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Abstract
We have examined the kinetics of processing of the HIV-1 Gag-Pro-Pol precursor in an in vitro
assay with mature protease added in trans. The processing sites were cleaved at different rates to
produce distinct intermediates. The initial cleavage occurred at the p2/NC site. Intermediate
cleavages occurred at similar rates at the MA/CA and RT/IN sites, and to a lesser extent at sites
upstream of RT. Late cleavages occurred at the sites flanking the protease (PR) domain, suggesting
sequestering of these sites. We observed paired intermediates indicative of half- cleavage of RT/
RH site, suggesting that the RT domain in Gag-Pro-Pol was in a dimeric form under these assay
conditions. These results clarify our understanding of the processing kinetics of the Gag-Pro-Pol
precursor and suggest regulated cleavage. Our results further suggest that early dimerization of the
PR and RT domains may serve as a regulatory element to influence the kinetics of processing within
the Pol domain.

Findings
The retroviral protease (PR) processes the Gag and Gag-
Pro-Pol precursors during the assembly of the mature
virus particle. The viral structural proteins assume altered
conformations after processing, and the viral enzymes
become fully active in their processed forms [1-7]. Proper
proteolytic processing is necessary for assembly of an
infectious particle [3,4,8-10].

Cleavage of Gag is ordered and appears to be regulated, at
least in part, by the target site sequence, the presence of
spacer domains, and the interaction with RNA
[8,9,11,12]. Previous studies showed the five HIV-1 Gag
processing sites are cleaved at rates that vary up to 400-
fold in vitro [9,13]. Initial cleavage occurs at the p2/NC
site followed by an intermediate rate of cleavage at the
MA/CA and p1/p6 sites, and final cleavage at the CA/p2
and NC/p1 sites [9,12-16]. A similar pattern of ordered
processing appears to occur in infected cells [9,12,17,18].
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A. The frameshift mutation in pGPPfs-PRFigure 1
A. The frameshift mutation in pGPPfs-PR. Above: the sequence of wild type HIV-1 HXB (GenBank:NC001802) molecular clone 
in the area of translational frameshift in gag-pro-pol is shown. The heptanucleotide slippery sequence required for translational 
frameshifting is underlined [23, 24]. The adenine that is read twice during frameshifting is shown in bold. The exact site of 
frameshifting in the wild type virus is variable with 70% of Gag-Pro-Pol product containing Leu as the second residue of the 
transframe domain (TF) [27]. pGPPfs-PR expressed in vitro in a coupled transcription/translation system [28] gives the pre-
dominant Gag-Pro-Pol product. Additional translationally silent substitutions were inserted in the area frameshift to reduce 
secondary structure and translational pausing during expression. The activity of the intrinsic protease was inactivated by a 
D25A substitution of the catalytic aspartate. The location of the Gag NC/p1 [53] and pl/p6 [54] sites and the Gag-Pro-Pol NC/
TF and TF F440/L441 sites [28, 32, 33, 35] are also shown. Below: an overall schematic pGPPfs-PR. B, C. Processing of the HIV-
1 Gag-Pro-Pol precursor in vitro showing the kinetics of processing and the generation of product pairs over time. The full-
length Gag-Pro-Pol pr160 precursor containing an inactive protease (by PR D25A mutation of the catalytic aspartate) was gen-
erated by transcription and translation of pGPPfs-PR in a rabbit reticulocyte lysate. Purified mature HIV-1 protease was added 
in trans following the 0' timepoint. Aliquots were removed at the indicated time and the protein products separated by Tris-
Glycine SDS-PAGE (B) [30] or by Tris-Tricine SDS-PAGE (C) [31]. Paired products resulting from prior removal of IN fol-
lowed by partial cleavage at the RT/RH site are denoted with brackets. Molecular mass markers are shown on the left. The 
molecular masses of the intermediates and final products, as estimated from published sequence or common nomenclature, 
are also shown. Products are represented in abbreviated form by the N- and C-terminal domains according to the nomencla-
ture of Leis et al. [55]. D. Proposed pathway for the ordered processing of the HIV-1 Gag-Pro-Pol precursor by protease in 
trans. The Gag-Pro-Pol precursor and the observed predominant processing intermediates are represented as boxes with 
processing sites denoted as vertical lines. The schematic separates the observed Gag-Pro-Pol cleavages into distinct rates. The 
initial cleavage at p2/NC is shown with a large arrow and labeled 1. The next cleavages occur with similar rates and are labeled 
2 (RH/IN and MA/CA). This cleavage is quickly followed by half-cleavage at the RT/RH site (labeled 3). A series of intermedi-
ates between 120 kDa and 88 kDa are accounted for at least in part by early cleavage at the sites upstream of RT (TF F440/
L441, TF/PR, PR/RT), and these are indicated with small arrows. The slower cleavages at these sites (labeled 4 and 5) give rise 
to the later paired products. The molecular masses shown of the intermediates and final products were estimated from pub-
lished sequence or common nomenclature.
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Processing of the HIV-1 Gag-Pro-Pol precursor by pro-
tease in trans is less studied, although the final cleavage
products [MA, CA, NC, transframe (TF), PR, RT, IN] are
well characterized [19-22]. The HIV-1 Gag-Pro-Pol precur-
sor results from a -1 frameshift event during translation at
a site near the 3' end of the gag reading frame to join the
gag and pro-pol reading frames [23,24]. For this study, we
created by site-directed mutagenesis [25,26] a continuous
HIV-1 gag-pro-pol reading frame that would produce a full-
length precursor identical in sequence to the viral Gag-
Pro-Pol polyprotein precursor [23,27] (Fig. 1A). Intrinsic
protease activity was inactivated by a D25A substitution of
the catalytic aspartate of the PR domain to produce the
final construct GPPfs-PR (Fig. 1A). We expressed the
radio-labeled Gag-Pro-Pol using an in vitro transcription/
translation strategy [9,28] and monitored cleavage at
known processing sites as a function of time after adding
0.25 µg recombinant HIV-1 protease (as described in
[13,28,29]) in a reaction volume of 50 µl. Under these
conditions the concentration of precursor is approxi-
mately 0.1 nM. Products were separated using two differ-
ent SDS-PAGE systems [30,31] prior to autoradiography.

Fig. 1B and 1C show the pattern of cleavage products gen-
erated at different time points after the addition of pro-
tease in trans. We identified over ten distinct species
greater than 50 kDa (Fig 1B). Fig. 1C shows products of
lower molecular mass [31]. The combination of two dif-
ferent gel systems allowed for the separation and analysis
of the appearance of each product. An initial species of
120 kDa (processing intermediate pi120) was rapidly gen-
erated within 2 minutes then disappeared to form distinct
intermediates of 88, 81, 76, 75, 67, 62 kDa, and finally the
mature RT products p66 and p51 (Fig. 1B, C). We
observed a large difference in the rates of appearance of
these intermediates. After 6 hours of incubation six
processing intermediates remained even though the first
cleavage event to generate pi120 occurred within 2 min
(Fig 1B), indicating that the sites are cleaved at highly dif-
ferent rates. No observable processing occurred without
added protease (data not shown), indicating that process-
ing was due to the added protease. Thus, processing of the
Gag-Pro-Pol precursor results in a processing cascade con-
sisting of discrete intermediates.

We have used three strategies to assign the cleavage sites
that define the ends of the processing products. The first
we assigned the products based on the known processing
sites in Gag-Pro-Pol. The size of the pi120 intermediate
was consistent with an initial cleavage at the p2/NC site,
the same site initially cleaved in the Gag precursor [9,14-
16]. Second, we truncated the Gag-Pro-Pol precursor to
establish the polarity of the initial cleavage site. We impli-
cated cleavage at the p2/NC site by truncating 116 resi-
dues from the C-terminal end of the precursor via

linearization of the template by Afl II prior to RNA synthe-
sis in vitro. Protease cleavage of the truncated precursor
resulted in a shift of the pi120 intermediate to 110 kDa
(data not shown), a size consistent with initial cleavage at
the p2/NC site. Third, in order to confirm the site of cleav-
age and the identification of products we blocked individ-
ually blocked cleavage at the p2/NC, TF/PR, PR/RT, RT/
RH and RH/IN sites by site-directed mutagenesis as
described (data not shown) [9,13]. Each blocking muta-
tion resulted in alternative unprocessed intermediates
with a molecular mass consistent with an absence of
cleavage at the mutated site. Thus, this approach sup-
ported the identification of the cleavage sites and the
intermediates presented here. We noted that each site was
generally cleaved independently of the other sites by pro-
tease in trans. A notable exception was the CA/p2 site
which showed enhanced cleavage when the earlier cleaved
p2/NC site was blocked (M377I mutation). Previously,
we reported similar enhanced cleavage of this site in the
Gag precursor with the same blocking mutation at the p2/
NC site [9]. There is a series of faint minor products
between pi120 and pi88, at 113 kDa, 107 kDa, 100 kDa,
and 95 kDa (Fig. 2A) seen at the 2-minute time point.
These likely represent a low level of cleavage at all of the
known cleavage sites upstream of RT early in the process-
ing cascade. We showed by mutagenesis that 113 kDa
intermediate resulted from cleavage at the TF F440/L441
site (Fig. 1A, and 1D) rather than cleavage at the NC/TF
(data not shown). The TF F440/L441 site has previously
been identified as a processing site by others [32-34] using
less than full length Pol precursors, and this site is cleaved
by the activated PR within full length Gag-Pro-Pol
[17,28,35,36]. Other intermediates in this group are likely
accounted for as PR-IN (107 kDa) and RT-IN (97 kDa)
products.

We observed four sets of paired intermediates and prod-
ucts (denoted by brackets in Fig. 1B, C). We interpret these
pairs to represent intermediates that resulted from full
cleavage at the RH/IN site followed by half cleavage at the
RT/RH site. Numerous studies have shown that partial
cleavage of the RT/RH site in the purified RT-RH
homodimer is dependent on the dimerization of the RT
domain to induce unfolding of a single RH domain
[19,21,22,37-40]. We observed a similar pattern with the
full length Gag-Pro-Pol precursor, with IN removed prior
to half cleavage of the RT/RH cleavage site, also in agree-
ment with [41] where an E. coli based expression system
was used. Thus, by analogy with the results of others, we
infer that the RT domain within the expressed Gag-Pro-
Pol precursor is dimeric either prior to or immediately
after removal of IN. The pi88/pi76 paired products,
derived from pi120, appeared initially at the 2 minute
time point showing that RH/IN and RT/RH cleavage occur
relatively early in the processing cascade. The later and
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overlapping appearance of the three remaining product
pairs showed that subsequent N-terminal processing of
the pi88/pi76 pair is ordered, but occurs at more similar
rates. The SDS-PAGE system utilized in Fig. 1B allows for
separation of the pi76 and pi75 intermediates and shows
the disappearance of the pi88/pi76 paired products fol-
lows the 20 minute time point. The pi81/pi67 and pi75/
pi62 pairs represent later products that likely result from
cleavage at the TF F440/L441 and TF/PR sites, respectively.
Lastly, the mature p66/p51 products represent final cleav-
age at the PR/RT site.

Initial cleavage at the p2/NC site also generated a MA-CA-
p2 (pi42) product (Fig. 1C). We previously showed that
cleavage of p42 in vitro occurs at the MA/CA cleavage site
followed by slower cleavage at the CA/p2 site [9,13]. We
observe here that the rates of processing of the MA/CA and
RH/IN sites are similar as shown by the similar appear-
ance of pi25 CA-p2 and p32 IN (Fig. 1C).

Fig. 1D summarizes a proposed cascade for processing of
Gag-Pro-Pol by mature protease in trans. The initial cleav-
age occurs at the p2/NC site (presumably at the same rate
this site is cleaved in Gag), generating the pi120 NC-TF-
PR-RT-RH-IN intermediate and the p42 MA-CA-p2 inter-
mediate. The next cleavage removes IN from the C termi-
nus of pi120 by cleavage at RH/IN producing pi88.
Removal of IN occurs at a rate similar to cleavage between
MA-CA. Cleavage of RH/IN is closely followed by cleavage
of the RT/RH site to generate the initial paired pi88 and
pi76 NC-TF-PR-RT (RH) products. The presence of these
paired products suggests that dimerization of the RT-con-
taining processing intermediate occurred early in the
processing cascade, consistent with the results of others
who observed a similar cleavage pattern using more fully
processed dimeric RT [22,38,40]. Processing at the TF
F440/L441 and TF/PR occur next followed by the final
cleavage between PR/RT to generate the final mature PR
and RT products. Final cleavage of the precursor occurs in
the sites flanking the PR domain, suggesting that accessi-
bility to these sites may be restricted via formation of a
dimer interface structure similar to that observed in
mature protease [42].

The overall pattern and extent of processing differs sub-
stantially with protease present in trans compared to the
pattern seen with the protease embedded in the precursor,
as previously characterized [28,35,36]. Cleavage of the
Gag-Pro-Pol precursor by the embedded protease appears
to be much more restrictive with cleavages only observed
at the p2/NC site and the TF F440/L441 sites. We show
here that protease present in trans cleaves all of the Gag-
Pro-Pol sites but at varying rates (Figs. 1B, C, D), resulting
in a processing cascade. One possibility is that the embed-

ded protease shows restricted site selection due to its loca-
tion within the precursor.

We infer that the Gag-Pro-Pol precursor was able to
dimerize in this expression system. The state of the Gag-
Pro-Pol precursor in newly assembled (or assembling) vir-
ions could differ. In infected cells, Gag-Pro-Pol may
dimerize while moving to the assembly site [43-46] or
during assembly, affecting the kinetics of precursor
processing. Alternatively, dimerization of Gag-Pro-Pol
monomer may be constrained by the excess of Gag during
assembly, as suggested by others [47-49]. In that case, the
presence of Gag could limit Gag-Pro-Pol dimerization by
forming heterodimers, in turn altering the kinetic of
processing. These considerations are not mutually exclu-
sive. One of the early cleavage events detailed here (such
as cleavage at p2/NC) could also release a truncated pre-
cursor from a Gag/Gag-Pro-Pol heterodimer and permit
rapid dimerization of the PR and RT domains.

The other feature of the system we have used is the reli-
ance of protease cleavages in trans. Use of trans protease
on the full length precursor allows for the clear evaluation
of generation of each product, however, this approach is
unable to discern the possible cleavage of nascent or trun-
cated products or the effect of an active embedded pro-
tease. Expression of Gag-Pro-Pol in vitro with an
unmutated protease domain results in rapid autocatalytic
cleavage at the p2/NC site and the TF F440/L441 site to
produce the 113 KDa intermediate [28,35]. Immediate
dimerization in cells of the full length precursor would
likely result in premature cleavage [50-52]. Thus, in the
context of budding virions there may be an interplay
between monomeric versus dimeric Gag-Pro-Pol as sub-
strate, and embedded versus free protease for cleavage.
The extent to which these different combinations may
alter the order of cleavage and the successful assembly of
virus is not known.

We show here that cleavage of the Gag-Pro-Pol processing
sites by trans protease occurs at different rates, and we sug-
gest that cleavage is likely regulated, in part, by the dimer-
ization of the protease and RT domains. We and others
have shown that timed and ordered cleavage of the HIV-1
Gag precursors is highly regulated and is necessary for the
production of an infectious, properly assembled virion.
We do not yet know the extent of the requirement for
timed cleavage of Gag-Pro-Pol in producing infectious
virus. Characterization of the ordered cleavage of Gag-
Pro-Pol furthers our understanding of HIV-1 precursor
processing and suggests further mechanisms at work in
the regulation of HIV-1 assembly.
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