to troubleshooting, problem 1 (step 6) for potential

solution.

7. Subset the gene expression matrix to include only protein-coding genes. This can be achieved by

utilizing the zz_gene.protein.coding.csv saved during step 1.

8. The gene expression matrix can now be saved for downstream analyses.

9. The COAD_clinicalMatrix dataset contains 133 administrative and phenotypic annotations

(see the Methods S1 file ‘‘R Markdown Code Script for UCSCXenaTool’’ for a full list), ranging

from sample IDs to pathologic stage to KRAS mutation codon. Keep only the variable(s)

of interest. For example, to identify potential biomarkers for lymphatic invasion during network

analysis of TCGA colon cancer gene expression, we retained the following variables:

Note: Phenotype variables included in clinical matrices differ among the 19 cancer types laid

out in Table 2. For examples of how one can view, select, and re-code other phenotype vari-

able(s) into an annotation matrix that is appropriate for downstream analyses, please refer to

troubleshooting, problem 2 (step 9).

10. The phenotype annotation matrix can now be saved for downstream analyses.

CRITICAL: Tissue samples from TCGA are classified by cancer types, as well as by sample

types (e.g., primary tumor, solid tissue normal). Solid tissue normal samples (referred to as

NAT, normal adjacent to tumor) are collected from histologically normal tissues adjacent

Table 2. List of values that can be used for arguments ‘‘paraCohort’’ and ‘‘paraDatasets’’ (defined during step

5.b) to retrieve dataset(s) containing the desired cancer type

Primary site paraCohort paraDatasets

Adrenal gland TCGA Adrenocortical Cancer TCGA.ACC.sampleMap/ACC_clinicalMatrix

Bladder TCGA Bladder Cancer TCGA.BLCA.sampleMap/BLCA_clinicalMatrix

Brain TCGA Glioblastoma TCGA.GBM.sampleMap/GBM_clinicalMatrix

TCGA Lower Grade Glioma TCGA.LGG.sampleMap/LGG_clinicalMatrix

Breast TCGA Breast Cancer TCGA.BRCA.sampleMap/BRCA_clinicalMatrix

Colon TCGA Colon Cancer TCGA.COAD.sampleMap/COAD_clinicalMatrix

Esophagus TCGA Esophageal Cancer TCGA.ESCA.sampleMap/ESCA_clinicalMatrix

Kidney TCGA Kidney Chromophobe TCGA.KICH.sampleMap/KICH_clinicalMatrix

TCGA Kidney Clear Cell Carcinoma TCGA.KIRC.sampleMap/KIRC_clinicalMatrix

TCGA Kidney Papillary Cell Carcinoma TCGA.KIRP.sampleMap/KIRP_clinicalMatrix

Liver TCGA Liver Cancer TCGA.LIHC.sampleMap/LIHC_clinicalMatrix

Lung TCGA Lung Cancer TCGA.LUNG.sampleMap/LUNG_clinicalMatrix

Ovary TCGA Ovarian Cancer TCGA.OV.sampleMap/OV_clinicalMatrix

Pancreas TCGA Pancreatic Cancer TCGA.PAAD.sampleMap/PAAD_clinicalMatrix

Prostate TCGA Prostate Cancer TCGA.PRAD.sampleMap/PRAD_clinicalMatrix

Skin TCGA Melanoma TCGA.SKCM.sampleMap/SKCM_clinicalMatrix

Stomach TCGA Stomach Cancer TCGA.STAD.sampleMap/STAD_clinicalMatrix

Testis TCGA Testicular Cancer TCGA.TGCT.sampleMap/TGCT_clinicalMatrix

Uterus TCGA Uterine Carcinosarcoma TCGA.UCS.sampleMap/UCS_clinicalMatrix

> varClinKeep = c("sampleID", "lymphaticinvasion")
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to tumor margins and are often utilized as healthy controls for comparison with tumor sam-

ples. However, analyses of expression profiles from GTEx healthy, TCGA NAT, and TCGA

tumor tissues indicate that NAT constitutes an intermediate state between healthy and tu-

mor (Aran et al., 2017). That is, the expression profiles obtained from healthy, NAT, and

tumor tissues segregate into distinct clusters, with closer resemblance of NAT to tumor

in some tissues (e.g., prostate and colon) and greater similarity of NAT to healthy in other

tissues (e.g., uterus and breast). Over half of the differentially expressed genes (DEGs) in

the healthy to tumor comparison were not identified in the NAT to tumor comparison,

while �40% of DEGs in the NAT to tumor comparison were insignificant in the healthy

to tumor comparison (Aran et al., 2017). Given the middling nature of solid tissue normal

(i.e., NAT), these samples should be removed as they may distort subsequent analyses.

Furthermore, solid tissue normal samples often have matched primary tumor samples.

As such, inclusion of these solid tissue normal samples will introduce duplicate patient IDs.

CRITICAL: Tissue samples from TCGA are also classified by histological type. Histological

heterogeneity can confound genemodule-trait correlation if specific clinical traits are over-

represented in certain histological type. For example, colonmucinous adenocarcinoma has

Table 3. List of values that can be used for arguments ‘‘paraPrimarySiteGTEx’’ and

‘‘paraPrimaryTissueGTEx’’ (defined during step 6.a) to retrieve IDs for GTEx normal samples of desired tissue

type(s)

paraPrimarySiteGTEx paraPrimaryTissueGTEx Sample size

Adrenal Gland Adrenal Gland 126

Bladder Bladder 9

Brain Brain - Amygdala 69

Brain - Anterior Cingulate Cortex \\(Ba24\\) 83

Brain - Caudate \\(Basal Ganglia\\) 108

Brain - Cerebellar Hemisphere 97

Brain - Cerebellum 117

Brain - Cortex 105

Brain - Frontal Cortex \\(Ba9\\) 101

Brain - Hippocampus 84

Brain - Hypothalamus 82

Brain - Nucleus Accumbens \\(Basal Ganglia\\) 104

Brain - Putamen \\(Basal Ganglia\\) 81

Brain - Spinal Cord \\(Cervical C-1\\) 60

Brain - Substantia Nigra 57

Breast Breast - Mammary Tissue 178

Colon Colon - Sigmoid 141

Colon - Transverse 166

Esophagus Esophagus - Gastroesophageal Junction 136

Esophagus - Mucosa 271

Esophagus - Muscularis 245

Kidney Kidney - Cortex 28

Liver Liver 110

Lung Lung 288

Ovary Ovary 88

Pancreas Pancreas 167

Prostate Prostate 100

Skin Skin - Not Sun Exposed \\(Suprapubic\\) 232

Skin - Sun Exposed \\(Lower Leg\\) 323

Stomach Stomach 174

Testis Testis 165

Uterus Uterus 78
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Table 4. List of values that can be used for arguments ‘‘paraPrimarySiteTCGA’’ and ‘‘paraHistologicalType’’ (defined during step 6.b) to

retrieve IDs for TCGA primary tumor samples of desired histological type(s)

paraPrimarySiteTCGA paraDatasets paraHistologicalType Sample size

Adrenal gland TCGA.ACC.sampleMap/ACC_clinicalMatrix Adrenocortical Carcinoma- Myxoid Type 1

Adrenocortical Carcinoma- Oncocytic Type 3

Adrenocortical carcinoma- Usual Type 73

Bladder TCGA.BLCA.sampleMap/BLCA_clinicalMatrix Muscle invasive urothelial carcinoma 404

Brain TCGA.GBM.sampleMap/GBM_clinicalMatrix Glioblastoma Multiforme 1

Treated primary GBM 1

Untreated primary \\(de novo\\) GBM 150

TCGA.LGG.sampleMap/LGG_clinicalMatrix Astrocytoma 193

Oligoastrocytoma 126

Oligodendroglioma 189

Breast TCGA.BRCA.sampleMap/BRCA_clinicalMatrix Infiltrating Carcinoma NOS 1

Infiltrating Ductal Carcinoma 780

Infiltrating Lobular Carcinoma 203

Medullary Carcinoma 6

Metaplastic Carcinoma 9

Mixed Histology 29

Mucinous Carcinoma 17

Other 45

Colon TCGA.COAD.sampleMap/COAD_clinicalMatrix Colon Adenocarcinoma 244

Colon Mucinous Adenocarcinoma 38

Esophagus TCGA.ESCA.sampleMap/ESCA_clinicalMatrix Esophagus Adenocarcinoma, NOS 89

Esophagus Squamous Cell Carcinoma 92

Kidney TCGA.KICH.sampleMap/KICH_clinicalMatrix Kidney Chromophobe 66

TCGA.KIRC.sampleMap/KIRC_clinicalMatrix Kidney Clear Cell Renal Carcinoma 530

TCGA.KIRP.sampleMap/KIRP_clinicalMatrix Kidney Papillary Renal Cell Carcinoma 288

Liver TCGA.LIHC.sampleMap/LIHC_clinicalMatrix Fibrolamellar Carcinoma 3

Hepatocellular Carcinoma 359

Hepatocholangiocarcinoma \\(Mixed\\) 7

Lung TCGA.LUNG.sampleMap/LUNG_clinicalMatrix Lung Acinar Adenocarcinoma 18

Lung Adenocarcinoma Mixed Subtype 105

Lung Adenocarcinoma- Not Otherwise Specified 320

Lung Basaloid Squamous Cell Carcinoma 14

Lung Bronchioloalveolar Carcinoma Mucinous 5

Lung Bronchioloalveolar Carcinoma Nonmucinous 19

Lung Clear Cell Adenocarcinoma 2

Lung Micropapillary Adenocarcinoma 3

Lung Mucinous Adenocarcinoma 2

Lung Papillary Adenocarcinoma 23

Lung Papillary Squamous Cell Carcinoma 6

Lung Signet Ring Adenocarcinoma 1

Lung Small Cell Squamous Cell Carcinoma 1

Lung Solid Pattern Predominant Adenocarcinoma 5

Lung Squamous Cell Carcinoma- Not Otherwise
Specified

477

Mucinous \\(Colloid\\) Carcinoma 10

Ovary TCGA.OV.sampleMap/OV_clinicalMatrix Serous Cystadenocarcinoma 419

Pancreas TCGA.PAAD.sampleMap/PAAD_clinicalMatrix Pancreas-Adenocarcinoma Ductal Type 147

Pancreas-Adenocarcinoma-Other Subtype 25

Pancreas-Colloid \\(mucinous non-cystic\\)
Carcinoma

4

Pancreas-Undifferentiated Carcinoma 1

Prostate TCGA.PRAD.sampleMap/PRAD_clinicalMatrix Prostate Adenocarcinoma Acinar Type 479

Prostate Adenocarcinoma, Other Subtype 15

(Continued on next page)
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distinct molecular aberrations (e.g., overexpression of the MUC2 protein) and higher ratio

of lymphatic invasion as compared to its non-mucinous counterpart (Luo et al., 2019). Out

of the 282 primary tumor samples from the TCGA Colon Cancer cohort, 38 samples (13%)

were annotated with histological type colon mucinous adenocarcinoma. Pursuing

weighted gene co-expression network analysis (WGCNA) without first resolving histolog-

ical type may lead to detection of gene-module trait correlations that are associated with

histological type in addition to the clinical trait of interest. Table 4 can be used to set values

for paraHistologicalType, defined during step 6.b.

Note: For complete details on the use and execution of the UCSCXenaTools R package,

please refer to (Wang and Liu, 2019).

Differential gene expression analysis with limma-voom

Timing: 0.5–2 h

Differential gene expression analysis is routinely used to investigate the biological differences be-

tween healthy and diseased states (McDermaid et al., 2019). Identification of DEGs can be valuable

for uncovering potential biomarkers, therapeutic targets, and gene signatures for diagnostics. In this

section, we utilize the limma workflow (Law et al., 2016) to detect DEGs across TCGA primary tumor

and GTEx normal colon tissue samples.

Note: The Methods S2 file ‘‘R Markdown Code Script for LIMMA_ColonCancer’’ contains the

exact script used to generate the expected outcomes for this section.

11. Load the following R packages: 1) dplyr, 2) limma, and 3) edgeR.

12. The TcgaTargetGtex_gene_expected_count dataset for the TCGA TARGET GTEx cohort

from host toilHub was previously log2(x+1) transformed. As such, it is necessary to back-trans-

form the gene expression matrix that was saved to the working directory during step 8 into

RSEM gene-level expected count before passing the dataset to limma.

13. Convert the back-transformed gene expressionmatrix into a DGEList-object using the DGEList

function.

Table 4. Continued

paraPrimarySiteTCGA paraDatasets paraHistologicalType Sample size

Skin TCGA.SKCM.sampleMap/SKCM_clinicalMatrix Not Available 102

Stomach TCGA.STAD.sampleMap/STAD_clinicalMatrix Stomach Adenocarcinoma, Signet Ring Type 12

Stomach, Adenocarcinoma, Diffuse Type 68

Stomach, Adenocarcinoma, Not Otherwise Specified 155

Stomach, Intestinal Adenocarcinoma, Mucinous Type 19

Intestinal Adenocarcinoma, Not Otherwise Specified* 73

Stomach, Intestinal Adenocarcinoma, Papillary Type 7

Stomach, Intestinal Adenocarcinoma, Tubular Type 76

Testis TCGA.TGCT.sampleMap/TGCT_clinicalMatrix ^Non-Seminoma; Choriocarcinoma 1

^Non-Seminoma; Embryonal Carcinoma 32

^Non-Seminoma; Teratoma \\(Immature\\) 5

^Non-Seminoma; Teratoma \\(Mature\\) 16

^Non-Seminoma; Yolk Sac Tumor 8

^Seminoma; NOS 70

Uterus TCGA.UCS.sampleMap/UCS_clinicalMatrix Uterine Carcinosarcoma/ Malignant Mixed
Mullerian Tumor

24

Uterine Carcinosarcoma/ MMMT: Heterologous Type 20

Uterine Carcinosarcoma/MMMT: Homologous Type 13
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Note: In limma-voom, all samples are assumed to have a similar range and distribution of log-

CPM values (Law et al., 2016). Samples that have significantly different range and/or distribu-

tion of log-CPM values should be removed prior to the generation of the DGEList-object. To

resolve the potential issue of sample outliers, please refer to troubleshooting, problem 3

(step 13). It should also be noted that if there are any sample outliers, and these outliers

were not removed prior to the generation of the DGEList-object, then warning messages

will start appearing when undertaking step 17, up until step 22, when the eBayes function

will fail on execution.

14. Group samples by condition (i.e., TCGA tumor or GTEx normal).

15. Convert expected counts to counts per million (CPM) and log2-counts per million using the func-

tion cpm.

16. Remove genes that are lowly expressed using the function filterByExpr.

17. Perform normalization on gene expression using the function calcNormFactors.

18. Generate a design matrix using the function model.matrix.

19. Set up contrast for comparison using the function makeContrasts.

20. Transform gene expression data for linear modeling using the function voom.

21. Perform linear modeling using the function lmFit, then the function contrasts.fit.

22. Compute empirical Bayes statistics for differential expression using the function eBayes.

23. Inspect the number of significantly up- and down-regulated genes.

24. Save the list of DEGs for subsequent analyses.

25. Save the voom transformed gene expression matrix for subsequent analyses.

Note: For complete details on the use and execution of the limma R package, please refer to

Ritchie et al. (2015) and Law et al. (2016).

Identification of gene set(s) highly correlated to specific traits of human cancer with WGCNA

Timing: 1–3 h

In addition to the identification of DEGs, the analysis of correlated gene expression (i.e., co-expres-

sion) can provide a framework for describing changes in expression of gene sets within the confine of

human cancer traits. WGCNA is a bioinformatic algorithm, developed by Langfelder and Horvath

(2008), that can be used to find clusters (modules) of correlated genes and to associate the identified

modules with specific sample traits. Importantly, the gene expression data input for WGCNA is not

pre-filtered by differential expression. As such, gene sets that may be highly correlated to specific

traits of human cancer, but do not pass the differential expression threshold, may still be revealed

via WGCNA. In this section, the voom normalized expression data, generated from the limma-

voom workflow presented in the previous section, is subjected to WGCNA to identify gene set(s)

highly correlated to lymphatic invasion in human colon cancer.

Note: The Methods S3 file ‘‘R Markdown Code Script for WGCNA’’ contains the exact script

used to generate the expected outcomes for this section.

26. Load the following R packages: 1) WGCNA, and 2) dplyr.

27. Subset the voom transformed gene expression matrix, saved during step 25, to include only

TCGA gene expression data.

28. Remove genes that are lowly-expressed and/or genes with low variation between samples.

Note: Genes that are lowly-expressed and/or display low variation between samples have a

tendency to generate noise in WGCNA (Langfelder and Horvath, 2008). Lowly-expressed

genes can be removed by defining a mean expression cutoff value. Filtering for low variance

can be achieved by setting a variance cutoff value. The method and threshold-value chosen

ll
OPEN ACCESS

STAR Protocols 3, 101168, March 18, 2022 9

Protocol



for gene-filtering may vary according to study-specific characteristics. Users should examine

expression values across the entire dataset for features that would distinguish uninformative

variables. For WGCNA on TCGA gene expression data, we removed genes that had normal-

ized expression value < 0 in any of the 244 colon tissue samples.

29. Identify outlier samples by clustering samples using the function hclust. Then, remove the

outlier samples by setting a value for the cutHeight argument in the function cutreeStatic.

Note: Users should refer to the sample clustering dendrogram generated via the function

plot to discern the most reasonable cut height for their dataset. In general, each dataset

will require a different cut height. A histogram of height (the distance between samples

and/or clusters) can also assist in the setting of a value for the cutHeight argument.

30. Convert the phenotype annotation matrix, saved during step 10, into a trait data frame that is

analogous to the gene expression data frame.

Note: Sample traits data can be plotted alongside the sample clustering dendrogram, gener-

ated during step 29, to investigate whether samples with distinct trait values have globally

distinct gene expression patterns. If so, then there is likely a high correlation among large

groups of genes, which invalidates the scale-free topology assumption and can interfere

with the appropriate selection of the soft-thresholding power b (step 31). If the lack of

scale-free topology is caused by the sample trait of interest, then the recommended power

b is six for unsigned or signed hybrid networks, and 12 for signed networks (for sample size

listed in Table 1). If the lack of scale-free topology is caused by traits that are uninteresting

for the study, then the WGCNA consensus network analysis (not described in this protocol)

should be employed. WGCNA consensus network analysis allows for detection of common

co-expression patterns across multiple conditions (e.g., the driver of sample differences

that is not being studied). Tutorials for the identification of consensus modules that cluster

genes with dense connectivity in multiple conditions can be found at https://horvath.

genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/, under the

heading II. Consensus analysis of female and male liver expression data. (Langfelder and Hor-

vath, 2008)

31. Use the function pickSoftThreshold to analyze scale-free topology for a set of candidate

b-values.

32. Plot, and then inspect the results returned by the function pickSoftThreshold. Select the

smallest b-value that satisfies the scale-free topology assumption (i.e., R2 > 0.8).

Note: A reasonable b-value is < 15 for unsigned or signed hybrid networks, and < 30 for

signed networks. If the scale-free topology assumption cannot be satisfied with a reasonable

b-value, then the input data should be investigated for heterogeneity drivers that instigated

the globally distinct expression pattern (see Note under step 30).

33. Calculate adjacencies with the selected b-value via function adjacency. The adjacency matrix

is a square, symmetrical matrix with values ranging between 0 and 1 that correspond to the

connection strengths between each pair of genes.

34. Calculate the topological overlap matrix (TOM) from the adjacency matrix using the function

TOMsimilarity. Then calculate the dissimilarity matrix via command dissTOM = 1 – TOM.

Note:When executing functions pickSoftThreshold, adjacency and TOMsimilarity,

the network type needs to be defined via arguments networkType, type, and networkType,

respectively. In ‘‘signed’’ networks, a pair of genes with positive correlation is considered con-

nected whereas a pair of genes with negative correlation is considered unconnected. In
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‘‘unsigned’’ networks, positive and negative correlations are both regarded as connected (i.e.,

mixed). Although the default network type in WGCNA is ‘‘unsigned’’, the use of ‘‘signed’’ net-

works is recommended for analysis of gene expression data (see https://peterlangfelder.com/

2018/11/25/signed-or-unsigned-which-network-type-is-preferable/).

35. Detect modules within the network by clustering genes based on dissTOM using the function

hclust. Module assignments can be plotted under the gene dendrogram using the function

plotDendroAndColors.

Note: WGCNA may return modules that capture a large fraction of the input data (i.e., con-

taining 10, 20, or 50% of the total input data), which may not provide adequate resolution

for the identification of core mechanisms associated with the sample trait of interest. To

resolve the potential issue of large modules, please refer to troubleshooting, problem 4

(step 35).

36. Calculate the weighted average value (eigengene) for each module using the function modu-

leEigengenes.

37. Calculate the correlation between trait and module eigengenes (MEs) using the function cor

and corPvalueStudent to uncover module(s) with significant association to the sample trait

of interest. A graphical view of module-trait relationship can be generated with the function

labeledHeatmap.

38. Calculate the correlation between trait and gene expression levels with the function cor and

corPvalueStudent to define gene significance (GS).

39. Calculate the correlation between MEs and gene expression levels using the function cor and

corPvalueStudent to define module membership (MM).

40. Plot a scatterplot of variables GS vs. MM to examine if genes that are highly associated with the

trait of interest are also highly associated with their assigned module.

41. Annotate results from WGCNA with Ensembl IDs. This can be done by utilizing the zz_

gencode.v23.annotation.csv downloaded and saved during step 2 of this protocol.

42. Save the annotated WGCNA result for subsequent analyses.

Note: For complete details on the use and execution of the WGCNA R package, please refer

to Langfelder and Horvath (2008).

Gene set enrichment analysis with topGO

Timing: 0.5–1 h

Having identified clusters (modules) of genes that are highly correlated to specific traits of human

cancer, the next step is to infer underlying molecular mechanisms based on the biological attributes

of these genes. Gene ontology (GO) is a set of structured and controlled vocabulary, which describes

gene characteristics in terms of their function and localization. In the hierarchical tree structure of

GO, each child node is a more specific term than its parents. At the highest level, GO terms are

classified into three major categories: cellular components (where the gene product is localized),

molecular functions (function of the gene product), and biological processes (the activity with which

the gene product is involved). In this section, GO enrichment analysis is completed with the topGO

R package (Alexa and Rahnenführer, 2021) for the category ‘‘biological processes’’. topGO was cho-

sen to owe to its ‘elim’ method, that considers GO hierarchy when calculating enrichment. In brief,

the algorithm accounts for the ‘inheritance problem’ (i.e., where root terms inherit annotations from

descendent terms; a situation which can generate false positives) in GO enrichment analysis by dis-

regarding genes that had already been annotated with significantly enriched descendant GO terms

(Alexa et al., 2006).
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Note: The Methods S4 file ‘‘R Markdown Code Script for topGO’’ contains the exact script

used to generate the expected outcomes for this section.

43. Load the following R packages: 1) data.table, 2) grex, 3) biomaRt, 4) topGO, 5) dplyr, and

6) ggplot2.

44. Annotate the WGCNA result, saved during step 42, with Entrez IDs, via function grex.

45. Connect to the ENSEMBL_MART_ENSEMBL BioMart database to query GO IDs for the list of

Entrez IDs returned by the function grex. This constitutes the ‘gene universe’ that we will

compare our list of genes of interest to.

46. Define the WGCNA module of interest then set up named factors for genes located within and

outside of the module of interest.

47. Build a topGO data object with the base function new, then run GO analysis.

48. Test significance of GO terms using the function runTest.

49. Generate a summary table of results obtained from topGO enrichment analysis with the function

GenTable.

Note: If users decide to re-run GO term enrichment analysis after some time (e.g., six months),

the outcome of this later analysis may not always agree with those obtained from analysis

conducted at an earlier time. For explanation and potential solution, please refer to trouble-

shooting, problem 5 (step 49, step 61, and step 71).

50. Calculate odds ratios via the command:

51. Generate a summary figure of topGO results via the ggplot2 R package (Wickham et al., 2016).

Note: For complete details on the use and execution of the topGO R package, please refer to

Alexa and Rahnenführer (2021) and Alexa et al. (2006).

Survival analysis with RegParallel

Timing: 0.5–1 h

Potential biomarkers for specific human cancer traits can be detected by cross-referencing genes

that reside within the WGCNA module(s) of interest with the list of DEGs derived with limma-

voom. To further restrict this list of potential biomarkers, the prognostic ability of gene expression

on survival may be evaluated. In this section, the RegParallel R package (Blighe and Lasky-Su, 2021)

was utilized to examine how the expression of genes within the WGCNA module of interest influ-

enced the rate of overall survival.

Note: The Methods S5 file ‘‘R Markdown Code Script for Survival’’ contains the exact script

used to generate the expected outcomes for this section.

52. Load the following R packages: 1) dplyr, 2) data.table, 3) RegParallel, and 4) surv-

miner.

53. Subset the voom transformed gene expression matrix, saved during step 25, to include only

TCGA sample IDs and only genes within the module of interest.

54. Transform the gene expression data to Z-score with the function scale.

> all_res$OR = log2((all_res$Significant/tot_candidate)/(all_res$Annotated/

tot_background))
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55. Merge the transformed gene expression matrix with the file TCGA_survival_data that was

downloaded and saved during step 5.c.

Note: For analysis of how gene expression within the WGCNA module of interest influences

the rate of overall survival for members of the TCGA colon cancer cohort, we subset the

TCGA_survival_data to include only data%3,650 days (i.e., 10 years). The subset criterion

of 10-year was set based on data that were available within the TCGA_survival_data data-

set for the TCGA colon cancer cohort. A histogram summarizing the range and distribution of

available survival data can be generated to assist in the setting of the subset criterion. Five-

year survival is commonly used, but long-term survival outcomes (e.g., 10, 15, or 20 years)

could also be interrogated when data are available (Miller et al., 2019; Myers and Ries, 1989).

56. Run the function RegParallel to fit Cox proportional hazards regression model to gene

expression to independently test the association between survival time and each gene within

the WGCNA module of interest.

Note: For network analysis of TCGA colon cancer gene expression, we examined how gene

expression influences the rate of overall survival. However, other events of interest can be

found within the file TCGA_survival_data (e.g., disease-specific survival, disease-free in-

terval, and progression-free interval).

57. Load the summary of limma-voom differential expression analysis, saved during step 24.

58. Merge the limma-voom differential expression data with RegParallel output, then save the com-

posite data table for Cytoscape network visualization.

59. Generate a short-list of genes that satisfy the conditions:

a. Is associated with the trait of interest (see step 53).

b. Is differentially expressed (adj.P.Val < 0.05).

c. Statistically significant prognostic separation between high and low gene expression

(LogRank < 0.05).

60. Generate Kaplan-Meier (KM) plots for shortlisted genes using the function ggsurvplot.

Note: For complete details on the use and execution of the RegParallel and survminer R pack-

age, please refer to Blighe and Lasky-Su (2021) and Kassambara et al. (2021), respectively.

Molecular network visualization with Cytoscape

Timing: 1–2 h

The effective visual display of data architecture is critical for information dissemination and broader

contextual understanding. This section describes the use of stringApp for Cytoscape (Doncheva

et al., 2019; Shannon et al., 2003) to retrieve molecular networks from the search tool for the retrieval

of interacting genes/proteins (STRING) database (Szklarczyk et al., 2021) given a list of proteins of

interest. Moreover, the means to import external data (e.g., results from differential expression

and survival analysis) for mapping additional information onto the STRING network is provided.

61. Construct the protein-protein interaction (PPI) network with the STRING database.

a. Start Cytoscape and go to File > Import > Network from Public Database.

b. Select STRING: protein query as Data Source.

c. Copy/paste the variable column of data table saved during step 58 into the box titled: Enter

protein names or identifiers.

d. Press Import.
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Note: The default confidence (score) cutoff value is 0.40. Lowering the cutoff will increase the

sensitivity but will also increase the likelihood of false positives. The setting of the cutoff value

is arbitrary and is often based on the number of interactions required for the analysis. For

example, to visualize PPIs for genes within our WGCNA module of interest, the cutoff was

set to 0.15. At this cutoff-value, a single molecular network incorporating 145 out of 151 genes

in our module of interest was constructed via the STRING database.

Note: If users decide to re-construct their PPI network after some time (e.g., six months), the

newly constructed network may not be the same as what was returned via earlier import of

network from the STRING database. For explanation and potential solution, please refer to

troubleshooting, problem 5 (step 49, step 61, and step 71).

62. Import the composite data table, saved during step 58, to the constructed STRING network to

visualize differential expression and survival analysis overlap.

a. Go to File > Import > Table from File.

b. Select the composite data table, saved during step 58. Then press Open.

c. Select To a Network Collection for field Where to Import Table Data:.

d. Select Node Table Columns for field Import Data as:.

e. Select shared name for field Key Column for Network.

f. Under the Preview window, click on the Variable column then change the Meaning: to

Key. Then press OK.

63. Compute a set of topological parameters for the STRING network by selecting Tool > Analyze

Network. Then press OK.

64. Adjust Layout and Styling as needed. For our network analysis of TCGA colon cancer gene

expression, we emphasized the degree of interaction by mapping node size to the network

parameter degree. We also highlighted genes that were differentially expressed via colored

nodes, and genes that were associated with overall survival with colored node border.

65. Export topology data from Cytoscape by selecting File > Export > Table to File.. Then

change the Select a table to export: to String Network default node. Then press

OK.

Note: The exported table can be used to prioritize hub gene(s) by cross-referencing DEGs that

significantly impact overall survival probability with their node degree. Node degree repre-

sents the number of interactions linked to a given gene.

Note: For complete details on the use and execution of the Cytoscape (3.9.0) software plat-

form, please refer to Cytoscape User Manual (http://manual.cytoscape.org/en/stable/index.

html) and Shannon et al. (2003).

Differential (co-expression) correlation analysis with DGCA

Timing: 1–2 h

Over the past decade, increased efficiencies in global gene expression profiling have made com-

mon the study of differential gene expression. However, this approach overlooks the fact that bio-

logical processes are defined by complex interactions among molecules. Thus, methods such as

WGCNA (Langfelder and Horvath, 2008) emerged to facilitate the exploration of relationships be-

tween gene sets and sample traits. Complementary to differential expression and co-expression

studies, differential co-expression (correlation) studies analyze the rewiring of molecular interactions

associated with perturbations such as disease or oncogene activation (Savino et al., 2020). In this

section, we perform differential correlation analysis with the R package DGCA (McKenzie et al.,

2016) on our hub gene (identified during step 65) within the gene universe, and between normal

and primary tumors. The identification of differentially-correlated genes (DCGs) and the comparison
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of enrichment of GO terms derived from DCGs can provide insight into the functional relevance of a

hub gene in different cellular contexts (e.g., normal vs. tumor). These linkages can further promote

the development of an effective hypothesis for integration with experimental validation.

Note: TheMethods S6 file ‘‘R Markdown Code Script for DCGA’’ contains the exact script used

to generate the expected outcomes for this section.

66. Load the following R packages: 1) dplyr, and 2) DGCA, 3) org.Hs.eg.db, 4) GOstats, 5)

HGNChelper, and 6) plotrix.

67. Import the voom transformed gene expression matrix, saved during step 25.

68. Extract column names from the gene expression matrix to construct a design matrix for DGCA.

69. Filter the gene expression matrix using the function filterGenes:

a. First filter genes by central tendency (e.g., filterCentralPercentile = 0.25; this

removes genes in the bottom 25th percentile of median expression).

b. Then filter genes by dispersion (e.g., filterDispersionPercentile = 0.25; this

removes genes in the bottom 25th percentile of the dispersion index of expression).

70. Perform differential correlation analysis on the hub gene between normal and primary tumor

using the function ddcorAll.

Optional: Visualize the correlation in each condition (i.e., normal, and primary tumor) between

the hub gene and its top DCGs via the following command:

71. Perform GO enrichment on genes with significant gain of correlation to the hub gene in primary

tumor and on genes with significant loss of correlation to the hub gene in primary tumor via the

DGCA wrapper function ddcorGO.

Note: If users decide to re-run GO term enrichment analysis after some time (e.g., 6 months),

the outcome of this later analysis may not always agree with those obtained from analysis con-

ducted at an earlier time. For explanation and potential solution, please refer to trouble-

shooting, problem 5 (step 49, step 61, and step 71).

72. Visualize the odd-ratios from enrichment of GO terms derived from DCGs via the wrapper func-

tion plotGOTwoGroups.

Note: For complete details on the use and execution of the DGCA R package, please refer to

McKenzie et al. (2016).

EXPECTED OUTCOMES

The filterByExpr function removes genes that are either unexpressed or lowly expressed while

keeping asmany genes as possible with worthwhile counts (i.e., keeping genes that have CPM above

k in n samples, where n is determined by the minimum group sample size and k is determined by

minimum count (default: 10) in a minimum proportion (default: 70% of the smallest group size) of

samples). The density plot of log-CPM values for raw vs. filtered expected count should show a

sizable proportion of lowly-expressed genes (Figure 1A) that is removed after application of filter-

ByExpr (Figure 1B). For network analysis of TCGA colon cancer gene expression, 15,164/18,205

genes were retained for differential expression analysis after application of the filterByExpr func-

tion. The definition of ‘‘lowly-expressed’’ is subjective. In addition to modifying the values of

> plotCors(inputMat = dataExpr, design = dataMatrix, compare = c("dataGTEx", "dataTCGA"), ge-

neA = "hub_gene" ,geneB = "top_DCG")
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arguments for the filterByExpr function, the filtering of lowly expressed genes can also be

achieved by functions external to edgeR::filterByExpr (e.g., the genefilter R package (Gentle-

man et al., 2021)) to maximize the number of DEGs. However, it should be noted that inadequate

removal of lowly expressed genes will negatively impact linear modeling in limma-voom, which is

carried out on log-CPM values which are assumed to be normally distributed. If the filtering of

lowly-expressed genes is insufficient for linear modeling in limma-voom, then the mean-variance

trend plot, generated as part of the voom function, will show a drop in variance levels at the low

end of the expression scale. Figure 2 shows the expected mean-variance trend for network analysis

of TCGA colon cancer gene expression. Please refer to materials (i.e., Figure 1) in Law et al. (2014) for

acceptable trends of mean-variance relationship that can be applied to linear modeling with

limma-voom.

Figure 1. Impact of removing lowly-expressed genes on the distribution of expression values

(A and B) Density plot of log-CPM values before (A) and after (B) removal of genes that are lowly-expressed in TCGA

primary tumor and GTEx normal colon tissue samples.

Figure 2. The mean-variance relationship of the input gene expression data

Mean-variance relationship of log-CPM values for the input dataset (TCGA primary tumor and GTEx normal colon

tissue gene expression data) is appropriate for subsequent linear modeling with limma-voom since a drop in variance

levels at the low end of the expression scale was not observed.
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The number of DEGs detected across TCGA primary tumor and GTEx normal colon tissue samples

accounts for 92% of total gene input (see the Methods S2 file ‘‘R Markdown Code Script for

LIMMA_ColonCancer’’). To focus on genes that have significant differential expressions relative to

a non-zero-fold change threshold (and thus are more likely to be biologically meaningful), the treat

function can be used to trim large DEG lists (McCarthy and Smyth, 2009). Upon application of an

arbitrary threshold of log2FC = 0.58, the number of DEGs were reduced to account for 56% of total

gene input (see the Methods S2 file ‘‘R Markdown Code Script for LIMMA_ColonCancer’’). The

higher the chosen threshold, the stronger the evidence needed for any particular gene to be defined

as a DEG. As such, the decision to apply the treat function and the selection of threshold value are

dependent on themagnitude of contrast between conditions and the size of the gene input. Another

illustration of the treat function is presented in the Methods S7 file ‘‘R Markdown Code Script for

LIMMA_OvarianCancer’’).

The results of differential expression analyses can be visualized as volcano plots, a standard in DEG

visualization. A volcano plot is a type of scatter plot that illustrates the statistical significance

(�log10(adjusted p value)) and magnitude of change (log2(fold-change)) associated with the condi-

tions under comparison. The volcano plot seen in Figure 5B of Chen and MacDonald (2021) is the

expected outcome of differential gene expression analysis on TCGA tumor vs. GTEx normal tissue.

TheMethods S8 file ‘‘RMarkdown Code Script for Enhanced Volcano’’ contains the exact script used

to construct a volcano plot with the refined list (i.e., have undergone treat) of DEGs saved during

step 24 of step-by-step method details using the EnhancedVolcano R package (Blighe and Lasky-Su,

2021). However, any software that can create scatter plots may be used to create volcano plots.

Quantification and statistical analyses can be performed as optional functions within specific R pack-

ages. For differential gene expression analysis with limma-voom, the treat method with a nonpara-

metric empirical Bayes approach for the analysis of factorial data provided a paired t-test for every

gene within the limma R environment. To calculate the correlation between clinical trait andWGCNA

module eigengenes, Pearson coefficients (r) and the corresponding p-values were used to deter-

mine statistically significant linear relationships. For gene set enrichment analysis with topGO, the

elimmethod was applied alongside Fisher’s exact test to assess significance of GO term enrichment.

For survival analyses with RegParallel, a univariate Cox survival model was used to compute hazard

ratios, and outputs from log-rank testing was used to describe overall significance of the model. For

DGCA, the pipeline provided Pearson coefficients (r) and the corresponding p values for each pair of

genes across samples.

LIMITATIONS

The presented protocol utilizes TCGA and GTEx RNA-Seq datasets. These datasets excel at having

sufficient observations for statistically sound correlation studies. However, should additional data-

sets that offer a juxtaposition of tumor vs. normal samples become available, these resources should

be utilized for the validation of results obtained from the application of the presented protocol. The

presented protocol employs gene expression profiles of tumor bulk tissues. Given that genes may

demonstrate diverse functions across different cell types, gene sets identified from averaged data-

sets need to be reexamined in a cell type-specific manner for the identification of susceptible cell

types and converged pathways among different cells. Deconvolution methods may be utilized to

reconstruct cell type-specific gene expression from tumor bulk tissues (Aran et al., 2015). Finally,

the presented protocol examines gene-to-gene correlations, which do not indicate causal

relationships.

TROUBLESHOOTING

Problem 1

The subset function does not compute, or the subset function returns zero observations (step 6).
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Potential solution

In R, unique names (i.e., identifiers) given to variables must not start with an underscore (_). However,

many variables found in the TcgaTargetGTEX_phenotype and clinicalMatrix datasets

contain a starting underscore (e.g., _primary_site).

One can utilize the gsub function to remove or replace underscores in identifiers. For example:

The R language is generally case sensitive. However, TCGA and GTEx data stored with the UCSC-

Xena platform carry capitalization inconsistencies, which can interfere with subsetting in R. For

example, in TcgaTargetGTEX_phenotype, the _primary_site for _sample_type ‘‘Normal

Tissue’’ under _study ‘‘GTEX’’ is ‘‘Adrenal Gland’’, whereas the _primary_site for _sample_

type ‘‘Primary Tumor’’ under _study ‘‘TCGA’’ is ‘‘Adrenal gland’’.

One can use subset with grepl to ignore case. For example:

Samples stored with the skin cancer clinical matrix do not have assigned histological type. When

retrieving IDs for skin cancer primary tumor samples. One can use the following script:

In R, certain characters hold special meaning to certain functions (i.e., metacharacters). For example,

when subsetting with grepl, the first argument is a pattern, a regular expression. If we set the value

for this first argument as "^Colon", then grepl gives back the rows (observations) that begins with

the pattern ‘‘Colon’’; If we set the value for this first argument as "Colon*", then grepl gives back

the rows (observations) that contains the pattern ‘‘Colon’’. When utilizing grepl, parentheses are

also metacharacters. Tomatch literal parentheses, we need to escape themetacharacters by placing

backslashes (\\) in front of parentheses to suppress their special meaning. When setting the values

for paraPrimaryTissueGTEx (step 6.a) or paraHistologicalType (step 6.b), please refer to

Tables 3 or 4, respectively, to obtain non-zero returns.

Problem 2

In general, phenotypic information stored in TCGA clinical matrices can be classified into three cat-

egories: discrete numeric (e.g., age), binomial (e.g., additional therapy?), or ordinal (e.g., clinical

stage) variables. While discrete numeric variables can be used directly (i.e., without modification)

to estimate the relationship of gene expression to phenotype, binomial and ordinal variables

need to be re-coded for downstream analyses. Given that 1) the variables included in clinical

matrices differ among the 19 cancer types listed in Table 2, and 2) the importance of research ques-

tion in the context of a study design, we provide here a more generalized solution to the preparation

of binomial and ordinal variables for downstream analyses (step 9).

Potential solution

The clinical matrix TCGA.OV.sampleMap/OV_clinicalMatrix for ovarian cancer is used to

exemplify the generalized solution for re-coding nominal and ordinal variable for downstream

> gsub("\\_", "" ,names(YourDataset))

> subset(YourDataset, grepl("adrenal gland", primarysite, ignore.case = TRUE) & study ==

"GTEX")

> filterTCGA02 = subset(filterTCGA01, sampletype == paraSampleType & primarysite ==

paraPrimarySiteTCGA)
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analyses. Please refer to the Methods S9 file ‘‘R Markdown Code Script for troubleshooting

problem 2’’ for the exact script used to generate the expected outcome.

To view a list of variables included in the clinical matrix (downloaded during step 5.b), one can use

the following script:

To keep variable(s) of interest (e.g., ‘‘Additional Radiation Therapy’’ and ‘‘Clinical Stage’’), one can

use the following script:

To re-code the binomial variable ‘‘Additional Radiation Therapy’’ from YES/NO to 1/0, one can use

the following script:

To re-code the ordinal variable ‘‘Clinical Stage’’ from Stages I/II/III/IV to 1/2/3/4, one can use the

following script:

Problem 3

In limma-voom, all samples are assumed to have a similar range and distribution of log-CPM values

(Law et al., 2016). If a subset of samples appears as outliers on the density plot for filtered expected

count (Figure 3), these sample outliers should be removed prior to running limma-voom on the

DGEList-object (step 13).

Potential solution

The script used as a solution to this problem is provided in the Methods S10 file ‘‘R Markdown Code

Script for troubleshooting problem 3 – Colon Cancer’’. In which, a lcpm.cutoff of log2(10/M +

2/L), where M is the median library size in millions and L is the mean library size in millions, was

applied to the lcpm data matrix generated during step 15 of step-by-stepmethod details to identify

lowly-expressed genes. Next, the proportion of genes below lcpm.cutoff by sample was calcu-

lated then summarized with a histogram to identify sample outlier(s). For example, in determination

of DEGs across TCGA primary tumor and GTEx normal colon tissue samples, we filtered out four

GTEx samples that had >80% of genes below the defined lcpm.cutoff (Figure 3C). Another illus-

tration of this solution is presented in the code script included in the Methods S11 file ‘‘R Markdown

Code Script for troubleshooting problem 3 –Ovarian Cancer’’. In which, one TCGA sample was iden-

tified as outlier and was removed prior to the generation of the DGEList-object in the code script

provided in the Methods S7 file ‘‘R Markdown Code Script for LIMMA_OvarianCancer’’ to facilitate

clean execution of functions called during step 17–22.

> names(filterTCGA02)

> varClinKeep = c("sampleID", "additionalradiationtherapy", "clinicalstage")

> clinFinal$additionalradiationtherapy = if_else(clinFinal$additionalradiationtherapy ==

"YES", 1, 0, missing = NULL)

> clinFinal$clinicalstage[grepl("^Stage IV", clinFinal$clinicalstage)] <- 4;

> clinFinal$clinicalstage[grepl("^Stage III", clinFinal$clinicalstage)] <- 3;

> clinFinal$clinicalstage[grepl("^Stage II", clinFinal$clinicalstage)] <- 2;

> clinFinal$clinicalstage[grepl("^Stage I", clinFinal$clinicalstage)] <- 1
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Problem 4

WGCNA returns gene clusters (modules) that are labeled with colors. The module labeled

turquoise contains the highest number of genes, the module labeled blue contains the second high-

est number of genes, then brown, green, etc. The module labeled gray contains non-module genes.

Depending on the nature of the input data, and/or the argument settings in functions adjacency,

TOMsimilarity, and cutreeDynamic, WGCNAmay return modules that capture a large fraction

of the input data (i.e., containing 10, 20, or 50% of the total input data). From the perspective of

WGCNA, there is no ‘‘correct’’ upper-limit on the size of any module or the number of non-module

genes. However, given that the typical objective of performing WGCNA is to infer underlying

molecular mechanisms based on biological attributes of a given gene set (module), large modules

may not provide adequate resolution for the identification of core mechanisms associated with the

sample trait of interest (step 35).

Potential solution

A solution to this problem is to conduct multiple runs of WGCNA, and adjust the argument

minClusterSize (i.e., minModuleSize) and/or the argument deepSplit under the function

cutreeDynamic between runs. The deepSplit argument controls the sensitivity of module

splitting. Users can select an integer value between 0 and 4 for deepSplit, with 4 being the

most sensitive. The minModuleSize argument controls the lower limit of module size. For WGCNA

on TCGA colon primary tumors, the deepSplit was set at 4. By decreasing the minModulSize value,

we observed 1) an increased in number of modules detected, 2) a decrease in the number of genes

per module, 3) the elimination of the gray module, and 4) the detection of a gene set (module)

significantly correlated with the trait of interest lymphatic invasion (Figure 4).

Problem 5

Discordant results from GO term enrichment analysis and/or molecular network analysis when re-

running analyses later (step 49, step 61, and step 71).

Potential solution

In this protocol, GO term enrichment was completed by retrieving GO annotations from the En-

sembl database (Durinck et al., 2005, 2009) or the org.Hs.e.g.,.db database (Carlson, 2021). And

Figure 3. Identification of sample outliers on a density plot for filtered expected count

(A–C) A density plot of log-CPM values for expected count shows distinct distributions of log-CPM values before (A) and after (B) removal of genes using

the filterByExpr function. The proportion of genes below lcpm.cutoff (indicated by the vertical dotted lines in A and B) by sample is summarized in

a histogram (C), and samples with density (proportion of genes) > 0.8 for log-CPM values < lcpm.cutoff were defined as outliers.
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a PPI network was constructed utilizing the STRING database (Szklarczyk et al., 2021). Databases

implement different approaches to manage annotation. Furthermore, databases are updated

over time. As such, the outcome of enrichment or network analysis can change depending on which

database was employed for annotation and/or when the analysis was conducted (Tomczak et al.,

2018). One way to improve the reproducibility of gene set analysis is to increase the input sample

size (Maleki et al., 2019). Comparing annotations from multiple databases may also improve repro-

ducibility. Finally, one should keep track of data provenance as the outcome of enrichment or

network analysis will differ when R packages are updated (e.g., org.Hs.e.g.,.db for gene annotation

by Entrez ID, and biomaRt for annotation by Ensemble ID).

RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to and will be fulfilled by the lead contact, Huey-

Miin Chen (thmchen@ucalgary.ca).

Figure 4. Comparison of module-trait relationship matrices

For the Module-Trait Relationships heat maps, the Pearson correlation value and p value (in brackets) are provided; p values below 0.05 were

considered significant. Gene significance (GS) vs. module membership (MM) scatterplots were generated with varied minModuleSize values. Red

boxes mark modules that were significantly correlated with the clinical trait of interest lymphatic invasion.
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Materials availability

This protocol did not generate any new materials.

Data and code availability

1. Data

This paper analyzes existing, publicly available RNA-Seq data. The sources for the datasets are listed

in the key resources table.

2. Code

This paper does not report original code. All codes were used in this study in alignment with recom-

mendations made by authors of R packages in their respective user’s guides.

3. Additional information requests

Any additional information required to reanalyze the data used in this paper is available from the

lead contact upon request.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101168.
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