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Accurate identification ofmolecular targets of disease plays an important role in

diagnosis, prognosis, and therapies. Breast cancer (BC) is one of the most

common malignant cancers in women worldwide. Thus, the objective of this

study was to accurately identify a set of molecular targets and small molecular

drugs that might be effective for BC diagnosis, prognosis, and therapies, by

using existing bioinformatics and network-based approaches. Nine gene

expression profiles (GSE54002, GSE29431, GSE124646, GSE42568,

GSE45827, GSE10810, GSE65216, GSE36295, and GSE109169) collected

from the Gene Expression Omnibus (GEO) database were used for

bioinformatics analysis in this study. Two packages, LIMMA and

clusterProfiler, in R were used to identify overlapping differential expressed

genes (oDEGs) and significant GO and KEGG enrichment terms. We

constructed a PPI (protein–protein interaction) network through the STRING

database and identified eight key genes (KGs) EGFR, FN1, EZH2, MET, CDK1,

AURKA, TOP2A, and BIRC5 by using six topological measures, betweenness,

closeness, eccentricity, degree, MCC, and MNC, in the Analyze Network tool in

Cytoscape. Three online databases GSCALite, Network Analyst, and GEPIA were

used to analyze drug enrichment, regulatory interaction networks, and gene

expression levels of KGs. We checked the prognostic power of KGs through the

prediction model using the popular machine learning algorithm support vector

machine (SVM). We suggested four TFs (TP63, MYC, SOX2, and KDM5B) and four

miRNAs (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, and hsa-mir-23b-3p)

as key transcriptional and posttranscriptional regulators of KGs. Finally, we

proposed 16 candidate repurposing drugs YM201636, masitinib, SB590885,

GSK1070916, GSK2126458, ZSTK474, dasatinib, fedratinib, dabrafenib,

methotrexate, trametinib, tubastatin A, BIX02189, CP466722, afatinib, and

belinostat for BC through molecular docking analysis. Using BC cell lines,

we validated that masitinib inhibits the mTOR signaling pathway and induces
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apoptotic cell death. Therefore, the proposed results might play an effective

role in the treatment of BC patients.
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Introduction

Breast cancer (BC) is the most common cancer diagnosis

and the leading cause of cancer-related deaths in women

worldwide. It was calculated that 2,261,419 (11.7% of all

cancers) new cases and 684,996 (6.9% of all cancers) deaths

occurred in BC in 2020 (Sung et al., 2021). In China,

416,371 new cases and 117,414 BC-related deaths occurred

in 2020, accounting for 18.4% of diagnoses and 17.1% of

deaths (Cao et al., 2021). It was also estimated that there

were 1,700,000 new cases and 521,900 deaths in 2012 BC

worldwide (Torre et al., 2015). We noticed that BC has a high

prevalence and mortality rate and is steadily increasing every

year, although it is claimed that there have been significant

advances in systematic treatment over the decades. The 5-year

overall survival rate for BC patients is still low, although it

depends on various factors (Sarveazad et al., 2018). Therefore,

the progress of the existing treatment has not yet reached a

satisfactory level. Therefore, it is urgent to improve research to

discover potential molecular targets and effective candidate

drugs for the development of innovative therapies for BC.

Novel drug discovery is challenging, time consuming, and

expensive due to the very low rate of approval through clinical

trials. Discovering a new drug using the de novo technique takes

approximately 14 years and costs 800 million dollars, yet many

pharmaceutical companies are working on it (Song et al., 2009;

Lavecchia and Di Giovanni, 2013). Drug repurposing (DR) is a

promising strategy to identify new indications for a specific

disease by using approved drugs (existing drugs) (Simsek

et al., 2018). The DR strategy is safer, cheaper, and less time

consuming than the de novo strategy due to the knowledge of in

vivo screening, chemical optimization, and toxicology of existing

drugs (Ko, 2020). Thus, the DR technique in computers widely

used by pharmaceutical companies and researchers over the past

few decades has achieved significant success (Shi et al., 2020;

Alam et al., 2022b). Molecular docking analysis is a momentous

strategy for validating drug-target structural binding

performance in computational DR processes. Bioinformatics

analysis plays a significant role in accurately identifying the

key genes (KGs)/targets with candidate drugs of the disease to

inform diagnosis, prognosis, and therapies. The gene expression

profile analysis is one of the most popular platforms for disease-

guided KG identification. Thus, we used multiple datasets

collected from different environments to identify more

common and stable BC-guided KG through gene expression

profiles (Alam et al., 2022a).

In the present study, we identified eight stable BC-guided

KGs (EGFR, FN1, EZH2, MET, CDK1, AURKA, TOP2A, and

BIRC5) and highlighted their role as molecular targets. We also

proposed 16 KG-guided candidate drugs (YM201636, masitinib,

SB590885, GSK1070916, GSK2126458, ZSTK474, dasatinib,

fedratinib, dabrafenib, methotrexate, trametinib, tubastatin A,

BIX02189, CP466722, Afatinib, and Belinostat) for BC treatment

and validated them in silico through molecular docking analysis.

Using BC cell lines, we found that masitinib inhibits the mTOR

signaling pathway and induces apoptotic cell death.

Materials and methods

Microarray data

The gene expression profiles analyzed in our study were

downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) (Edgar and

Barrett, 2006). The workflow of the present study is presented

in Supplementary Figure S1. Eight sets of gene expression profiles

with accession numbers GSE54002 (Tan et al., 2014), GSE29431

(Wang et al., 2021), GSE124646 (Sinn et al., 2019), GSE42568

(Clarke et al., 2013), GSE45827 (Gruosso et al., 2016), GSE10810

(Pedraza et al., 2010), GSE65216 (Maubant et al., 2015), and

GSE36295 (Karim et al., 2016) were used to identify differentially

expressed genes (DEGs) between BC and normal samples. A total

of 864 BC samples and 123 normal samples were included in

these eight sets of profiles. An independent gene expression

profile (GSE109169) (Yu et al., 2020) including 25 BC and

25 normal samples was collected to investigate the prognostic

performance of KGs through the cancer prediction model.

Furthermore, the six profiles (GSE54002, GSE29431,

GSE42568, GSE45827, GSE10810, and GSE65216) based on

the GPL570 platform, profile GSE124646 based on the

GPL96 platform, profile GSE36295 based on the

GPL6244 platform, and profile GSE109169 based on the

GPL96 platform were identified. Details of the datasets are

described in Table 1.

Data processing and differentially
expressed gene identification

We normalized all datasets by using log2-transformation,

after which we used the normalized data for further analysis.
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Then, the Limma (version: 3.14) package (Ritchie et al., 2015) in

RStudio (version: 1.2.5019) was used to identify DEGs between

BC samples and normal samples for eight datasets individually.

The moderated T-statistics and the Benjamini and Hochberg

false discovery rate method were used to calculate the p value and

adjusted p value (adj.P.Val) and logFC (fold change),

accordingly. The cutoff criteria adj.P.Val < 0.01 and | logFC

| > 1.5 were considered to select significant DEGs. Overlapping

upregulated and downregulated DEGs were screened using the

Venn diagram web tool (https://bioinformatics.psb.ugent.be/

webtools/Venn/).

Protein–protein interaction network
analysis of overlapping differentially
expressed genes to identify key genes

The PPI network of oDEGs was constructed using the online

database STRING (Search Tool for the Retrieval of Interacting

Genes) (v 11.5) and was visualized through the Cytoscape

software (Shannon et al., 2003; Szklarczyk et al., 2019). Then,

we screened the top-ranked common KGs by using the six

topological measures betweenness, closeness, eccentricity,

degree, maximal clique centrality (MCC), and maximum

neighborhood component (MNC) through the Analyze

Network tool in the Cytoscape.

Functional and pathway enrichment
analysis of differentially expressed genes

GO (Gene Ontology) function in three categories BPs

(Biological Processes), CC (Cellular Component), and MF

(MF) and KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathway enrichment analyzed through the R/

Bioconductor package “clusterProfiler” (version: 3.14). p-value

cutoff = 0.05 and q-value cutoff = 0.05 were selected as the cutoff

criteria (Yu et al., 2012).

Regulatory interaction network analysis

The regulatory interaction network TFs (Transcription

factors)-KGs-miRNAs (microRNAs) to detect transcriptional

and posttranscriptional regulatory factors of KGs. The

Network Analyst (Zhou et al., 2019) web-based tool was used

to construct the regulatory interaction networks and was

visualized by using the Cytoscape software (Shannon et al., 2003).

Validation of prognostic power and
expression pattern of key genes

We validated the expression pattern of KGs through TCGA

(The Cancer Genome Atlas) RNA-seq data (independent data)

by using the GEPIA database (Tang et al., 2017). Then, we

performed the cancer prediction/classification model using the

popular machine learning algorithm SVM to test the prognostic

power of our proposed KGs. We used the expression profiles of

KGs from eight sets of data (GSE54002, GSE29431, GSE124646,

GSE42568, GSE45827, GSE10810, GSE65216, and GSE36295) as

the prediction set and another independent validation set

GSE26964. The ROCR package in R was used to generate the

ROC curves (Sing et al., 2005).

Drug repurposing by molecular docking
analysis

To explore KG-guided candidate drugs for BC by molecular

docking analysis, we considered eight KGs as drug target proteins

(receptors). Subsequently, the 77 KG-associated meta-drug

agents (ligands) were selected from the GSCALite database on

the basis of a positive Spearman rank correlation with at least one

KG (Liu et al., 2018). We downloaded 3-D structures of target

proteins and drug agents for molecular docking analysis. The 3-D

structures of the eight KGs EGFR, FN1, EZH2, MET, CDK1,

AURKA, TOP2A, and BIRC5 were downloaded from the Protein

TABLE 1 Description of eight sets of gene expression profiles for BC analyzed in this study.

ACT Sample size (tumor/normal) Platform Locations References

GSE54002 433 (417/16) GPL570 Affymetrix Human Genome U133 Plus 2.0 Array Singapore Tan et al. (2014)

GSE29431 66 (54/12) Spain Wang et al. (2021)

GSE124646 40 (20/20) GPL96 Affymetrix Human Genome U133A Array United States Sinn et al. (2019)

GSE42568 121 (104/17) GPL570 Affymetrix Human Genome U133 Plus 2.0 Array Ireland Clarke et al. (2013)

GSE45827 41 (30/11) France Gruosso et al. (2016)

GSE10810 58 (27/31) Spain Pedraza et al. (2010)

GSE65216 178 (167/11) France Maubant et al. (2015)

GSE36295 50 (45/5) GPL6244 Affymetrix Human Gene 1.0 ST Array Saudi Arabia Karim et al. (2016)

GSE109169 50 (25/25) GPL5175 Affymetrix Human Exon 1.0 ST Array Taiwan Yu et al. (2020)
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Data Bank (PDB) database with the PDB IDs 3g5z, 2haz, 4mi0,

6hyg, 6gu6, 3dj5, 1zxm, and 1xox, respectively (Berman et al.,

2002). The 3D structures of the meta-drug agents were

downloaded from the PubChem database (Kim et al., 2019).

The 3-D structure of receptors and ligands was preprocessed for

molecular docking analysis using the PyMol software. Molecular

docking analysis was performed using the AutoDock Vina

software in PyRx to check the structural binding performance

between receptors and ligands and computed the binding affinity

scores (BAS) (kcal/mol) (Trott and Olson, 2010; Dallakyan and

Olson, 2015). The “plot.matrix” package in R was used to

visualize the molecular docking results.

Statistical analysis

All gene expression profiles were statistically analyzed by the

R software (Version 4.0.4). Moderated t-statistics were utilized to

testH0 (equally expressed gene (EEG) in both the case and

control groups) versus H1 (differentially expressed gene

FIGURE 1
Screen of the overlapping DEGs (oDEGs) among eight sets of gene expression profiles. (A) Volcano plots of DEGs, where red dots indicate
downregulated DEGs and green dots indicate upregulated DEGs. (B) Venn diagrams were used to screen overlapping upregulated and
downregulated DEGs.
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(DEG) between the case and control groups). Statistically

significant differences were considered when p < 0.05.

Cell culture and drug treatment

The BC cell lines MCF-7 and MDA-MB-231 cells were

cultured in Dulbecco’s modified Eagle’s medium (Gibco, Los

Angeles, CA) containing 10% fetal bovine serum (FBS, Gibco)

supplemented with penicillin (100 µ/ml) and streptomycin

(100 μg/ml, Gibco). Masitinib was purchased from

MedChemExpress (Monmouth Junction, NJ, United States)

and dissolved in dimethyl sulfoxide (DMSO). The cells were

treated with different doses of masitinib for 24 or 48 h. After

treatment, the cells were harvested with lysis buffer for

immunoblot analyses or fixed with 4% paraformaldehyde for

immunofluorescent staining.

Cell viability assays

The cells were seeded in 96-well plates and cultured

overnight. After treatment with masitinib at the indicated

dose, a 10 µl solution of cell counting kit-8 (CCK-8) reagent

was added to each well and incubated for 1 h in the dark. The

absorbance was measured at 450 nm to calculate cell viability.

Propidium iodide staining assay

The cells were treated with masitinib at different

concentrations. After treatment, the cells were incubated with

Hoechst 33342 (Sigma, St. Louis, MO, United States) and PI

(Sigma, St. Luis, MO, United States ) for 10 min. The cells were

then imaged with an inverted IX71 microscope system

(Olympus, Tokyo, Japan).

Immunoblot analyses

Immunoblot analyses were performed as described previously

(Zhang et al., 2022). In brief, the cells were lysed in 1 × SDS lysis

buffer supplementedwith a protease inhibitor cocktail (Roche, Basel,

Switzerland). The cell lysates were subjected to SDS–PAGE and

transferred onto a PVDF membrane (Millipore, Billerica, MA,

United States). The membranes were incubated with the

following primary antibodies: anti-β-actin, anti-cleaved caspase-3,

anti-cyclin D, anti-mTOR, anti-PARP, and anti-phospho-mTOR.

The secondary antibodies, sheep anti-rabbit or anti-mouse IgG-

HRP, were obtained from Thermo Fisher (Waltham, MA,

United States). The proteins were visualized using an ECL

detection kit (Thermo Fisher, Waltham, MA, United States).

Results

Identification of differentially expressed
genes

We used the LIMMA statistical approach to identify DEGs

and considered the threshold adj.P.Val < 0.01 and |log2 fold

change (FC) | >1.5 for selecting significantly upregulated and

downregulated DEGs. The DEGs in each dataset are presented

using volcano plots (Figure 1A), where red dots indicate

downregulated DEGs and green dots indicate upregulated

DEGs. Then, we generated a Venn diagram of the overlapping

upregulated and downregulated DEGs in (Figure 1B). Finally, we

obtained a total of 68 oDEGs (36 upregulated and

32 downregulated oDEGs) in Table 2, which are referred to as

DEGs in this study.

Protein–protein interaction network of
overlapping differentially expressed genes
to identify key genes

We visualized the PPI network of oDEGs in Figure 2, where

green indicates upregulated oDEGs, pink indicates downregulated

oDEGs, and large size indicates KGs. After that, we used six network

scoring measures, including betweenness, closeness, eccentricity,

degree, MCC, and MNC in the Analyze Network tool in the

Cytoscape, and selected the top 25 genes for each measure. We

extracted eight common genes (EGFR, FN1, EZH2, MET, CDK1,

AURKA, TOP2A, and BIRC5) among the six lists and considered

them as KGs in this study (Table 3). Further analyzed-based

information of the KGs is presented in Table 4.

TABLE 2 List of up- and downregulated oDEGs.

Upregulated oDEGs Downregulated oDEGs

CDK1, BGN, PBK, CXCL10, GINS1, MELK, COL11A1, WISP1, NEK2, KIF2C,
BIRC5, SQLE, RRM2, ZWINT, CCNB1, AURKA, SULF1, TOP2A, CENPF,
KIAA0101, GPRC5A, NUSAP1, UBE2C, CKS2, COMP, FN1, ASPM, BUB1B,
MAD2L1, HIST1H2BD, EZH2, CCNB2, ECT2, COL10A1, MMP11, and PRC1

FMO2, ABCA8, ITIH5, CHL1, IL33, TGFBR3, PDGFD, MET, LMOD1, ZBTB16,
CDO1, DMD, SDPR, SORBS1, GHR, CXCL2, EGFR, LIFR, MAOA, S100B, CRYAB,
PROS1, TF, MME, CAV1, SFRP1, PDK4, MT1M, HLF, GULP1, SPRY2, and ITM2A
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Functional and pathway enrichment
analysis of overlapping differentially
expressed genes

The GO functional and KEGG pathway enrichment analysis

showed that 148 GO-BP terms, 27 GO-CC terms, 12 GO-MF

terms, and 13 KEGG terms were enriched by oDEGs, and the top

10 terms of each category are represented in Figures 3A–C.

Among them four significantly enriched BP terms, six CC terms,

three MF terms, and five KEGG terms were directly associated

with at least two KGs. The four BP terms were nuclear division,

organelle fission, mitotic nuclear division, and chromosome

segregation. The six CC terms were spindle, condensed

chromosome, “chromosome, centromeric region”,

chromosomal region, midbody, and spindle microtubule. The

three MF terms were histone kinase activity, heparin binding,

and protein serine/threonine kinase activity. Finally, the five

KEGG terms were identified as progesterone-mediated oocyte

maturation, focal adhesion, oocyte meiosis, adherens junction,

and bacterial invasion of epithelial cells.

Regulatory interaction network analysis

Regulatory interaction networks (TFs-KGs-miRNAs) are

visualized in Figure 4, where green indicates miRNAs, pink

FIGURE 2
Visualized PPI network of oDEGs, where green indicates upregulated oDEGs, pink indicates downregulated oDEGs, and large size indicates KGs.
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TABLE 3 Eight KGs were selected by taking the common of top 25 ranked genes for six network scoring measures through the PPI network.

Betweenness Closeness Eccentricity Degree MCC MNC Common genes
(KGs)

GS SC GS SC GS SC GS SC GS SC GS SC

EGFR 1,256.7 EZH2 36.5 FN1 0.32 CDK1 25 PBK 5.36E + 19 CCNB1 25

FN1 951.9 CDK1 35.9 CAV1 0.32 CCNB1 25 ASPM 5.36E + 19 CDK1 25

EZH2 521.4 CCNB1 35.9 MET 0.32 EZH2 25 AURKA 5.36E + 19 AURKA 24

MET 223.8 AURKA 35.4 EGFR 0.32 AURKA 24 KIF2C 5.36E + 19 BIRC5 24

SFRP1 174.5 TOP2A 35.4 MMP11 0.32 TOP2A 24 PRC1 5.36E + 19 EZH2 24

CAV1 173.3 BIRC5 35.4 TF 0.24 BIRC5 24 TOP2A 5.36E + 19 TOP2A 24

BGN 153.7 EGFR 34 AURKA 0.24 UBE2C 24 NUSAP1 5.36E + 19 BUB1B 23

CDK1 153.3 UBE2C 33.2 DMD 0.24 PBK 23 CDK1 5.36E + 19 CCNB2 23 EGFR

CCNB1 153.4 PBK 32.7 COL11A1 0.24 ASPM 23 CCNB1 5.36E + 19 KIF2C 23 FN1

AURKA 126 ASPM 32.7 CHL1 0.24 KIF2C 23 BUB1B 5.36E + 19 MELK 23 EZH2

TOP2A 126 KIF2C 32.7 S100B 0.24 PRC1 23 CCNB2 5.36E + 19 PBK 23 MET

BIRC5 126 PRC1 32.7 TOP2A 0.24 NUSAP1 23 MAD2L1 5.36E + 19 PRC1 23 CDK1

DMD 109 NUSAP1 32.7 SDPR 0.24 BUB1B 23 MELK 5.36E + 19 NUSAP1 23 AURKA

WISP1 54.5 BUB1B 32.7 GPRC5A 0.24 CCNB2 23 KIAA0101 5.36E + 19 MAD2L1 23 TOP2A

COL11A1 47.9 CCNB2 32.7 CDK1 0.24 MAD2L1 23 BIRC5 5.36E + 19 ASPM 23 BIRC5

UBE2C 44.1 MAD2L1 32.7 LIFR 0.24 MELK 23 UBE2C 5.36E + 19 RRM2 23

MMP11 41.5 MELK 32.7 HLF 0.24 KIAA0101 23 RRM2 5.36E + 19 CENPF 23

CHL1 30 KIAA0101 32.7 PDGFD 0.24 RRM2 23 CENPF 5.36E + 19 ZWINT 23

COMP 22 RRM2 32.7 MELK 0.24 CENPF 23 ZWINT 5.36E + 19 MET 23

S100B 12.5 CENPF 32.7 SPRY2 0.24 ZWINT 23 ECT2 5.35E + 19 UBE2C 23

GPRC5A 5.6 ZWINT 32.7 BIRC5 0.24 MET 22 EZH2 5.11E + 19 ECT2 22

PBK 2.1 ECT2 32.2 SFRP1 0.24 CKS2 21 NEK2 5.11E + 19 EGFR 21

ASPM 2.1 CKS2 30.9 CXCL10 0.24 EGFR 21 MET 2.43E + 18 FN1 21

KIF2C 2.1 MET 30.9 IL33 0.24 GINS1 19 FN1 1.22E + 17 GINS1 19

PRC1 2.1 FN1 30.5 EZH2 0.24 FN1 16 EGFR 738 CKS2 12

TABLE 4 List of KGS included with p values and logFC values on eight sets of data.

GSE54002 GSE29431 GSE124646 GSE42568 GSE45827 GSE10810 GSE65216 GSE36295

EGFR LF −2.8 −3.4 −2.3 −2.4 −1.8 −1.9 −1.7 −1.8

PV 1.90E-15 3.60E-17 2.00E-10 4.50E-09 0.0043 4.40E-17 0.009 0.0093

FN1 LF 5 1.6 1.6 2.2 3.6 1.6 1.7 1.9

PV 3.30E-67 1.00E-07 2.10E-06 5.10E-10 8.70E-18 7.80E-11 1.90E-17 0.009

EZH2 LF 1.8 1.8 2.3 3.8 5 1.8 4.6 1.8

PV 2.70E-16 4.40E-06 1.40E-06 1.00E-21 4.40E-23 0.0085 8.40E-22 1.40E-06

MET LF −3.1 −1.8 −1.6 −1.9 −1.9 −1.8 −1.6 −1.6

PV 6.90E-12 5.40E-06 0.0059 2.60E-24 1.40E-17 1.40E-12 2.60E-38 8.60E-12

CDK1 LF 3.2 1.7 1.7 2.8 5.8 2.6 4.6 1.8

PV 3.60E-27 6.50E-07 2.40E-09 2.40E-13 2.20E-22 2.50E-17 1.60E-20 0.0001

AURKA LF 2.9 1.8 1.9 3.7 4.7 2.2 4.5 1.6

PV 1.60E-23 5.90E-07 3.30E-07 9.50E-19 1.90E-20 2.90E-14 1.30E-14 0.0013

TOP2A LF 4.1 2.7 3.4 4.6 6.7 3.2 6.7 2.7

PV 2.20E-28 2.50E-07 6.70E-10 8.10E-19 1.00E-17 5.90E-16 4.60E-23 7.60E-06

BIRC5 LF 2.9 2.2 2.9 2.3 5.4 2.3 5.1 1.8

PV 3.40E-19 4.30E-06 3.70E-08 2.00E-08 3.70E-15 4.60E-12 7.30E-12 0.0098
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FIGURE 3
GO functional and KEGG enrichment analysis of oDEGs. (A) Top ten GO-BP terms, (B) top ten GO-CC terms, (C) top ten GO-MF terms, and (D)
top ten KEGG pathway terms.

FIGURE 4
TF-KG–miRNA interaction network, where pink indicates KGs, green indicatesmiRNAs, blue indicates TFs, and large green and blue indicate key
miRNAs and TFs, respectively.

Frontiers in Pharmacology frontiersin.org08

Alam et al. 10.3389/fphar.2022.942126

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.942126


indicates KGs, blue indicates TFs, and large size indicates key

factors. We observed that the four TFs, such as TP63, MYC,

SOX2, and KDM5B are associated with all KGs; therefore, we

considered these four TFs to be key transcriptional regulators of

KGs. Similarly, the four miRNAs, including hsa-mir-16-5p, hsa-

mir-34a-5p, hsa-mir-1-3p, and hsa-mir-23b-3p were also

associated with all KGs; thus, we considered these four

miRNAs to be key posttranscriptional regulators of KGs.

Validation of the expression pattern of key
genes

The expression patterns of KGs are displayed by box plots for

independent data (TCGA RNA-seq data) in Figure 5. We

observed that the expression patterns of all KGs were highly

differentiated; among them, six KGs (FN1, EZH2, CDK1,

AURKA, TOP2A, and BIRC5) were upregulated, and the

remaining two KGs (EGFR and MET) were downregulated,

which supported our original results.

Prognostic power analysis of key genes

The ROC curves of the cancer prediction/classificationmodel

to test the prognostic power of our proposed KGs are presented

in Figure 6. The AUC ranged from 94.7 to 99.7 for the prediction

set (red color) and 85.5 to 93.5 for the validation set (blue color).

Overall, EGFR, FN1, EZH2, MET, CDK1, AURKA, TOP2A, and

BIRC5 achieved the best performance (AUC > 85.5) for each of

the training and independent test datasets, which indicates that

there is a strong prognostic power of the identified KGs for

discriminating between the tumor and the normal samples in BC

patients.

Exploring repurposing candidate drugs by
molecular docking analysis

To explore the candidate drugs for BC, we considered eight

KG-based proteins EGFR, FN1, EZH2, MET, CDK1, AURKA,

TOP2A, and BIRC5 as drug targets. We collected eight KG-

FIGURE 5
Box plot of expression patterns of KGs for RNA-seq data, where red indicates the high-risk group and black indicates the low-risk group.
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associated drugs from the GSCALite database and considered

them meta-drug agents. Then, we performed molecular docking

analysis between our proposed receptors and the meta-drug

agents. The binding affinity score matrix between the ordered

receptors and the ordered drug agents is displayed in Figure 7.

We observed that the top-order eleven leading compounds/drugs

(YM201636, masitinib, SB590885, GSK1070916, GSK2126458,

ZSTK474, dasatinib, TG101348, dabrafenib, methotrexate, and

trametinib) produced highly significant binding affinity scores

(BAS) < −7 with all target proteins. Next, six drugs (tubastatin_A,

lapatinib, BIX02189, CP466722, afatinib, and belinostat) had

highly significant BAS < −7 with seven target proteins. The

drug laptinib was approved by the FDA in 2007 for BC.

Therefore, we suggest in this computational study that

16 repurposing candidate drugs may be effective against BC

patients (Table 5).

Induction of breast cancer cell death by
the candidate drug masitinib

To further confirm the potential roles of the candidate drugs

on BC, we selected one of the candidates masitinib to examine the

effects on two BC cell lines. In both MCF-7 (Figure 8A) and

MDA-MB-231 (Figure 8B) cells, masitinib decreased cell viability

in a dose-dependent manner. Moreover, masitinib inhibited the

FIGURE 6
Prognostic powers of KGs were represented by ROC curves, where red indicates the prediction curve and blue indicates the validation curve.
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phosphorylation of mTOR (Figure 8C). Furthermore, masitinib

decreased the levels of cyclin D, an essential regulator of the G1 to

S phase transition and increased the cleavage of PARP1

(Figure 8D), suggesting that masitinib influences the cell cycle

and induces apoptosis. The induction of apoptotic cell death by

masitinib was further confirmed with PI staining (Figure 8E) and

immunofluorescent staining using anti-cleaved caspase-3

antibodies (Figure 8F), showing that with higher doses of

masitinib, more cells were labeled with PI and cleaved

caspase-3 in both MCF-7 and MDA-MB-231 cells.

Discussion

BC is the cause of a high prevalence and leading mortality

rate for women worldwide and is constantly increasing every

year. The 5-year overall survival rate for BC patients is still very

low, although there has been significant progress in systematic

treatment over the past few decades. Therefore, research needs to

be improved to discover potential molecular targets and effective

candidate drugs that could play a significant role in improving

survival rates and reducing mortality in BC patients.

In this study, we identified the potential biomarkers and the

candidate drugs by highlighting their pathogenetic processes,

transcriptional and posttranscriptional regulatory factors,

expression levels, prognostic power, and drug molecules

through integrated bioinformatics and network-based

techniques. First, we screened 68 oDEGs between BC and

normal samples using gene expression profiles. Then, we

selected BC-causing two downregulated KGs (EGFR and

MET) and six upregulated KGs (FN1, EZH2, CDK1,

AURKA, TOP2A, and BIRC5) through the PPI network

analysis (Figure 2; Table 3). Some studies have also proposed

our identified KGs as BC-causing genes (Navolanic et al., 2003;

Gastaldi et al., 2010; Li et al., 2017; Komoto et al., 2018; Deng

et al., 2019). In particular, EGFR and its downstream signaling

pathways are related to the progression of BC and play an

important role against BC treatment using cytotoxic drugs

(Navolanic et al., 2003). Analysis of gene expression profiles

revealed that MET oncogene immunoreactivity is significantly

higher in the progression of basal-like BC in humans than in

other types of cancer (Gastaldi et al., 2010). Decreased stability

of EZH2 is responsible for the progression andmetastasis of BC,

but ANCR plays an important role in controlling the stability of

EZH2 which inhibits the progression of BC (Li et al., 2017).

Bioinformatic analysis has proposed CDK1 as an upregulated

gene related to BC progression and tumorigenesis (Deng et al.,

2019). Chalcones inhibited the expression of AURKA protein

and affected the anti-resistance and anti-metastatic properties

of the BC cell lines MCF-7 and BT-20 (Komoto et al., 2018).

Based on in silico analysis proposed that TOP2A is related to BC

tumorigenesis and progression and has been highlighted as a

pathogenetic process (Deng et al., 2019). BIRC5 was proposed

as an upregulated gene and could be a significant marker for the

detection and prognosis of BC at an early age (Ghaffari et al.,

2016; Wang et al., 2018).

FIGURE 7
Molecular docking analysis results for exploring candidate drugs against BC. The Y-axis presents proteins (targets), the X-axis presents
compounds (drugs), and different colors indicate the binding affinity score (BAS).
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To investigate the pathogenetic processes of KGs, we selected

four BP terms, six CC terms, three MF terms, and five KEGG

terms based on directly associated with at least two KGs from the

top ten terms of each category (Figure 3). Several studies also

claimed that our identified KG-associated functional and

pathway terms are responsible for BC progression (Emmert-

Streib et al., 2014; Liu B. et al., 2018; Xiu et al., 2019; Han et al.,

2020; Hermawan et al., 2020; Liu et al., 2020; Peng et al., 2021;

Xiao et al., 2021; Zeng et al., 2021). GO functional analysis

revealed that the BC-causing genes were significantly enriched in

nuclear division (associated with KGs: TOP2A, AURKA, and

BIRC5), organelle fission (associated with KGs: EGFR, AURKA,

and BIRC5), and mitotic nuclear division (associated with KGs:

MET and BIRC5) (Emmert-Streib et al., 2014; Han et al., 2020;

Xiao et al., 2021). The three CC terms are condensed

chromosome (associated with KGs: TOP2A, AURKA, and

BIRC5), chromosomal region (associated with KGs: CDK1,

AURKA, BIRC5, and EZH2) and midbody (associated with

KGs: CDK1, AURKA, and BIRC5), which are associated with

BC progression (Xiu et al., 2019; Liu et al., 2020). The MF term

protein serine/threonine kinase activity (associated with KGs:

CDK1, AURKA, and EGFR) is responsible for BC progression

(Hermawan et al., 2020). Finally, the four KEGG pathway terms

focal adhesion (associated with KGs: FN1, EGFR, and MET),

progesterone-mediated oocyte maturation (associated with KGs:

CDK1 and AURKA), oocyte meiosis (associated with KGs:

CDK1 and AURKA), and adherens junction (associated with

KGs: EGFR and MET), were also related to BC progression (Liu

B. et al., 2018; Han et al., 2020; Peng et al., 2021; Zeng et al., 2021).

Four TFs (TP63, MYC, SOX2, and KDM5B) and four

miRNAs (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, and

hsa-mir-23b-3p) were considered transcriptional and

posttranscriptional and were connected to all KGs in the

regulatory interaction network (Figure 4). Furthermore, we

also checked the prognostic power of KGs for BC patients

through the popular machine learning algorithm SVM. We

TABLE 5 List of 16 proposed repurposing drugs for BC.

Drugs PubMed
CID

Status Diseases Targets

YM201636 9956222 In vivo Liver cancer PIKfyve

Approval was denied by the
EU in 2017 and 2018

Mast cell disease and amyotrophic lateral sclerosis PDGFR, LCK, FAK,
FGFR3, and CSF1R

Masitinib 10074640 Clinical trials Alzheimer’s disease, malignant melanoma, mastocytosis, multiple
myeloma, gastrointestinal cancer, pancreatic cancer, asthma, and
COVID-19

SB590885 135421339 NA Hepatocellular carcinoma BRAF

GSK1070916 46885626 Clinical trials (phase 1) Advanced solid tumors AURKB, AURKC

GSK2126458 25167777 Clinical trials (phase 1) Solid tumors PI3K, MTOR

ZSTK474 11647372 Clinical trials (phase 1) Neoplasms PI3K, MTOR

Dasatinib 3062316 Approved by FDA in
2010&2017

Adults with CP-CML & children with Ph + -CML BCR-ABL, SRC, and
C-KIT

Clinical trials (phase 3) Myeloid leukemia, chronic

TG101348/
Fedratinib

16722836 Approved by FDA in 2019 Myeloproliferative neoplasms (MPNs) JAK2, FLT3, and RET

Clinical trials (phase 3) Primary myelofibrosis, postpolycythemia vera, and myelofibrosis

Dabrafenib 44462760 Approved by FDA in 2013 BRAF V600E mutation-positive advanced melanoma RAF, BRAF, CRAF, MEK

Clinical trials (phase 3) Melanoma

Methotrexate 126941 It was first made in 1947 Cancer DHFR

Clinical trials (phase 4) Rheumatoid Arthritis

Trametinib 11707110 Approved by FDA in 2013 V600E mutated metastatic melanoma BRAF, MEK, MEK1 and
MEK2Clinical trials (phase 1) Advanced malignant solid neoplasm, metastatic malignant neoplasm in

the liver, metastatic malignant solid neoplasm, and unresectable solid
neoplasm

Tubastatin A 49850262 NA NA NA

Lapatiniba 208908 Approved by FDA in 2007 Breast cancer EGFR, HER2

BIX02189 135659062 Clinical trials Kidney Cancer MEK, ERK

CP466722 44551660 NA Cancer ATM, ATR

Afatinib 10184653 Clinical trials (phase 3) Non-small cell lung cancer EGFR

Belinostat 6918638 Approved by FDA in 2014 Peripheral T-cell lymphoma HDAC

aThe drug already published/under clinical trials.
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FIGURE 8
Masitinib treatment effectively killed MCF-7 cells and MDA-MB-231 cells in a dose- and time-dependent manner. (A)MCF-7 cells were treated
with different dosages of masitinib (0, 6.25, 12.5, 25, and 50 μM) or DMSO for 48 h. Cell viability was determined by CCK-8 assay at different time
points (24 and 48 h). The values are presented as the mean ± SEM from three independent experiments. ***p < 0.001, ****p < 0.0001, ns, no
significant difference vs. 24 h DMSO group, one-way ANOVA followed by Dunnett’s multiple-comparisons test. ###p < 0.001, ####p < 0.0001,
ns, no significant difference vs. 48 h DMSO group, one-way ANOVA followed by Dunnett’s multiple-comparisons test. (Masi: masitinib). (B) MDA-
MB-231 cells were treated with different dosages of masitinib (0, 6.25, 12.5, 25, and 50 μM) or DMSO for 48 h. Cell viability was determined by CCK-8
assay at different time points (24 and 48 h). The values are presented as the mean ± SEM from three independent experiments. **p < 0.01, ****p <
0.0001 vs. 24 h DMSO group, one-way ANOVA followed by Dunnett’s multiple-comparisons test. ####p < 0.0001 vs. 48 h DMSO group, one-way
ANOVA followed by Dunnett’s multiple-comparisons test. (Masi: masitinib). (C) Masitinib treatment inhibited the phosphorylation levels of mTOR
protein in MCF-7 cells and MDA-MB-231 cells. MCF-7 cells and MDA-MB-231 cells were treated with 25 μMmasitinib separately. The protein levels
of p-mTOR, mTOR, and β-actin were measured using immunoblot analyses at different time points (0, 2, and 4 h). (Masi: masitinib). (D)MCF-7 cells
were treated with different dosages of masitinib (0, 12.5, and 25 μM) for 48 h. MDA-MB-231 cells were treated with different dosages of masitinib (0,

(Continued )
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developed a prediction model through SVM and showed good

performance for both the training (GSE54002, GSE29431,

GSE124646, GSE42568, GSE45827, GSE10810, GSE65216, and

GSE36295) and test (GSE109169) (independent data) datasets.

We found AUC values for eight KGs through the training dataset:

EGFR (AUC: 96.1), FN1 (AUC: 96.8), EZH2 (AUC: 97.8), MET

(AUC: 94.7), CDK1 (AUC: 98.6), AURKA (AUC: 99.7), TOP2A

(AUC: 98.2), and BIRC5 (AUC: 98.7). Similarly, we found AUC

values for eight KGs through the test dataset: EGFR (AUC: 93.4),

FN1 (AUC: 91.5), EZH2 (AUC: 84.9), MET (AUC: 88.3), CDK1

(AUC: 93.5), AURKA (AUC: 92.7), TOP2A (AUC: 90.3), and

BIRC5 (AUC: 85.5) (Figure 6). We noticed that the predictor

model showed good performance with independent test datasets.

These results indicate that our identified KGs have strong

prognostic power for BC patients.

To discover potential candidate repurposing drugs for the

treatment against BC patients, 77 KG-related drug agents were

selected from the GSCALite database. Among them 16 candidate

drugs (YM201636, masitinib, SB590885, GSK1070916,

GSK2126458, ZSTK474, dasatinib, fedratinib, dabrafenib,

methotrexate, trametinib, tubastatin A, BIX02189, CP466722,

afatinib, and belinostat) were proposed based on

BAS < −7 through molecular docking analysis (Figure 7;

Table 5). Some of our proposed 16 drugs have already been

approved, some are under clinical trial, and some are under in

silico, in vivo, and in vitro analyses (Folch et al., 2015; Lee et al., 2015;

Agency, 2017; FDA, 2017; European Commission, 2018; Odogwu

et al., 2018; FDA, 2019; Hou et al., 2019; Drayman et al., 2021).

Specifically, the drug YM201636 has been recommended which is

effective against the progression of liver cancer through PIKfyve

target inhibition (Hou et al., 2019). The drug masitinib was

approved for mast cell disease and amyotrophic lateral sclerosis

but later denied approval by the EU in 2017 and 2018 (Agency, 2017;

European Commission, 2018). This drug has been studied for

various human diseases and is now under clinical trial such as

COVID-19 and Alzheimer’s disease (Folch et al., 2015; Drayman

et al., 2021). Dasatinib was approved by the FDA in 2010 and

2017 for the treatment of adults with CP-CML and children with Ph

+ -CML, respectively (FDA, 2017). Fedratinib was approved by the

FDA on 16 August 2019 for the treatment of MPN disease (FDA,

2019). Dabrafenib was approved by the FDA on 29May 2013 for the

treatment of BRAF V600E mutation-positive advanced melanoma

disease (Odogwu et al., 2018). Tramatinib was approved by the FDA

in May 2013 for the treatment of V600E mutated metastatic

melanoma disease (Odogwu et al., 2018). Belinostat was

approved by the FDA in 2013 for the treatment of peripheral

T-cell lymphoma disease (Lee et al., 2015). However, the current

study emphasizes experimental-lab verification for proposed

candidate drugs with target proteins for treatment against BC.

Masitinib is an antitumor drug used primarily for mast cell

tumors, but also used in solid tumors (Hahn et al., 2008). It inhibits

the tyrosine kinase c-kit of mast cells, leading to a decrease in cell

proliferation (Hahn et al., 2008). In BC, the cell surface receptors,

including EGFR, HER-2, c-MET, and Trop2A, are cell surface

markers that are potential targets for drugs (Butti et al., 2018).

EGFR activation can induce the PI3K/AKT/mTOR signaling

pathway to promote cell growth and proliferation (Miyamoto

et al., 2017). Hyperactivation of the PI3K/AKT/mTOR pathway

is commonly observed in BC, including triple-negative BC

(Hussain et al., 2022). Inhibition of PI3K/AKT/mTOR by a

dual PI3K/mTOR inhibitor apitolisib induces apoptotic cell

death and decreases cell proliferation (Omeljaniuk et al., 2021).

In the present study, we identified that masitinib as a candidate

drug that potentially targets multiple BC-related products,

including the cell surface marker EGFR. Using the breast

cancer cell lines MCF-7 and MDA-MB-231, we observed that

masitinib inhibits the activity of mTOR, a downstream effector of

EGFR. It is well-documented that mTOR signaling is involved in

cell proliferation, growth, metabolism, and survival (Zoungrana

et al., 2022). In our observations, masitinib decreased cell

migration and induced apoptotic cell death in MCF-7 and

MDA-MB-231 cells. Thus, our data suggest that masitinib

possibly acts on the EGFR/mTOR pathway to mediate

antitumor activity.

Conclusion

In this study, we identified eight stable BC-guided KGs

EGFR, FN1, EZH2, MET, CDK1, AURKA, TOP2A, and

BIRC5 using well-established bioinformatics and network-

based tools and highlighted their pathogenetic processes,

regulatory factors, prognostic power, and drug molecules.

Then, we proposed 16 potential candidate repurposing drugs

YM201636, masitinib, SB590885, GSK1070916, GSK2126458,

ZSTK474, dasatinib, fedratinib, dabrafenib, methotrexate,

FIGURE 8 (Continued)
12.5, and 25 μM) for 24 h. Then, the protein levels of Cyclin D1, PARP1, and β-actin in these two types of cells weremeasured using immunoblot
analyses. (Masi: masitinib). (E)MCF-7 cells and MDA-MB-231 cells were treated as in (D) and then incubated with propidium iodide (PI) and Hoechst
to detect the cell states. Scale bar, 100 μm. The PI-positive cells were counted and quantifiedwith cell numbersmarkedwith Hoechst. The values are
presented as the mean ± SEM from three independent experiments. *p < 0.05, ***p < 0.001, ****p < 0.0001, ns, no significant difference vs.
DMSO group, one-way ANOVA followed by Dunnett’s multiple-comparisons test. (F)MCF-7 cells and MDA-MB-231 cells were treated as in (E) and
then stained with anti-cleaved caspase-3 antibody and DAPI. Scale bar, 100 μm. The cleaved caspased-3-positive cells were counted and quantified
with cell numbers marked with DAPI. The values are presented as the mean ± SEM from three independent experiments. *p < 0.05, ***p < 0.001,
****p < 0.0001 vs. DMSO group, one-way ANOVA followed by Dunnett’s multiple-comparisons test.
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trametinib, tubastatin A, BIX02189, CP466722, afatinib, and

belinostat through molecular docking analysis. Furthermore,

we verified the proposed results through literature review and

different databases. Finally, we examined one of the candidates

masitinib to identify the anti-breast cancer effects. We found that

masitinib inhibits the mTOR signaling pathway and induces

apoptotic cell death. Therefore, the proposed molecular

biomarkers and repurposing candidate drugs may play an

important role in the diagnosis and therapy of BC.
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