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Purpose: Identifying and monitoring visual field (VF) defects due to optic neuritis (ON)
relies on qualitative clinician interpretation. Archetypal analysis (AA), a form of unsuper-
vised machine learning, is used to quantify VF defects in glaucoma. We hypothesized
that AA can identify quantifiable, ON-specific patterns (as archetypes [ATs]) of VF loss
that resemble known ON VF defects.

Methods:We applied AA to a dataset of 3892 VFs prospectively collected from 456 eyes
in the Optic Neuritis Treatment Trial (ONTT), and decomposed each VF into component
ATs (total weight = 100%). AA of 568 VFs from 61 control eyes was used to define a
minimummeaningful (≤7%) AT weight and weight change. We correlated baseline ON
AT weights with global VF indices, visual acuity, and contrast sensitivity. For eyes with
a dominant AT (weight ≥50%), we compared the ONTT VF classification with the AT
pattern.

Results: AA generated a set of 16 ATs containing patterns seen in the ONTT. These
were distinct from control ATs. Baseline study eye VFs were decomposed into 2.9 ± 1.5
ATs. AT2, a global dysfunction pattern, had the highest mean weight at baseline (36%;
95% confidence interval, 33%–40%), and showed the strongest correlationwithMD (r=
−0.91; P < 0.001), visual acuity (r = 0.70; P < 0.001), and contrast sensitivity (r = −0.77;
P< 0.001). Of 191 baseline VFs with a dominant AT, 81%matched the descriptive classi-
fications.

Conclusions: AA identifies and quantifies archetypal, ON-specific patterns of VF loss.

Translational Relevance:AA is a quantitative, objectivemethod for demonstrating and
monitoring change in regional VF deficits in ON.

Introduction

Optic neuropathies of all etiologies are associ-
ated with a broad spectrum of visual field (VF)
defects, which are monitored using threshold perime-
try. Idiopathic optic neuritis (ON), or ON associ-
atedwithmultiple sclerosis, frequently causes profound
VF loss at presentation but recovers significantly over
months, even without intervention. The clinical course
of acute demyelinating ON is well-known owing to the
carefully performed and widely disseminated results of

the National Eye Institute–sponsored Optic Neuritis
Treatment Trial (ONTT).1 The vast majority of eyes
recover to have excellent visual acuity and normalmean
deviation (MD) despite residual deficits in contrast
sensitivity in 55.7% of affected eyes.2–4

The identification and monitoring of regional VF
changes remains challenging. VF loss in ON typically
shows specific spatial deficit patterns, but these patterns
can vary widely among affected eyes. Common global
indices of VF function such as MD quantify the extent
of VF loss, but do not convey information regard-
ing the various types of regional VF defects seen.
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Presently, accounting for the change in these patterns
of dysfunction requires qualitative interpretation of
repeat VFs. Small changes may not be recognized over
time, particularly if there are more dominant patterns
of VF loss present.4–6

Archetypal analysis (AA), a form of unsupervised
machine learning, mathematically formalizes the quali-
tative approach discussed elsewhere in this article by
determining representative patterns on the outer edges
(the so-called convex hull) of the VF dataspace and
can be used to extract and quantify archetypal compo-
nent patterns from within a heterogeneous dataset
without having any disease-specific background avail-
able.7,8 AA has previously been applied to VF analy-
sis in glaucoma, another optic neuropathy, that, unlike
ON, causes progressive VF deterioration over years.
In glaucoma, AA reveals clinically relevant patterns
of VF loss as archetypes (ATs) that can be quantified
and monitored.9–14 These studies suggest that AA can
be added to existing trend- or event-based VF indices,
such as MD, to monitor VF changes in the assess-
ment of optic neuropathies. Pattern standard deviation
(PSD), total deviation (TD), and glaucoma hemifield
changes are additional commonly used parameters
of glaucomatous optic neuropathy VF deterioration,
but to date there is little agreement that one method
is superior for all stages of disease.15,16 Although
the various algorithms are standardized, none are
uniformly accepted and subtle pattern losses can be
missed,may not track disease-specific deficits, are influ-
enced by factors such as optical problems, and are often
weighted to preferred regions, such as the central field.
AA can reveal localized specific VF regions of inter-
est not identified by global measures and can quantify
specific patterns of VF loss similar to those described
by experts, thus improving longitudinal analysis.15,17

In this study, we used AA to analyze VFs from a
prospective, multisite treatment trial study of ON, the
ONTT. We explored whether AA could produce ATs
with clinically relevant patterns of VF deficits in acute
ON, a disorder with a natural history course distinct
from glaucoma.We hypothesized that AA could gener-
ate a model of quantitative, disease-specific defects (as
ATs) in ON, and that the types of VF defects identified
by this model would resemble known VF defects seen
in ON.

Methods

This study was approved by the Institutional Review
Board of the Icahn School of Medicine atMount Sinai.
The ONTT study followed the tenets of the Decla-
ration of Helsinki; informed consent was obtained

from the subjects after explanation of the nature
and possible consequences of the study. The ONTT
was conducted under approval by the institutional
human experimentation committee or institutional
review board of each study site. A Data Safety and
Monitoring Committee monitored the ethical conduct
of the study and the accumulation of data.1

Datasets

We performed AA on 3892 VFs, prospectively
collected from 456 eyes during the ONTT, from acute
presentation to the 1-year follow-up. Subjects with
new-onset (within 8 days) acute ON in one eye were
randomized to one of three treatment groups: placebo,
three days intravenous methylprednisolone followed by
2 weeks of oral prednisone, or only oral prednisone
for 17 days. A total of 151 eyes were treated with
intravenous methylprednisolone, 156 with prednisone,
and 149 with placebo. The mean age of all partici-
pants was 32 ± 6.7 years, and 77% were female.1 VF
testing was performed by trained, certified technicians
with quality control by an expert VF reading center.6
Two VF tests were done on each eye at study entry
and at 6 months (trial outcome); otherwise, one VF
was done on each eye for visits at 4, 15, 30, 49, 91,
133, 180, and 365 days. For 32 study eyes, no baseline
VF had been performed owing to poor vision. For
these eyes, a projected baseline VF was created: all raw
sensitivity values were set to 0, from which TD values
were derived. Reliability indices included fixation losses
of less than 20% and false-positive and false-negative
errors of less than 33%. Each study eye had the best-
corrected visual acuity expressed as a logarithm of the
minimum angle of resolution value and contrast sensi-
tivity score of the number of characters identified using
the Peli–Robson contrast charts. At baseline, the visual
acuity was 0.2 (20/40) or better in 35.4%, between 0.40
and 0.98 (20/50–20/190) in 28.2%, and 1.0 (20/200) or
worse in 36.3% of study eyes.1 At baseline, the mean
visual acuity was 0.74 ± 0.66, the mean contrast sensi-
tivity was 7.74 ± 4.83 letters, the MD was −21.52 ±
10.17 dB, and the mean PSD was 7.50 ± 4.01 dB (note
that the PSD values only available for 338 eyes).

A separate dataset of 568 VFs, collected from
61 normal eyes from 61 subjects with 24-2 VF tests
performed at multiple visits at the University of Iowa
was used as a control group. The control VFs were
used to create a normal AT model (for compari-
son with our ON AT model) and to determine the
normal fluctuation in ON AT weights among healthy
eyes between visits. The mean age of participants was
61.2 ± 8.9 years, and 63.3% were female. The normal
participants met the following criteria: (1) no history
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of eye disease except refractive error (no more optical
correction than 5 diopter of sphere or 3 diopter of
cylinder), (2) no history of diabetesmellitus or systemic
arterial hypertension, (3) a normal ophthalmologic
examination, including 20/25 or better Snellen acuity,
and (4) good fixation (losses og<20%) by gaze tracking
or perimetrist observation, and (5) false-positive and
false-negative rates of less than 10% on perimetry.18

AT Analysis

To perform AA, we used the TD values extracted
from our VF dataset as input data. Note that all VFs
from visits up to 1 year were included as input data
for AA. All left-eye VFs were converted to right-eye
format, and all 30-2 VFs were converted to 24-2 before
implementing AA. We used the open source software
package “archetypes”within the R statistical program-
ming environment (R Development Core Team 2008)
to perform AA.7,8 To select the number of ATs for
our model, we used 10-fold cross-validation for models
using 2 to 20ATs, such that all datawere divided into 10
subsets, each of which was used as the testing set once,
while the others served as the training set. We plotted
the residual sum of the squares for each model as a
function of the number of ATs, and selected a model
from the flattened region of this curve, to avoid overfit-
ting (Fig. 1). The sum of the relative weights (RW)
of all ATs within this model was normalized to 100%.

Figure 1. Residual sum of squares (RSS) plot generated during AA
for the purposes of selecting the number of ATs. RSS values were
normalized based on sample size. The final number of ATs for our
model was selected based on the point at which this curve begins
to flatten, to avoid overfitting; resulting in the selection of a 16-AT
model.

Using this model, each VF was decomposed into a set
of ATs, each with its own RW, such that these RWs
summed to 100%. For comparison, we used the same
process to determine an AA model for the 61 control
eyeVFs. In bothmodels, theATs are numbered in order
of RW, representing their frequency within the dataset,
and each AT corresponds with an average TD value.

Defining Threshold Value for Meaningful
Weight andWeight Change

We defined a minimal meaningful weighting coeffi-
cient and weight change for ON ATs by first deter-
mining the weight and weight change of each ON AT
among control eye VFs, tested repeatedly over 1 year.
Weight changes that fall within the 95% confidence
interval (CI) of this normal dataset represent normal
fluctuations and are unlikely to represent a clinically
important degree of change for determining optic
nerve dysfunction. The highest upper limit of the 95%
CI of mean weight change values for any abnormal ON
AT among control eyes was 4.1% (95% CI 3.2%–4.1%)
(Supplementary Table S1). We then considered the 16
AT model for the ONTT data (discussed elsewhere in
this article), within which the weight of any individ-
ual AT would be equal to 1/16 (6.25%) if all AT
weights were equal. We chose a conservative minimum
weight value and change in weight of 7% or greater
as meaningful for decomposed ATs for each study eye
VF. Although smaller changes in AT weight have the
potential to increase the sensitivity of change detec-
tion, in order to avoid decreased specificity we chose
±7% or greater as the threshold value for a meaningful
weight change.

VF Decomposition

We decomposed all study eye VFs into their compo-
nent ATs using the 16 ON AT model (see Results),
calculating the RW of all ATs for each individual VF
at each time point. We determined the number of
eyes with clinically relevant (meaningful) weight for
each AT at each time point for all study eyes. We also
calculated the cumulative mean weight for specific
groupings of the more abnormal ATs, including the
summed weights of two or more of the eight worst
ATs at each time point.

Comparison of ATs to Known ON VF Patterns

We categorized the 16 ON ATs patterns of VF
defects and compared them with the expert classifi-
cations of the baseline VFs in the original ONTT.5,6
Classifications were available for a total of 360 baseline
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study eye VFs. We identified 191 baseline VFs that
had a single dominant AT, defined as having an
individual an AT of 50% or greater weighting.9 We
compared the two groups of classifications, noting
for each VF and dominant AT whether they matched
exactly, partially (contained similar features), or not at
all. Because the original expert classifications did not
distinguish between superior and inferior VF defects
or temporal and nasal VF defects, before matching
analysis, the position of the VF defect was noted
and taken into account during matching. The crite-
ria for the matching analysis of descriptive patterns
from expert and AT classifications are outlined in
Supplementary Table S2.

Statistical Analyses

All statistical analyses were performed using R
software. We set the statistical significance level to
α = 0.05. We used χ2 tests to evaluate for any
significant difference between the treatment groups
in terms of frequency of eyes with any AT weight
of 7% or greater at baseline. We used Kruskal–
Wallis tests to evaluate for any significant difference
in AT weight values between the treatment groups at
baseline (for any AT). We used Spearman’s method
for all correlation analyses and determined the corre-
lation between each AT weight and MD, PSD, visual
acuity (logarithm of the minimum angle of resolu-
tion), and Peli–Robson contrast sensitivity (number
of letters seen). We also evaluated the correlation
between PSD and the mean weight of ATs represent-
ing regional VF defects (these include all ATs except
for AT2 and AT8, globally abnormal VFs, and AT1, a
globally normal VF). We applied a Bonferroni correc-
tion to the resulting P values to account for multiple
comparisons.

Results

The 16-AT Model for ON

The 16-AT model created from the ONTT VFs
(Fig. 2) demonstrates a range of AT patterns, which are
numbered in order of their RW (or frequency) within
the entire dataset, at all time points. Each AT has an
associated average TD value, which indicates its sever-
ity. AT1, representing a normal VF, had the highest
RW at 40.17%, reflecting the significant recovery from
ON that was observed in the ONTT. This was followed
by AT2, representing diffuse VF loss, with a RW of
9.35%, reflecting the severe VF loss at presentation.
An example of the decomposition of the VFs for one
study eye from baseline to 1 month is illustrated in

Figure 3. The decomposed ATs can reveal deficits
not easily identifiable viewing the conventional VF.
Although the gray scale of the actual 1-month VF
shows no apparent abnormality, two of the three
meaningful ATs show clear deficits, located in the
superior nasal and inferior temporal regions.

A 12-AT model was the best fit for our dataset of
control VFs (Supplementary Fig. S1) and showed no
patterns typical of optic nerve dysfunction. These ATs
were distinct from the ON ATs. The average TD value
associated with each control AT was consistent with
normal vision.

Baseline ATWeights

The baseline VFs of 436 eyes (96%) were decom-
posed into five or fewer meaningful ATs (mean 2.9
± 1.5). No baseline VF for any study eye contained
more than seven meaningful ATs (Fig. 4). AT2 had
the highest frequency of study eyes, with meaningful
weight at baseline (N = 261), followed by AT8 (N =
149), the second most severe AT (Fig. 5). AT1, repre-
senting a normal VF, had only 72 eyes with meaningful
weight at baseline.

The distribution of the mean baseline AT weights
for all study eyes is summarized in Supplemental Table
S3. AT2 had the highest mean weight for any AT
at baseline (36.4%; 95% CI, 0.33–0.40). The mean
weight of AT1 at baseline was 5% (95% CI, 0.04–0.07).
There was no significant difference between the treat-
ment groups with regard to the frequency of eyes with
meaningful weighting for any AT at baseline or the
mean weights of any AT at baseline.

Correlation of ATWeights with Other
Measures of Vision Function at Baseline

The AT2 weight had the strongest negative corre-
lation with MD (r = −0.91; P < 0.001) (Fig. 6A) at
baseline, while AT1 showed a moderate positive corre-
lation (r = 0.63; P < 0.001) (Fig. 6B). Eliminating eyes
that had an AT2 of 0% and an AT1 of 0% (respec-
tively) at baseline (owing to the high level of data
heteroscedasticity evident in these correlations), the
correlation between AT2 and MD was unchanged (r
= −0.94; P < 0.001), whereas the correlation between
AT1 andMD increased (r = 0.78; P < 0.001). AT3 and
AT6, both representing superior VF depression, were
also moderately correlated with MD (AT3: r = 0.58;
P < 0.001; AT6: r = 0.56; P < 0.001), as well as AT5
and AT16 (AT5: r = 0.50; P < 0.001; AT16: r = 0.49,
P < 0.001), both representing nasal step-type patterns
(Supplemental Table S4).
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Figure 2. Map outlining the 16 ON-specific ATs contained within our model. The varying shades of red within each AT denote TD values,
and scale at the bottom denotes the TD values associated with each shade. Each AT is shown alongwith its corresponding average TD value
(avgTD) and RWwithin the dataset. The ATs are numbered and displayed in order of RW. Note the color scale range from –35 dB to 10 dB.

AT2 had a moderate negative correlation with PSD
at baseline (r = −0.53; P < 0.001) (Fig. 7A), and
AT1 was weakly negatively correlated (r = −0.20, p
= 0.004) (Fig. 7B). Eliminating eyes that had an AT2
of 0% and an AT1 of 0% (respectively) at baseline,
increased the correlation between AT2 and PSD (r =
−0.79; P < 0.001), as well as the correlation between
AT1 and PSD (r = −0.49; P < 0.001). Only two
other ATs showed significant correlations with PSD at
baseline (Supplemental Table S5). In addition, given
that the PSD is lowest when a given VF is most uniform
and higher when the VF is more irregular, we investi-
gated the relationship between the PSD and the mean
weight of only ATs defined as having primarily regional
deficit (excluding AT1, AT2, and AT8), and found a
strong correlation (r = 0.75; P < 0.001) (Supplemen-
tary Fig. S2).

For visual acuity at baseline, AT2 showed a strong
positive correlation (r = 0.70; P < 0.001) (Supplemen-
taryFig. S3).AT1 andAT3 (AT1: r= −0.40;P< 0.001;

AT3: r = −0.40; P < 0.001) showed modest negative
correlations (note the use of the logarithm of the
minimumangle of resolution scale; values increasewith
worse vision). For contrast sensitivity at baseline, AT2
showed the strongest negative correlation (r = −0.77;
P < 0.001) (Supplementary Fig. S4). AT1 showed a
modest positive correlation (r = 0.46; P < 0.001), as
well as AT3 (r = 0.44; P < 0.001), and AT6 (r = 0.41; P
< 0.001). Almost all the other ATs showed a significant
but weak correlationwith the visual acuity and contrast
sensitivity at baseline (Supplemental Tables S6 and S7).

Comparison of ATs with Known ON VF
Patterns

Previously categorized, descriptive patterns of VF
defects seen at baseline included total loss, superior
altitudinal, inferior arcuate, centrocecal, superior
partial arcuate, inferior partial arcuate, inferior altitu-
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Figure 3. Example of VF decompositions frombaseline to onemonth. The progressive changes in ATweighting andMD at each time point
are displayed, along with the corresponding grayscale image from the Humphrey VF plot. AT weights not considered to be meaningful
(< 7%at any timepoint) are not shown. BothMDandATweights improved (weights ofworse ATs decreased, weights of better ATs increased)
starting at the 4-day visit after treatment with intravenous methylprednisolone.

Figure 4. Frequency of baseline study eye VFs containing listed
number of ATs of meaningful weight (≥ 7%).

Figure 5. Frequency of study eyeswith ATweight≥7% at baseline,
for each AT.
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Figure 6. (A) Correlation between AT2 weight and MD (dB) at baseline (r = −0.91; P < 0.001), represented by the solid line. Dotted line
represents the same correlation when eyes for which AT2 = 0% at baseline are eliminated (r = −0.94; P < 0.001). Note study eyes with an
MD of<−20 dB that did not have high AT2 weight contained other ATs representative of severe VF loss. (B) Correlation between AT1 weight
and MD (dB) at baseline (r= 0.63; P< 0.001). The trend line is skewed owing to the large number of study eyes with no AT1. The dotted line
represents the same correlation when eyes for which AT1 = 0% at baseline are eliminated (r = 0.78; P < 0.001).

Figure 7. (A) Correlation between AT2 weight and PSD (dB) at baseline (r = −0.53; P < 0.001). The dotted line represents the same corre-
lation when eyes for which AT2 = 0% at baseline are eliminated (r = −0.79; P < 0.001). Note the wide range of abnormal PSD values, when
diffuse severe VF loss AT2 is 0%. (B) Correlation betweenAT1weight and PSD (dB) at baseline (r= −0.2; P< 0.001). The dotted line represents
the same correlation when eyes for which AT1= 0% at baseline are eliminated (r= −0.49; P< 0.001). Note the wide range of abnormal PSD
values, when the normal VF AT1 is 0%.

dinal, double arcuate, enlarged blind spot, temporal
hemianopia, three-quadrant VF defect, multifocal VF
defect, peripheral rim, central VF defect, and superior
arcuate defect.5,6 Of the 191 VFs with a dominant
AT at baseline, 133 (70%, which is 30% of the 456

total baseline VFs) showed a complete match between
their descriptive classification and their dominant AT,
whereas 21 (11%) showed a partial match (Table).
Overall, 154 VFs (81%, which is 34% of the 456 total
baseline VFs) showed at least a partial match between
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Table. Matching Between ON ATs and Expert Classifications

AT

191 Study
Eyes with a
Dominant AT

Full Match,
(n = 133)

Partial Match,
(n = 21)

Full or Partial
Match Total
(N = 154) Full Match Partial Match

AT1 12 0 0 0 Within normal limits N/A
AT2 111 109 0 109 Total loss Cloverleaf,

three-quadrant
AT3 4 0 4 4 Superior depression Superior partial arcuate
AT4 5 3 0 3 Central, centrocecal,

paracentral
Enlarged blind spot

AT5 4 0 2 2 Nasal step Superior partial arcuate
AT6 0 0 0 0 Superior depression Superior partial arcuate
AT7 18 9 0 9 Superior altitudinal Superior arcuate,

superior partial
arcuate, double
arcuate

AT8 9 0 9 9 Cloverleaf Total Loss,
Three-Quadrant

AT9 2 0 2 2 Inferior nasal
quadrantanopia

Nasal step, nasal
hemianopia, inferior
altitudinal, inferior
arcuate, inferior
partial arcuate

AT10 0 0 0 0 Superior temporal
quadrantanopia,
temporal wedge

Temporal hemianopia,
superior arcuate,
superior partial
arcuate

AT11 17 8 1 9 Inferior altitudinal Inferior arcuate, inferior
partial arcuate,
double arcuate

AT12 3 0 2 2 Nasal hemianopia Nasal step, superior
nasal quadrant,
inferior arcuate,
inferior partial
arcuate,
three-quadrant

AT13 2 2 0 2 Peripheral rim or
double arcuate

Superior arcuate,
inferior arcuate

AT14 2 2 0 2 Temporal hemianopia Temporal wedge,
superior temporal
quadrantanopia,
inferior temporal
quadrantanopia,
three-quadrant

AT15 1 0 0 0 Inferior temporal
quadrantanopia,
temporal wedge

Temporal hemianopia,
inferior partial
arcuate

AT16 1 0 1 1 Nasal step Inferior partial arcuate,
enlarged blind spot

The number of study eyes at baseline with a dominant AT (≥50%) that had a full match or partial match with ONTT study
expert classifications. Two right side columns show criteria used for matching.
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their previously classified VF defects, and their VF
defects identified based on dominant AT (weight
≥50%).

Discussion

Our results indicate that AA can identify disease-
specific, archetypal patterns of VF loss in eyes with
ON. These patterns are quantifiable and resemble
known types of VF defects observed in the ONTT.
AA is a form of unsupervised machine learning that
can be used to analyze heterogeneous datasets. When
applied to VFs, AA reveals identifiable representative
patterns referred to as ATs within the dataset, such
that any VF can be decomposed into a weighted sum
of these patterns. AA has previously been applied
to the monitoring of VF changes, disease progres-
sion and recognized expert-determined patterns in
glaucoma.9–14,19 Recently, we showed that AA identi-
fies recognizable patterns and uncovers regional deficits
not seen by expert analyzers in VFs of eyes with
papilledema due to idiopathic intracranial hyperten-
sion.20 With the exception of papilledema, AA has not
yet been applied to the evaluation of VFs in nonglauco-
matous optic neuropathies, where improvement, rather
than deterioration, can occur with appropriate thera-
pies. Our study extends the use of AA to the analysis
of VFs in ON.

We created an archetypal model for ON by apply-
ing AA to a large dataset of VFs taken during the
ONTT. For the majority of VFs with a dominant AT
(≥50% weight) at baseline, the dominant AT matched
the original descriptive classification for the VF from
the original ONTT. This finding supports the asser-
tion that this 16-AT model is specific to ON, and that
AA identifies patterns of VF loss that are relevant
clinically. In addition, in the original study, the major-
ity of baseline VFs were characterized by diffuse loss
(66.2% diffuse vs. 33.6% localized VF loss).1,5,6 As
such, it is unsurprising that AT2, representing diffuse
VF loss, was the most frequent abnormal AT (highest
RW) within the entire dataset (which includes all time
points) had the highest mean weight at baseline and
represented more than one-half of the VFs with a
dominant AT at baseline. Focal patterns observed in
the ONTT included nerve fiber bundle abnormalities,
such as arcuate and altitudinal defects, and in addition
to central and centrocecal VF deficits. Partial arcuate,
enlarged blind spot, vertical step, hemianopia, three-
quadrant defects, paracentral loss, nasal steps, tempo-
ral wedge, quadrantanopia, double arcuate, peripheral
rim, and superior depression were also noted.5,6 Nearly

all of these types of VF defects were found among the
16 ATs.

As we anticipated, the 12-AT model from our
dataset of normal control eyes did not overlap with
the 16 ON ATs (except for ON AT1, a normal VF)
and were consistent with normal vision. This contrast
between the ON ATs and control ATs further suggests
that AA is able to identify patterns that represent optic
nerve dysfunction, and AA does not derive abnormal
ATs from eyes with normal vision. Furthermore, by
decomposing control VFs into ON ATs and examin-
ing how these weights changed over time, we quanti-
fied the extent to which AT weights normally fluctuate
among healthy eyes. This process allowed us to define a
conservative threshold value of 7% or greater to repre-
sent clinically relevant or meaningful weight change,
distinguishable from normal AT weight fluctuation in
eyes without VF defects. One limitation in this study
was the use of control eyes from a population older
than the ONTT study population. Because variabil-
ity in VF testing increases with age, it is possible that
the contrast between control ATs and ON ATs would
have been greater had we been able to use younger
age-matched controls. Also, the variability for patients
without visual disease would certainly underestimate
the variability for those with an acute severe vision loss
from any disorder. Despite the limitation, we believe
the selection of a conservative threshold for meaning-
ful change in AT weight is supported further.

Of all ON ATs, AT2 showed the strongest negative
correlation with MD, and AT1 showed the strongest
positive correlation. This was expected, because AT2
represents total VF loss, and AT1 represents a normal
VF; as VF function improves, the more normal ATs
increase in weight and the worse ATs decrease in
weight. Thus AT3, AT6, AT5, and AT16 were also
moderately positive correlated with MD, because these
ATs have relatively low average TD values compared
with the other ATs.

Compared with its correlation with MD, we found
a weaker correlation between AT2 and PSD. This
outcome is likely because AT2 represents diffuse loss
and is relatively uniform, and, as AT2 increases, the
PSD should not increase as sharply. In contrast with its
moderate correlation with MD, AT1 displayed a weak
negative correlation with the PSD, possibly because as
AT1 increases (as the VF normalizes), the PSD should
decrease. In addition, we found a strong positive corre-
lation between the PSD and the mean weight of all
ATs representing regional defects (which by definition
excluded AT1, AT2, and AT8). We anticipated this
result, given that, as regional AT weights become more
substantial, one would expect a corresponding increase
in the PSD (owing to increased irregularity within the
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field). However, for each PSD value, the variance in the
mean weight of the regional ATs may be considerable.
AlthoughMD indicates the overall severity of VF loss,
the PSD is a pattern-based index, indicating the extent
of variability within a VF.21 Commonly used VF global
indices such as these may fail to convey fully the extent
to which an individual VF has one or more regional
patterns of VF loss that are seen in a specific disease
(such as ON). One study of AA in glaucoma regarded
AT1 (also their normal VF AT) weighting coefficients
as a measure of how typical a given VF pattern is for
glaucoma. Within this model, higher AT1 weights not
only indicate that a VF is closer to normal, but also that
the defect shown is less likely to be glaucomatous (if it
were glaucomatous, there would likely be higher abnor-
mal AT weights and a lower AT1 weight).10 Extend-
ing this concept to our study, in addition to the ON-
specific abnormal ATs, the amount of AT1 weight may
also specifically indicate the relevance of a given VF
pattern to ON. AA seems to provide a new disease-
specific, quantitative, pattern-based method of assess-
ing the extent of various regional defects within a given
VF, conveying information that global indices may fail
to capture.

Notably, the correlation between AT1 and the MD
improved substantially when eyes with AT1 weights
of 0% were removed. This difference is likely because
eyes with an AT1 weight of 0% represent eyes with
regional patterns of VF loss (if AT1 is 0%, then the VF
must be represented by the other ATs, which are abnor-
mal). Thus, we observe that, when these eyes (those
with regional VF loss, containing these abnormal ATs)
are included in this correlation analysis, the correlation
begins to break down, because the MD is agnostic to
the specific type of regional VF deficit seen in a given
field. When these eyes are removed, the correlation
improves, because AT1 (a normal VF pattern) is essen-
tially is the only AT remaining when disease patterns
are removed. We also see that the correlation between
AT2 and PSD as well as AT1 and PSD improve when
eyes with AT1 and AT2 weights of 0% (respectively)
are removed. This finding is due to the fact that essen-
tially blind eyes and normal eyes are represented by
PSD values close to zero; leading to a wide range of
PSD values represented among eyes with anAT1 of 0%
and an AT2 of 0%. The removal of eyes with AT1 and
AT2 with 0% weight improves the correlation as these
ends of the VF spectrum are eliminated. We suggest
that, given the wide range of VF patterns seen in ON,
as well as the fact that theMD and PSD are agnostic to
both disease and pattern type, there is a need for new
indices that quantify VF loss relative to disease-specific
patterns.

Conclusions

AA of VFs obtained from study eyes with acute
unilateral vision loss during the largest clinical trial of
ON successfully generated a set of clinically relevant,
quantifiable, ON-specific patterns of VF loss. To date,
the identification and monitoring of regional VF
defects requires clinician interpretation and descrip-
tive classification, which can vary among clinicians.
AA quantifies these regional defects, which may facil-
itate the precise measurement and monitoring of VF
changes without relying on qualitative interpretation
and classification. AA may also reveal more subtle
underlying VF defects that are otherwise difficult to
detect, which enhances the detection of regional defects
over time. Further research will include testing of the
ON-specific ATs to determine the effects of therapies
and in real-world datasets of patients who have had
ON. AA should advance structure–function investi-
gations by quantifying residual AT abnormalities to
correlate with optical coherence tomography measure-
ments of regional retinal nerve fiber layer and macula
ganglion cell layer thinning.

Acknowledgments

Supported by the New York Eye and Ear Infir-
mary Foundation, New York, N.Y.; Alfiero & Lucia
Palestroni Foundation, Inc. EnglewoodCliffs,NJ.;NEI
EY032522; Research to Prevent Blindness, Inc., New
York, NY, unrestricted grant to the Department of
Ophthalmology; NEI R01 EY015473.

ClinicalTrials.gov Identifier: NCT00000146.

Disclosure: H. Doshi, None; E. Solli, None;
T. Elze, None; L.R. Pasquale, None; M. Wall, None;
M. Kupersmith, None

References

1. Beck RW, Cleary PA, Anderson MM, Jr.,
et al. A randomized, controlled trial of cor-
ticosteroids in the treatment of acute optic
neuritis. The Optic Neuritis Study Group. N
Engl J Med. 1992;326(9):581–8, doi:10.1056/
NEJM199202273260901.

2. Trobe JD, Beck RW, Moke PS, Cleary PA.
Contrast sensitivity and other vision tests in the
Optic Neuritis Treatment Trial. Am J Ophthalmol.

http://doi.org/10.1056/NEJM199202273260901


Deep Learning of Visual Fields in Optic Neuritis TVST | January 2022 | Vol. 11 | No. 1 | Article 27 | 11

1996;121(5):547–53, doi:10.1016/s0002-9394(14)
75429-7.

3. Beck RW, Cleary PA. Recovery from severe
visual loss in optic neuritis. Arch Ophthalmol.
1993;111(3):300, doi:10.1001/archopht.1993.
01090030018009.

4. Beck RW, Cleary PA, Backlund JC. The
course of visual recovery after optic neuritis.
Experience of the Optic Neuritis Treatment
Trial. Ophthalmology. 1994;101(11):1771–8,
doi:10.1016/s0161-6420(94)31103-1.

5. Keltner JL, Johnson CA, Cello KE, et al. Visual
field profile of optic neuritis: a final follow-
up report from the Optic Neuritis Treatment
Trial from baseline through 15 years. Arch Oph-
thalmol Chic. 2010;128(3):330–337, doi: 10.1001/
archophthalmol.2010.16.

6. Keltner JL, Johnson CA, Spurr JO, Beck RW.
Baseline visual field profile of optic neuritis. The
experience of the Optic Neuritis Treatment Trial.
Optic Neuritis Study Group. Arch Ophthalmol.
1993;111(2):231–234, doi:10.1001/archopht.1993.
01090020085029.

7. Eugster MJA, Leisch F. From Spider-Man to
hero - archetypal analysis in R. J Stat Softw.
2009;30(8):1–23.

8. Cutler A, Breiman L. Archetypal analysis. Techno-
metrics. 1994;36:338–47.

9. Cai S, Elze T, Bex PJ, Wiggs JL, Pasquale LR,
Shen LQ. Clinical correlates of computation-
ally derived visual field defect archetypes in
patients from a glaucoma clinic. Curr Eye Res.
2017;42(4):568–74, doi:10.1080/02713683.2016.
1205630.

10. Elze T, Pasquale LR, Shen LQ, Chen TC, Wiggs
JL, Bex PJ. Patterns of functional vision loss in
glaucoma determined with archetypal analysis. J
R Soc Interface. 2015;12(103):20141118, doi:10.
1098/rsif.2014.1118.

11. Wang M, Pasquale LR, Shen LQ, et al. Reversal
of glaucoma hemifield test results and visual
field features in glaucoma. Ophthalmology.
2018;125(3):352–60, doi:10.1016/j.ophtha.2017.
09.021.

12. Wang M, Shen LQ, Pasquale LR, et al. Artifi-
cial intelligence classification of central visual

field patterns in glaucoma. Ophthalmology.
2020;127(6):731–8, doi:10.1016/j.ophtha.2019.12.
004.

13. Wang M, Tichelaar J, Pasquale LR, et al. Char-
acterization of central visual field loss in end-
stage glaucoma by unsupervised artificial intel-
ligence. JAMA Ophthalmol. 2020;138(2):190–8,
doi:10.1001/jamaophthalmol.2019.5413.

14. Wang MY, Shen LQ, Pasquale LR, et al. An arti-
ficial intelligence approach to detect visual field
progression in glaucoma based on spatial pattern
analysis. Invest Ophth Vis Sci. 2019;60(1):365–75,
doi:10.1167/iovs.18-25568.

15. Artes PH, Nicolela MT, LeBlanc RP, Chauhan
BC. Visual field progression in glaucoma: total ver-
sus pattern deviation analyses. Invest Ophthalmol
Vis Sci. 2005;46(12):4600–4606, doi:10.1167/iovs.
05-0827.

16. Saeedi OJ, Elze T, D’Acunto L, et al. Agree-
ment and predictors of discordance of 6 visual
field progression algorithms. Ophthalmology.
2019;126(6):822–8, doi:10.1016/j.ophtha.2019.01.
029.

17. Greve EL, Heijl A. Seventh International Visual
Field Symposium, Amsterdam, September 1986.
Documenta ophthalmologica Proceedings series.
Hingham, MA: Kluwer Academic; 1987:xvii, 675
p.

18. Wall MJC. Morphology and repeatability of auto-
mated perimetry using stimulus sizes III, V and VI.
Med Res Arch. 2020;8(6)

19. Keltner JL, Johnson CA, Cello KE, et al. Classi-
fication of visual field abnormalities in the Ocular
Hypertension Treatment Study. Arch Ophthalmol
Chic. 2003;121(5):643–50, doi:10.1001/archopht.
121.5.643.

20. Doshi H, Solli E, Elze T, Pasquale L, Wall M,
Kupersmith M. Unsupervised machine learning
identifies quantifiable patterns of visual field loss
in idiopathic intracranial hypertension. Transl Vis
Sci Technol. 2021;10(9):37.

21. Anderson DR, Patella VM. Automated static
perimetry. 2nd ed. St Louis: Mosby; 1999:xiv,
363 p.

http://doi.org/10.1016/s0002-9394(14)75429-7
http://doi.org/10.1001/archopht.1993.01090030018009
http://doi.org/10.1016/s0161-6420(94)31103-1
http://doi.org/10.1001/archophthalmol.2010.16
http://doi.org/10.1001/archopht.1993.01090020085029
http://doi.org/10.1080/02713683.2016.1205630
http://doi.org/10.1098/rsif.2014.1118
http://doi.org/10.1016/j.ophtha.2017.09.021
http://doi.org/10.1016/j.ophtha.2019.12.004
http://doi.org/10.1001/jamaophthalmol.2019.5413
http://doi.org/10.1167/iovs.18-25568
http://doi.org/10.1167/iovs.05-0827
http://doi.org/10.1016/j.ophtha.2019.01.029
http://doi.org/10.1001/archopht.121.5.643

