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Abstract 

Background:  Accurate haplotype reconstruction is required in many applications in quantitative and population 
genomics. Different phasing methods are available but their accuracy must be evaluated for samples with different 
properties (population structure, marker density, etc.). We herein took advantage of whole-genome sequence data 
available for a Holstein cattle pedigree containing 264 individuals, including 98 trios, to evaluate several population-
based phasing methods. This data represents a typical example of a livestock population, with low effective popula‑
tion size, high levels of relatedness and long-range linkage disequilibrium.

Results:  After stringent filtering of our sequence data, we evaluated several population-based phasing programs 
including one or more versions of AlphaPhase, ShapeIT, Beagle, Eagle and FImpute. To that end we used 98 individu‑
als having both parents sequenced for validation. Their haplotypes reconstructed based on Mendelian segregation 
rules were considered the gold standard to assess the performance of population-based methods in two scenarios. 
In the first one, only these 98 individuals were phased, while in the second one, all the 264 sequenced individuals 
were phased simultaneously, ignoring the pedigree relationships. We assessed phasing accuracy based on switch 
error counts (SEC) and rates (SER), lengths of correctly phased haplotypes and the probability that there is no phasing 
error between a pair of SNPs as a function of their distance. For most evaluated metrics or scenarios, the best soft‑
ware was either ShapeIT4.1 or Beagle5.2, both methods resulting in particularly high phasing accuracies. For instance, 
ShapeIT4.1 achieved a median SEC of 50 per individual and a mean haplotype block length of 24.1 Mb (scenario 2). 
These statistics are remarkable since the methods were evaluated with a map of 8,400,000 SNPs, and this corresponds 
to only one switch error every 40,000 phased informative markers. When more relatives were included in the data 
(scenario 2), FImpute3.0 reconstructed extremely long segments without errors.

Conclusions:  We report extremely high phasing accuracies in a typical livestock sample. ShapeIT4.1 and Beagle5.2 
proved to be the most accurate, particularly for phasing long segments and in the first scenario. Nevertheless, 
most tools achieved high accuracy at short distances and would be suitable for applications requiring only local 
haplotypes.
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Background
Haplotype phasing consists in the reconstruction of hap-
lotypes inherited from each parent. On autosomes, dip-
loid individuals carry two alleles (eventually identical) at 
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polymorphic sites, each allele being inherited from one 
of the two parents. The combination of alleles from one 
of the homologous chromosomes is called haplotype, or 
phase. However, genotyping data obtained with geno-
typing arrays or from whole-genome sequencing experi-
ments are typically unphased, the origin of each allele 
remaining unknown. Therefore, statistical phasing meth-
ods must be used to determine the set of alleles belong-
ing to each homolog, that were co-inherited.

Haplotype information can be used in many applica-
tions in quantitative and population genomics, includ-
ing missing genotype imputation [1, 2], identification of 
identical-by-descent (IBD) segments in outbred or exper-
imental populations [3–5], quantitative-trait locus (QTL) 
mapping [6], haplotype-based association studies [7–9] 
or genomic predictions [10–12], demographic inference 
[13, 14], identification of signatures of selection [15, 16], 
allele’s age estimation [17], estimation of linkage disequi-
librium (LD) -based recombination maps [18] or identifi-
cation of cross-over (CO) events in genotyped pedigrees 
[19, 20]. Haplotypes present indeed higher LD with 
underlying causative variants and allow the estimation 
of the length of shared IBD segments, a measure related 
to the number of generations to their common ancestor 
[21]. Haplotypic information is also required to under-
stand interactions among tightly linked loci, for instance 
to study allele specific expression, identify deleterious 
compound heterozygotes or to determine how combina-
tions of variants affect gene expression [22, 23].

Haplotype phasing methods can be divided into two 
main groups (as reviewed in Browning and Browning 
[24]): those relying on pedigree relationships (e.g., [25, 
26]) and those that can be applied in samples of unrelated 
individuals by exploiting LD information, often referred 
to as population-based methods (e.g., [7, 27, 28]). Nev-
ertheless, some methods present hybrid properties by 
exploiting both sources of information (e.g., [29–31]). 
Other methods apply heuristic rules by matching target 
haplotypes to libraries of reference haplotypes in win-
dows (e.g., [30]). Long-range phasing methods use such 
heuristic approaches and rely also on the identification of 
surrogate parents [29, 32]. Most recent advances in phas-
ing methods were related to their ability to handle huge 
data sets, including thousands of sequenced samples [33–
35]. Phasing accuracy of these different approaches will 
impact the outcome of different haplotype-based applica-
tions and must be assessed. Although this is most often 
initially tested in human populations, it should ideally be 
realized in populations with different demographic histo-
ries and levels of relatedness.

Here we take advantage of a unique sequenced cattle 
pedigree to assess accuracy of several population-based 
phasing methods, including recent methods commonly 

used in livestock species. This sample is a typical example 
of a livestock population with reduced effective popula-
tion size, high levels of relatedness and long-range LD, 
and containing 100 to 200 sequenced individuals. We 
show that such data can be phased with extremely high 
accuracy. In addition, we illustrate that the raw sequence 
data requires stringent filtering to obtain accurate 
haplotypes.

Results
Quality of whole‑genome sequence genotype data 
after applications of different procedures
We assessed the quality of the genotyping data by com-
paring the number of identified CO with the evaluated 
data to the expected number of CO, obtained with a 
high-quality reference map validated with 115,967 gen-
otyped individuals and 30,331 SNPs (see Methods). In 
both cases, CO were identified using a pedigree-based 
approach [36]. The ARS-UCD1.2 bovine genome assem-
bly [37] was used as starting point for the reference map. 
A total of 18 SNPs showing evidence of incorrect map 
positions were then discarded. Among those, 13 matched 
with regions also flagged by Quanbari and Witten-
burg [38] as potential errors in the genome build. After 
removal of these SNPs, we found no more evidence for 
map errors. Using this reference map and our sequenced 
pedigree containing 264 individuals, we found an average 
of 24 CO per individual, 26 and 23 in males and females, 
respectively.

When CO were estimated using the 15,327,429 SNPs 
that passed the variant quality score recalibration (VQSR) 
procedure (with the threshold set to 99.9), the average 
counts per meiosis were highly inflated, equal to 1416 
(Fig. 1). When the threshold for the VQSR filtering was 
set to 97.5, resulting in the selection of 11,030,905 SNPs, 
the average number of CO dropped to 254 confirming 
that the data quality was improved. However, this value 
was 10 times larger than the expected values, clearly indi-
cating that the sequence genotype data required further 
cleaning. Subsequent selection of a subset of 8,435,899 
variants behaving like true Mendelian variants (see Meth‑
ods), with genotype frequencies close to Hardy-Weinberg 
proportions, and with minor allele frequency higher than 
0.01, resulted in the identification of 167 CO on average 
per meiosis, still six times above expectations. Refin-
ing genotype calls using Beagle4.1 [39] clearly improved 
the genotype quality, the number of identified CO being 
reduced by a factor 3 (51 CO per meiosis on average). We 
then removed regions presenting high coverage, exces-
sive levels of recombination or of genotyping errors (see 
Methods), resulting in the removal of 18,220 additional 
SNPs. The total number of SNPs was then 8,417,679 
ranging from 166,292 (chromosome 25) to 529,626 
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(chromosome 1) per chromosome (Table  S1 in Addi-
tional file 1). This removal further improved the quality 
of our data as the number of identified CO dropped to 31 
CO per meiosis on average. Finally, by setting remaining 
genotypes that were discordant in parent-offspring pairs 
to missing (e.g., opposite homozygous), the average num-
ber of identified CO was further reduced to 30 CO. Over-
all, the application of these different procedures allowed 
us to reduce the average number of CO from 1416 to 30 
CO, closer to expectations. Nevertheless, we still identi-
fied on average 5 additional CO with the final sequence 
data compared to results obtained with the high-quality 
reference map. These 5 additional CO might be missed 
with the 50K map but could also correspond to errors, 
meaning that haplotypes obtained with a family-based 
approach might still contain a few errors.

Comparison of phasing quality achieved with different 
population‑based phasing methods
Strategy
To assess the phasing quality from different LD-based 
methods we used the haplotypes from 98 sequenced 
individuals that had both their parents also sequenced 
(sequenced trios). The haplotypes of these sequenced 
offspring (validation individuals) were phased using 
Mendelian rules, that are exact in absence of genotyp-
ing errors, to serve as the “true haplotypes”. Population-
based approaches were then applied in two scenarios, 
either with only the 98 validation individuals (scenario 
1), or with the full data set consisting in 264 individuals, 

but ignoring the pedigree relationships (scenario 2). Most 
phasing metrics are computed with respect to heterozy-
gous markers phased in the true haplotypes (the gold 
standard) with Mendelian rules since these markers are 
informative. On average, each of the 98 individuals had 
1,964,220 such informative markers in both scenarios 
(Table S1 in Additional file 1). The different metrics used 
to assess phasing quality are described in the Methods 
section and most of them are illustrated in Fig. 2.

Phasing yield
Most of the tested phasing methods achieved 100% 
phasing yield, and this was almost true also for FIm-
pute3.0 that phased on average more than 99.99% of the 
heterozygous SNPs in both tested scenarios. Only Alp-
haPhase1.3 failed to phase all the SNPs, with on average 
97.5 and 98.7% of phasing yield in the first and in the sec-
ond scenarios respectively.

Switch error count (SEC) and rate (SER)
Median switch error count (SEC) and rate (SER) com-
puted on the 98 validation individuals are provided for 
the main phasing algorithms and each scenario in Fig. 3 
and Table  1. When only the 98 validation individuals 
were used for phasing, the median SEC was around 4500 
to 5000 for a group of methods including AlphaPhase1.3, 
Eagle2.4 and FImpute3.0. These values correspond to 
a SER slightly below 0.25%, meaning that switch errors 
occur on average every 400 informative markers. Haplo-
types obtained with Beagle4.1 had clearly lower SEC than 

Fig. 1  Quality of whole-genome sequence genotype data after applications of different procedures. Average cross-over counts per meiosis 
obtained with a high-quality reference map (50K) and after application of different procedures to improve the quality of the whole-genome 
sequence SNPs (see Methods)
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these first methods, close to 2750. ShapeIT4.1 performed 
even better with median SEC and SER below 400 and 
0.02% respectively, corresponding to one switch error 
every 5000 informative markers. Finally, Beagle5.2, rely-
ing on a new algorithm compared to earlier Beagle ver-
sions (until Beagle4.1), resulted in the lowest SEC and 
SER, outperforming all other methods, the median values 
were below 200 and 0.01% per individual, correspond-
ing to one switch every 10,000 informative markers. 
This represents a reduction by a factor 20 compared to 
AlphaPhase1.3, Eagle2.4 and FImpute3.0, whereas Sha-
peIT4.1 generated ten times fewer switches than these 
methods. When methods are compared with other sum-
mary statistics related to SEC and SER such as the mean, 
minimal and maximal values or as their range (Fig.  3A 
and Tables S2-S3 in Additional file  1), the ranking of 
the method remained similar with Beagle5.2 perform-
ing best, followed by ShapeIT4.1. When comparing dif-
ferent versions of the same software in terms of SEC and 
SER (Figure S1A in Additional file  1), we observed that 
newer versions are more accurate as expected. In particu-
lar, AlphaPhase1.3 represents a major improvement with 
respect to AlphaPhase1.1. Regarding Beagle’s versions 
relying on a directed acyclic graph, Beagle3.3 and Bea-
gle4.0 had close performances and Beagle4.1 appeared 
as an important improvement. Several of these versions 
of Beagle presented a lot of variation among individuals. 

Regarding the latest Beagle’s versions, relying on the 
Li and Stephens model [40], Beagle5.1 was slightly bet-
ter than Beagle5.0 whereas Beagle5.2 represented a sub-
stantial improvement. Finally, ShapeIT2 and ShapeIT4.1 
achieved similar performances.

When a larger data set was used for phasing, consisting 
in 264 individuals including the sequenced parents (sce-
nario 2), the phasing accuracy improved for most of the 
methods (Fig. 3B and Table 1), with less variation among 
individuals. For AlphaPhase1.3, the SEC reduction 
remained however modest and it consequently ranked 
last. For all the other phasing methods, the median SEC 
was below 1000, around 900 and 350 for Eagle2.4 and 
Beagle4.1, respectively. FImpute3.0 showed the highest 
improvement compared to scenario 1, the median SEC 
being reduced by almost 40 folds and dropping to 115. 
However, Beagle5.2 and ShapeIT4.1 still performed best 
with median SEC values equal to 55 and 50, respectively. 
These values correspond to extremely low median SER, 
equal to 0.0027 and 0.0026%, respectively, and to one 
switch error every 40,000 informative SNPs. The ranking 
remains similar with other summary statistics (Fig.  3B 
and Tables S2-S3 in Additional file  1), except that FIm-
pute3.0 presented the lowest minimum and maximum 
individual SEC. With FImpute3.0, the lowest value was 
equal to 2, indicating that almost all chromosomes were 
perfectly phased for that individual. With ShapeIT4.1 

Fig. 2  Illustration of different metrics used to assess phasing quality. Illustration of the switches between true haplotypes (gold standard obtained 
using Mendelian rules) and inferred haplotypes (estimated by the different population-based phasing methods). The quality adjusted (QA) 
haplotype block length computed in this study is equal to the product between the distance between switches and the phasing yield (proportion 
of informative SNPs that are phased in inferred haplotypes, the informative SNPs being the SNPs that are heterozygous and phased in the true 
haplotypes)
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and Beagle5.2, the best phased individual had only 12 and 
13 SEC, respectively. The median SEC dropped for all the 
different versions of the tested software, and the variation 
among individuals was strongly reduced, in particular for 
Beagle3.3, Beagle4.0, Beagle4.1 and Beagle 5.1 (Figure 
S1B in Additional file  1). The ranking of these different 
versions, in terms of SEC or SER, was similar to the rank-
ing observed in the first scenario, with the exception of 
ShapeIT2 that presented now higher SEC and variation 
levels than ShapeIT4.1. Differences between Beagle5.1 
and Beagle5.2 were also smaller than in the first scenario.

Length of correctly phased haplotype blocks
Statistics relying on SEC does not provide a full descrip-
tion of their distribution along the chromosomes and of 
the resulting distribution of length of correctly phased 
haplotype segments. Therefore, we also computed the 
quality adjusted (QA) haplotype block length and the 
QAN50 metrics, as described in the Methods section, 
in order to highlight the ability of a phasing tool to pro-
duce long correctly phased blocks within a chromo-
some, without switch error.

Fig. 3  Switch error rates in both scenarios. Boxplots of switch error rates (SER, %) obtained with AlphaPhase1.3, Beagle4.1, Beagle5.2, Eagle2.4, 
FImpute3.0 and ShapeIT4.1, computed for the 98 validation individuals (A) in scenario 1 with only the 98 validation individuals, and (B) in scenario 2 
with the 264 sequenced individuals
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In the first scenario, median QA haplotype block 
lengths are equal respectively to 10 and 12 kb with Alp-
haPhase1.3 and Beagle5.2, and clearly lower with other 
methods (Table  1). The ranking of the methods based 
on the median QA haplotype block lengths is thus very 
different from comparisons based on SEC, with Alp-
haPhase1.3 ranking second. However, when mean values 
are used in comparisons (Table  S4 in Additional file  1), 
the ranking follows results obtained with SEC. These 
mean lengths of correctly phased segments range from 
500 kb with AlphaPhase1.3 to 7.5 Mb with Beagle5.2. 
Compared to AlphaPhase1.3, the median values were 
five times lower with ShapeIT4.1 but the haplotype block 
lengths were on average ten times longer. This indicates 
that some methods such as ShapeIT4.1 tend to produce 
a lot of small correctly phased segments (switch errors 
being close) in combination with very long correctly 
phased segments (up to 156.8 Mb with ShapeIT4.1, a 
full chromosome), whereas other methods such as Alp-
haPhase1.3 tend to provide more uniform distances 
between successive switch errors. This is confirmed in the 
distributions of QA haplotype block lengths (Figure S3 
in Additional file  1) that are concentrated around short 
values with all methods, although long correctly phased 
segments are observed, in particular with ShapeIT4.1 
and Beagle5.2. As a result, the mean length is higher with 
these two methods. Long segments capture large frac-
tions of the genome and the QAN metrics provide com-
plementary information by weighting the segments by 
their length (in Mb or in number of SNPs). For instance, 
the QAN50 metrics obtained for different methods 
(Fig.  4A and Table  1) indicate that with AlphaPhase1.3, 
50% of the genome is included in correctly phased seg-
ments longer than 2.5 Mb. The QAN50 increases to 5.8 
and 6.1 Mb with FImpute3.0 and Eagle2.4, respectively 
(approximately 20,000 SNPs, Fig.  4C) and to 18.2 Mb 
with Beagle4.1(approximately 60,000 SNPs). ShapeIT4.1 

and Beagle5.2 performed best with a QAN50 close to 
48 Mb corresponding to blocks of approximately 170,000 
SNPs. Figure  4A provides the full distribution of QAN 
values (from 100 to 0%), with very similar curves for Sha-
peIT4.1 and Beagle5.2. It allows also to determine the 
percentage of the genome included in correctly phased 
segments longer than different thresholds as reported in 
Table 2. For instance, for applications such as imputation 
or haplotype-based association studies, phasing accuracy 
is important locally, at short range (< 1 Mb). The aptitude 
to produce long correctly phased segments (> 10 Mb) 
for most of the genomic positions is more important in 
applications relative to the age of young alleles, of recent 
IBD segments or recent selective sweeps. With Beagle5.2 
for instance, 96.3, 93.6, 89.3 and 48.1% of the genome is 
included in correctly phased segments of at least 1, 5, 
10 and 50 Mb, respectively. These values are close with 
ShapeIT4.1 and lower with the remaining methods, only 
86.4, 54.0, 33.2 and 1.3% with Eagle2.4, for instance. 
Most recent versions of tested software performed bet-
ter in terms of QA and QAN50 than older versions (Fig-
ure S2A, C and Table  S4 in Additional file  1), with the 
exception of ShapeIT2 that had similar statistics as Sha-
peIT4.1, and Beagle4.1 that presented better results than 
Beagle5.0.

In the second scenario including more individuals, 
mean QA haplotype block lengths (Table  S4 in Addi-
tional file  1) increased for all methods, reaching 23.3 
and 24.1 Mb with Beagle5.2 and ShapeIT4.1, respec-
tively. The distributions of QA haplotype block lengths 
are clearly shifted towards longer segments with Sha-
peIT4.1 and Beagle5.2, and with FImpute3.0 to a lesser 
extent (Figure S3 in Additional file  1). Interestingly, 
the improvement is only modest with AlphaPhase1.3 
whereas the mean QA haplotype block length increases 
from 500 kb to 12.5 Mb with FImpute3.0, a 25-fold 
change. FImpute3.0 is even the best method with 

Table 1  Results of different metrics used to assess phasing quality in both scenarios. Median values of switch error counts (SEC), 
switch error rates (SER, %), quality adjusted (QA) haplotype block length (bp), and QAN50 (bp), obtained with AlphaPhase1.3, 
Beagle4.1, Beagle5.2, Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for the 98 validation individuals in each scenario (scenario 1: 
using the 98 validation individuals; scenario 2: using the 264 sequenced individuals)

Metric Median
SEC

Median
SER (%)

Median QA
haplotype block length (bp)

QAN50 (bp)

Scenario 1 2 1 2 1 2 1 2

AlphaPhase1.3 4612 3548 0.2412 0.1834 10,653 55,973 2,505,672 2,719,430

Beagle4.1 2769 359 0.1404 0.0183 484 45,729 18,212,951 44,254,507

Beagle5.2 191 55 0.0093 0.0027 12,334 6,953,676 47,895,001 62,687,474

Eagle2.4 4901 882 0.2485 0.0451 172 161 5,771,337 22,281,097

FImpute3.0 4477 115 0.2256 0.0059 583 27,490 6,114,640 79,974,276

ShapeIT4.1 386 50 0.0192 0.0026 2134 4,738,542 48,437,671 69,002,979
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respect to QAN50 (79.9 Mb), followed by ShapeIT4.1 
(69.0 Mb) and Beagle5.2 (62.7 Mb) (Table 1). However, a 
larger proportion of the genome is included in correctly 
phased segments longer that 10 Mb with ShapeIT4.1 
(95.1%) compared to FImpute3.0 (91.6%) (Fig.  4B, D 
and Table  2). ShapeIT4.1 performed slightly better 

than Beagle5.2 at different thresholds (see Fig.  4B, D). 
Comparisons of different versions of tested software is 
in agreement with comparisons made with the first sce-
nario, the differences between Beagle5.0, Beagle5.1 and 
Beagle5.2 being however smaller (Figure S2B, D and 
Table S4 in Additional file 1).
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Fig. 4  Haplotype block length metrics in both scenarios. A, B Quality adjusted (QA) haplotype block lengths (Mb), and C, D number of SNPs in 
correctly phased blocks (× 1000), obtained with AlphaPhase1.3, Beagle4.1, Beagle5.2, Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for the 98 
validation individuals and plotted as a function of the proportion of the genome, in scenario 1 (A, C) with only the 98 validation individuals, and 
in scenario 2 (B, D) with the 264 sequenced individuals. The black curves with dots represent the total length of each chromosome (if they were 
perfectly phased) as a function of the proportion of the genome they cover
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Pairwise SNP phasing accuracy
Finally, we compared the methods in terms of pairwise 
SNP phasing accuracy. This metric represents the prob-
ability that there is no phasing error between two SNPs 
as a function of their distance. The results are reported 
in Fig. 5 and Table 3 and are in agreement with obser-
vations for other metrics such as QAN50. In the first 
scenario, these probabilities are above 0.95 and 0.92 at 
10 and 100 kb, respectively, with Beagle4.1, Beagle5.2 
and ShapeIT4.1 (Fig.  5A). Other methods presented 
values below 0.93 and 0.91, respectively. The probabili-
ties dropped rapidly at longer distances, even at 1 Mb 
(around 0.80 with Beagle4.1 and even below 0.70 for 
the three less efficient methods). ShapeIT4.1 and Bea-
gle5.2 performed best with probabilities still above 0.90 
at 1 Mb, but only 0.78 and 0.66 at 5 and 10 Mb, respec-
tively. At 50 Mb, the probabilities were almost null with 
all methods and only 0.16 and 0.17 with Beagle5.2 and 
ShapeIT4.1, respectively. In the second scenario, the 
probabilities are higher and drop less rapidly, present-
ing a plateau until a distance of almost 1 Mb (Fig. 5B). 
ShapeIT4.1 achieved the highest probabilities, equal to 
0.95, 0.87 and 0.77 at 1, 5 and 10 Mb distance, respec-
tively, but FImpute3.0 achieved almost identical results 
and was even better at very long distance (0.31 at 50 Mb 
vs 0.27 for ShapeIT4.1).

Discussion
We herein compared accuracy of population-based phas-
ing tools in a whole-genome sequenced cattle pedigree. 
To be able to measure the accuracy, it was essential to 
apply certain procedures to our whole-genome sequenc-
ing data. Indeed, after filtering variants based on a stand-
ard variant quality score recalibration procedure, the 
number of CO in our pedigree was still highly inflated, 
suggesting that these pedigree-based haplotypes contain 
many errors. We had to apply further filters to our data to 

remove additional low-quality markers or small genomic 
regions incorrectly mapped in the reference genome 
build. Refining genotype calling with Beagle4.1 [39] had 
a major impact, stressing the importance of such a pro-
cedure. Our final data presented still a few more CO than 
those obtained at lower density with a high-confidence 
map. This could be due to the CO missed at lower den-
sity or to the errors that remain in the sequence data. 
This would represent a maximum of 5 incorrect CO on 
average per meiosis, and these errors could result from 
a phasing error in the parent or in the offspring haplo-
types (each of these haplotypes would thus have less 
than 5 errors). We could apply additional filters to fur-
ther reduce the number of errors. For instance, we could 
remove SNPs located in copy number variants since they 
would generate spurious CO as genotype calling is more 
difficult at these positions [41]. Similarly, heterozygous 
genotypes in the middle of long homozygous-by-descent 
segments [42] are also probably errors and would gener-
ate incorrect CO. Nevertheless, our results illustrate that 
many errors are still present in whole-genome sequenc-
ing data, and that stringent filtering is required. The 
presence of these low-quality variants would not be a 
problem in genome-wide association studies because 
associations are tested independently for each SNP, and 
genomic prediction methods might be robust to this 
problem. It might even be key to keep as much variants 
as possible to have the causative variants in the data set. 
However, for applications relying on haplotypes and their 
length, stringent filtering is essential, in particular when 
long correctly phased segments are required. To illustrate 
the impact of filtering, we evaluated the methods before 
improving genotype quality with Beagle4.1 and observed 
that the phasing accuracy was strongly reduced (Table S5 
and Table S6 in Additional file 1). With ShapeIT4.1, the 
SER were for instance 6 and 40 times higher, in the first 
and second scenarios respectively, compared to values 

Table 2  Genome percentage included in correctly phased segments longer than different thresholds in both scenarios. Percentage 
of the genome covering quality adjusted (QA) haplotype blocks of minimal length of respectively 1, 5, 10 and 50 Mb, obtained with 
AlphaPhase1.3, Beagle4.1, Beagle5.2, Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for the 98 validation individuals in each scenario 
(scenario 1: using the 98 validation individuals; scenario 2: using the 264 sequenced individuals)

QA haplotype block 
length (Mb)

1 5 10 50

Scenario 1 2 1 2 1 2 1 2

AlphaPhase1.3 71.5 73.7 30.4 32.2 13.6 14.5 0.2 0.3

Beagle4.1 90.4 94.9 78.5 91.8 66.5 87.7 13.8 43.1

Beagle5.2 96.3 97.2 93.6 96.1 89.3 93.9 48.1 63.2

Eagle2.4 86.4 96.2 54.0 87.2 33.2 74.4 1.3 18.2

FImpute3.0 85.6 97.5 56.1 95.2 34.0 91.6 2.1 70.4

ShapeIT4.1 96.1 97.6 92.2 96.8 87.6 95.1 48.8 69.2
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obtained on a cleaned data set with the same software. 
Similarly, the QAN50 was divided approximately by 
ten in both scenarios when ShapeIT4.1 was applied to 
lower quality genotypes. Overall, evaluations on these 
data resulted in smaller differences between methods 
and scenarios, indicating that most of the phasing errors 
result from the presence of genotyping or map errors 
in the data rather than from differences between phas-
ing approaches. Nevertheless, ShapeIT4.1 and Beagle5.2 
remained overall the best, whereas performances from 

FImpute3.0 were heavily impacted. This evaluation fur-
ther stresses the importance to improve as much as pos-
sible the genotype quality.

The quality of our final data set was high enough to 
evaluate the phasing methods, since we expect only a 
few errors (from 0 to 5) in our reference haplotypes. In 
our best scenario, the accuracy of the best method was 
impressive with a median of 50 SEC per individual, cor-
responding to approximately only two SEC per chro-
mosome and to a SER of 0.003%. In the case of point 
switches, a phasing error at a single marker (or a small 
segment) that would cause two consecutive SEC (see 
example in Fig. 2) would represent only one such punc-
tual error per chromosome. Some individuals presented 
only 2 SEC for their entire genome, and chromosomes 
were frequently phased without errors. These results 
are also confirmed with the metrics related to length of 
correctly phased segments. On average, ShapeIT4.1 had 
only one switch error every 40,000 informative markers. 
When only one hundred individuals were simultane-
ously phased, there were around 10 switches on average 
per chromosome with Beagle5.2 (one switch error every 
10,000 SNPs corresponding to a SER of 0.01%). These 
are nevertheless excellent results given the small sample 
size. These are indeed better results than those reported 
in human’s populations. For instance, Delaneau et al. [35] 
obtained a SER above 0.5% with ShapeIT4 and Beagle5 
and with a reference panel of 20,000 individuals (at lower 
marker density). Loh et al. [33] obtained also higher SER 
using ShapeIT2 and Eagle2 whereas Choi et al. [23] esti-
mated that the SER ranged from 0.8 to 1.5% for Eagle2, 
ShapeIT2 and Beagle4 for a reference ‘Genome-In-A-
Bottle’ whole-genome phased individual, and using a 
reference panel of 2500 individuals. Similarly, Song et al. 
[13] reported higher SER, above 2%, in human popula-
tions phased with ShapeIT2. This higher accuracy in 
our cattle data set might be related to the lower effective 
population size (around 100 in the current population 
[43, 44]), the higher relatedness (see for instance Figure 
S4 in Additional file 1) and LD levels, particularly at long 
distance (> 0.1 when marker distance > 1 Mb [45]). We 
previously observed that population-based methods such 
as Beagle are very effective at indirectly exploiting the 
familial information through the presence of long-shared 
haplotypes (see also [24]). Similarly, methods such as 
AlphaPhase [29] or FImpute [30] can identify parents or 
surrogate parents without pedigree information. This was 
confirmed in the present study as increasing the sample 
size and including sequenced relatives clearly improved 
the accuracy, in particular for FImpute3.0, although the 
pedigree information was not explicitly used. The high 
observed accuracy might also result from the stringent 
rules applied to improve the quality of our data set. With 

Fig. 5  Pairwise SNP phasing accuracy in both scenarios. Probabilities 
that there is no phasing error between two SNPs as a function of 
their distance obtained with AlphaPhase1.3, Beagle4.1, Beagle5.2, 
Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for the 98 validation 
individuals A in scenario 1 with only the 98 validation individuals, and 
B in scenario 2 with the 264 sequenced individuals
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less stringent rules, phasing accuracy dropped indeed 
significantly (see above).

We herein evaluated the phasing methods with default 
settings. However, performances from most phasing 
methods could be further improved by optimizing their 
parameters. Settings from methods that were originally 
developed for human populations might indeed not 
be optimal for livestock populations. For instance, we 
observed that accuracy of ShapeIT4.1 could be slightly 
improved by increasing the value of the --pbwt-depth 
parameter in the second scenario (Table S7 and Table S8 
in Additional file  1). This parameter defines the num-
ber of selected conditioning neighboring haplotypes 
to perform a Li and Stephens model [40], higher values 
increase the accuracy but also the computational costs 
[35]. However, the optimal parameters for each method 
might depend on the population structure, the number 
of individuals, the marker density, etc. Therefore, it is dif-
ficult to select optimal values prior to the analysis, and 
we preferred to compare the phasing methods with their 
default settings.

In our study, ShapeIT4.1 and Beagle5.2 performed best 
for almost all evaluated metrics and for both scenarios. 
Their relative ranking varied however according to the 
metric and the scenario. Beagle5.2 achieved the best 
results mainly in the first scenario whereas ShapeIT4.1 
was often the most accurate in the second scenario. 
When the parents were included in the data, FImpute3.0 
accurately phased extremely long segments and the esti-
mated SEC was as low as 2 for some individuals. Nev-
ertheless, when the parents were not included in the 
sample, the accuracy of FImpute3.0 decreased although 
some full-sibs were present in the sample (Figure S4 in 
Additional file  1). Phasing accuracy varies across dif-
ferent versions of a software. In our study, we observed 
that phasing accuracy improved as expected with newer 
versions of the software. As a result, comparisons of 

different methods might vary through time, according to 
the compared versions. For instance, until recently Sha-
peIT4.1 was in competition with Beagle5.1. In our com-
parisons, ShapeIT4.1 was most often better although 
Beagle5.1 performed extremely well. However, Beagle5.2, 
the new release, performed as well as ShapeIT4.1 (see 
above). Phasing accuracy will also change according to 
different elements such as marker density, level of relat-
edness and size of the population [24], and this might 
impact the ranking of the methods. For instance, in Choi 
et al. [23], Eagle2 performed better than ShapeIT2 and 
Beagle4 on human data. In a Holstein dairy cattle popu-
lation genotyped with medium to high density genotyp-
ing arrays, Miar et al. [46] compared Beagle4.1, ShapeIT2 
and FImpute based on SER. They estimated that Bea-
gle4.1 was the most accurate whereas ShapeIT2 resulted 
in higher SER. However, their sample was much larger 
and more information from relatives was thus available. 
Consistently with our study, when one or two parents of 
the validation animals were added to the phased sample, 
FImpute became more accurate than Beagle4.1. Using 
simulated data mimicking a brown layer population, Fri-
oni et al. [47] observed that haplotypes phased with Bea-
gle4.1 had lower SEC than those obtained with FImpute 
when parents were not included. As in our study, inclu-
sion of parents in the phased sample increased phasing 
accuracy for FImpute. Fewer comparisons in livestock 
species are available for ShapeIT4.1 or Beagle5.0 as 
these programs are more recent. In summary, our data 
set represent a typical example of reference panel con-
taining 100 to 200 whole-genome sequenced individuals 
in a livestock species with high levels of relatedness. In 
those conditions, ShapeIT4.1 and Beagle5.2 performed 
particularly well. We are not aware of the reasons why 
these two approaches present higher phasing accura-
cies. Both of them rely on a Li and Stephens model [40] 
that might result more flexible and more accurate than 

Table 3  Pairwise SNP phasing accuracy at different distances in both scenarios. Pairwise SNP phasing accuracy at distances of 
respectively 0.01, 0.1, 1, 2, 5, 10 and 50 Mb, obtained with AlphaPhase1.3, Beagle4.1, Beagle5.2, Eagle2.4, FImpute3.0 and ShapeIT4.1, 
computed for the 98 validation individuals in each scenario (scenario 1: using the 98 validation individuals; scenario 2: using the 264 
sequenced individuals)

Pairwise SNP 
distance (Mb)

0.01 0.10 1 2 5 10 50

Scenario 1 2 1 2 1 2 1 2 1 2 1 2 1 2

AlphaPhase1.3 0.91 0.91 0.83 0.84 0.50 0.51 0.33 0.35 0.14 0.15 0.05 0.05 0.00 0.00

Beagle4.1 0.95 0.96 0.92 0.95 0.81 0.91 0.73 0.87 0.57 0.77 0.40 0.64 0.03 0.14

Beagle5.2 0.97 0.97 0.96 0.97 0.92 0.95 0.89 0.92 0.79 0.85 0.66 0.75 0.16 0.24

Eagle2.4 0.95 0.97 0.91 0.96 0.67 0.88 0.52 0.81 0.30 0.64 0.15 0.46 0.00 0.05

FImpute3.0 0.93 0.98 0.89 0.97 0.68 0.95 0.54 0.92 0.31 0.84 0.15 0.75 0.00 0.31

ShapeIT4.1 0.97 0.98 0.96 0.97 0.92 0.95 0.88 0.93 0.78 0.87 0.66 0.77 0.17 0.27
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methods relying on matching haplotypes of fixed length 
such as AlphaPhase or FImpute. Browning and Browning 
[24] previously reported that the original phasing algo-
rithm from Beagle (implemented in Beagle3 or Beagle4) 
was less efficient with smaller samples (as in the pre-
sent study). The implementation of the method, includ-
ing parameters setting and fine-tuning, impacts also the 
phasing accuracy as we observed that methods with the 
same global approach (e.g., the Li and Stephens model), 
or even successive versions of the same software, achieve 
different accuracies. Similarly, it is difficult to determine 
the cause of the poorer performances of AlphaPhase, 
although lower phasing accuracy compared to Eagle2 
was already reported in the study presenting the software 
[48].

The choice of the phasing method might nevertheless 
depend on the availability of other options. For instance, 
Beagle4.0, FImpute3.0 and AlphaPhase1.3 can exploit 
the pedigree information, which might increase their 
phasing accuracy in certain conditions. When pedigree 
information was used in the first scenario (without the 
sequenced parents), phasing accuracy of AlphaPhase or 
FImpute was however not higher (Table S9 and Table S10 
in Additional file  1) probably because that information 
was already captured through long haplotype sharing 
between individuals or because these approaches can 
identify parents or surrogate parents without the need 
of the pedigree information. The benefit of pedigree 
information is stronger when direct relatives such as 
sequenced parent or offspring are available as in the sec-
ond scenario, or at lower marker density when LD meth-
ods are less efficient. Familial information can also be 
integrated in some LD-based approaches with a two-step 
procedure in which haplotypes are first obtained based 
on familial information and unphased markers are sub-
sequently phased by a LD-based approach [26]. Such an 
approach is possible with Beagle4.1 or ShapeIT4.1, that 
will preserve pre-phasing information present in the VCF 
file. Phasing information coming from marker alleles pre-
sent on the same sequenced reads can also be integrated 
with such an approach.

Finally, the importance of phasing accuracy will depend 
on the applications in which the haplotypes are used. 
For many applications, accurate phasing is only required 
at short range. For haplotype-based association stud-
ies, short 100-kb haplotypes would capture interactions 
among tightly-linked loci. We previously observed that 
improved long-range phasing accuracy did not result 
in higher imputation accuracy in a livestock popula-
tion [49]. The presence of a few switch errors would not 
necessarily be a problem in haplotype-based GWAS or 
genomic selection, or in some QTL mapping approaches, 
as long as correctly phased segments are long enough to 

infer the IBD relationships around the tested position. 
For such applications, most of the tested methods would 
provide sufficient accuracy. The phasing accuracy will be 
more important in applications in which the length of 
shared haplotypes is used to estimate age of alleles [17] 
or age to a common ancestor, to identify signatures of 
selection [15, 16], to determine relatedness between indi-
viduals based on the distribution of length of shared IBD 
segments [4]. This accuracy will also be essential in stud-
ies on meiotic recombination based on the identification 
of CO in genotyped or sequenced pedigrees [20, 50].

Methods
Sequencing data
The whole-genome sequence data used in the present 
work was obtained from 264 Holstein-Friesian indi-
viduals from the DAMONA pedigree designed to study 
germline mutation in cattle [51] and previously used 
and described [52, 53]. The individuals were sequenced 
at high coverage (mean coverage: 25.8X, ranging from 
15.2X to 47.1X), and the data included 98 sequenced 
trios (Figure S3 in Additional file 1). Whole genome Illu-
mina Nextera PCR free libraries (550 bp insert size) were 
sequenced on an Illumina HiSeq 2000 with a paired-end 
protocol (2 × 100 bp).

The sequencing data was re-aligned on the new ARS-
UCD1.2 (BosTau9) bovine genome assembly [37] using 
the Burrows-Wheeler Aligner MEM algorithm (v0.7.5a) 
[54]. The SAM files were converted into BAM files with 
SAMtools (v1.9) [55]. The BAM files were sorted using 
Sambamba (v0.6.6) [56]. PCR duplicates were marked 
with the MarkDuplicates option of picard-tools (v2.7.1) 
[57]. The BAM files were then recalibrated using the 
BaseRecalibrator procedure of GATK (v4.1.7.0) [58–60], 
using the VCF provided by the 1000 Bull Genome project 
(http://​www.​1000b​ullge​nomes.​com/) as known polymor-
phic sites database. Individual GVCF files were obtained 
with HaplotypeCaller (GATK4) and were subsequently 
merged in a GenomicsDB (with GenomicsDBImport, 
GATK4) to perform joint genotyping with GenotypeG-
VCFs (GATK4). Variants from the resulting VCF file were 
then recalibrated using VariantRecalibrator (GATK4) by 
applying two thresholds (99.9 and 97.5) and using 1.2 M 
SNPs extracted from commercial chips [61] as truth and 
training sets, and 138 M SNPs provided by the 1000 Bull 
Genome project as known set.

Assessing the quality of whole‑genome sequence 
genotype data
Strategy
To evaluate the quality of whole-genome sequence data 
in terms of genotyping error rates and of physical marker 
order, we compared the number of CO identified in our 

http://www.1000bullgenomes.com/
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pedigree with the sequence data to the number of CO 
identified in our pedigree with a lower density high-
confidence map validated on a much larger population 
genotyped with the Illumina BovineSNP50 BeadChip 
(Illumina Inc., San Diego, CA). The CO are identified 
in sequenced parent-offspring pairs, also referred to as 
proband and gamete. For the comparisons, we relied 
only on the most accurate CO counts, obtained when at 
least one parent of the proband was also sequenced (160 
gametes out of 279: 104 females and 56 males probands). 
Although a few CO might be missed or incorrectly iden-
tified with this reference map, much higher counts of CO 
with the sequence data would indicate presence of geno-
typing and map errors.

Validation of the reference 50K map
To obtain a high-confidence reference 50K marker map, 
we used the genotype data from Kadri et al. [52], avail-
able for 115,967 individuals and 30,349 SNPs and fol-
lowed their approach relying on the map confidence 
score (MCS) implemented in LINKPHASE3 [36] to iden-
tify eventually misplaced markers that were subsequently 
removed. Physical positions of the markers in the ARS-
UCD1.2 bovine genome assembly were obtained from 
https://​www.​anima​lgeno​me.​org/​repos​itory/​cattle/​UMC_​
bovine_​coord​inates. Among the 30,331 SNPs from this 
high-confidence reference map, 29,375 SNPs were pre-
sent in our whole-genome sequence data. The resulting 
high-confidence reference 50K marker map is provided 
in Additional file 2.

Evaluated data processing steps

Variant quality score recalibration (VQSR)  By apply-
ing the VariantRecalibrator procedure (GATK, see above) 
on the genotype calls, we kept 15,327,429 and 11,030,905 
SNPs with the 99.9 and 97.5 thresholds, respectively. 
These variants correspond to 99.9 and 97.5% of the total 
truth sites, 95.1 and 76.4% of the total known SNPs, and 
60.1 and 16.0% of the total novel SNPs, respectively.

Variant selection based on genetic rules  To further 
enrich our data set in high-quality variants, we selected 
variants behaving as true SNPs based on Hardy-Wein-
berg equilibrium test (p > 0.05), with expected geno-
type frequencies in offspring from heterozygous parents 
(based on a χ2 test, p > 0.05), and not presenting more 
than one Mendelian inconsistency in parent-offspring 
pairs or trios (e.g., opposite homozygotes) for the entire 
pedigree. We kept only variants for which the probability 
to observe no Mendelian inconsistencies by chance was 
lower than 1e-12. Finally, we also discarded uninforma-
tive markers with low minor allele frequency (< 0.01). 

Applications of these rules resulted in the selection of 
8,435,899 informative variants behaving as true SNPs.

Improving genotyping‑calling  The accuracy of gen-
otyping-calling for these 8,435,899 variants was then 
improved with the LD-based approach implemented in 
Beagle4.1 [39].

Exclusion of suspicious genomic regions  Several filters 
were applied to exclude genomic regions of putatively 
lower quality. First, we removed the last 10-kb segments 
at chromosome ends. Second, we excluded high coverage 
regions that we identified within each individual using 
the approach described in the LUMPY framework [62]. 
We considered as high coverage regions the genomic 
regions presenting 6 times higher coverage than the indi-
vidual average whole-genome coverage. Finally, we dis-
carded genomic regions associated with putative errors 
in the genome assembly. To that end we used tools avail-
able in LINKPHASE3 [36] and an approach described 
in more details in Kadri et al. [41]. We first identified 
small genomic regions flanked by peaks of high recom-
bination rate (> 0.05). For these genomic regions, we 
compared within-family segregation patterns (inherit-
ance vectors as described in Druet and Georges [36]) 
to those obtained with the high-confidence 50 K map in 
the flanking regions, and removed those with a squared 
correlation < 0.90. We subsequently removed SNPs with 
a low MCS (< 0.99) as well as chromosome extremi-
ties when they presented inflated recombination rate 
with flanking regions. The procedure was repeated until 
no further evidence for map errors was visible. In total, 
we excluded 18,220 SNPs associated with these regions 
(Additional file 3).

Final editions  We finally set to missing 38,537 incom-
patible genotypes in parent-offspring pairs (opposite 
homozygous), eventually introduced after running Bea-
gle4.1. We also removed SNPs that were monomorphic at 
this stage and those with a missing genotyping rate above 
5% in the final pedigree. The final number of SNPs was 
8,417,679 (complete list provided in Additional file 4).

Phasing methods
We herein compared the accuracy from different phas-
ing software: AlphaPhase v1.1 [29] and v1.3 [48], Sha-
peIT v2.r904 [31] and v4.1.3 [35], Beagle v3.3.2, v4.0, 
v4.1, v5.0, v5.1, and v5.2 [7, 63], Eagle v2.4.1 [33], and 
FImpute v3.0 [30]. Most of these methods are pop-
ulation-based methods. Indeed, Eagle and ShapeIT 
are hidden Markov models (HMM) modeling target 

https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates
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haplotypes as mosaic of reference haplotypes, similarly 
to the Li and Stephens model [40]. The earlier versions 
of Beagle (v3.3.2, v4.0 and v4.1 [7]) condense all the 
observed haplotypes into a directed acyclic graph and 
the resulting model is a variable length Markov chain 
that can also be viewed as a HMM. The newer versions 
of Beagle (v5.0, v5.1 and v5.2 [63]) are based on the Li 
and Stephens HMM [40]. AlphaPhase and FImpute are 
both heuristic methods performing haplotype match-
ing in fixed-length windows, and that exploit also the 
pedigree information when possible. More detailed 
descriptions of these models are available in the origi-
nal papers. For each of the tools, we used the default 
parameters.

Comparisons were first realized with the most recent 
version of different software, including AlphaPhase1.3, 
ShapeIT4.1, Beagle4.1, Beagle5.2, Eagle2.4 and FIm-
pute3.0. We included Beagle4.1 because the method is 
very different from Beagle5.2. Then, we compared dif-
ferent versions of some software to evaluate the benefit 
of different updates and to obtain metrics for older ver-
sions that have been compared in previous studies, or 
that are sometimes still in use. This allows also to eval-
uate whether it is worth re-phasing a data set after the 
release of a new version. FImpute3.0 and Eagle2.4 were 
not included in this comparison as we only tested one 
version for these software.

Evaluation of haplotype phasing quality
Gold standard for haplotype evaluation
In real data sets, true haplotypes remain generally 
unknown. Therefore, we rely on a family-based strategy 
that is possible thanks to the availability of a sequenced 
pedigree [24, 64]. In that case, child’s haplotypes can 
be resolved using Mendelian segregation rules when 
at least one of their parents is also sequenced. In the 
absence of genotyping or marker order errors, this 
results in exact haplotypes although some positions 
might remain unphased. To minimize those errors 
in our data set, we applied the different procedures 
described above. The family-based haplotypes can then 
be used to assess the quality of haplotypes obtained 
using population-based phasing methods. In our 
sequenced pedigree, we had 98 sequenced offspring 
with both parents sequenced (trios). We phased these 
trios using Mendelian segregation rules with LINK-
PHASE3 [36] and used them subsequently as the gold 
standard (referred to as “true haplotypes”). In the first 
tested scenario, the sample of 98 offspring (validation 
individuals) was phased with each method. In a sec-
ond scenario, all the 264 sequenced individuals were 
included in the phasing step, including the sequenced 
parents but the pedigree information was ignored. 

This second scenario allowed to study the impact of 
increasing the sample size and including more related 
individuals.

Metrics for phasing performance

Phasing yield  This metric defined as the percentage of 
phased single nucleotide variants, and representing the 
completeness of phased haplotypes, is sometimes used in 
evaluation of phasing quality (e.g., [23]). However, all the 
evaluated population-based methods achieve 100% phas-
ing yield and this metric is therefore only relevant for 
AlphaPhase and FImpute.

Switch error counts and rates  For each evaluated phas-
ing method, we compared within individual the combi-
nations of alleles at each pair of consecutive informative 
sites (i.e. heterozygous and phased in the true haplotype) 
in the inferred haplotypes with the combination of alleles 
present in the true haplotypes as illustrated in Fig.  2. 
Each discrepancy is called a switch error and the total 
number of switch errors per individual is the switch error 
count (SEC). Since this number depends on the number 
of informative SNPs, that represents also the number 
of opportunities for switch errors, we also defined the 
switch error rate (SER) as the SEC divided by the number 
of informative markers (e.g., [23]).

Length of correctly phased haplotype blocks  In order 
to characterize the distance between successive switch 
errors (distribution along the genome), we used the qual-
ity adjusted (QA) haplotype block length and the QAN50 
metrics described in Duitama et al. [65]. Briefly, the QA 
haplotype block length is defined as the length of a seg-
ment between two successive switch errors (Fig. 2) mul-
tiplied by the proportion of phased SNPs. The QAN50 
is defined as the longest QA length such that 50% of 
all the informative SNPs are located within haplotype 
blocks with a QA length larger than QAN50 [4]. In other 
words, this means that 50% of the informative SNPs are 
contained in haplotype blocks of at least QAN50. Note 
that the quality adjustment was only relevant for meth-
ods with a phasing yield below 100%. For other methods, 
these metrics represent raw block lengths.

Pairwise SNP phasing accuracy  Finally, we computed 
the probabilities that there are no phasing errors between 
two SNPs as a function of the distance between SNPs 
pairs, providing a complementary measure to previous 
metrics and inspired from Choi et al. [23].
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Additional file 1: Figure S1. Switch error rates in earlier versions of 
evaluated software in both scenarios. Boxplots of switch error rates (SER, 
%) obtained with AlphaPhase1.1, AlphaPhase1.3, Beagle3.3, Beagle4.0, 
Beagle4.1, Beagle5.0, Beagle5.1, Beagle5.2, ShapeIT2 and ShapeIT4.1, 
computed for the 98 validation individuals (A) in scenario 1 with only the 
98 validation individuals, and (B) in scenario 2 with the 264 sequenced 
individuals. Figure S2. Haplotype block length metrics in earlier versions 
of evaluated software in both scenarios. (A, B) Quality adjusted (QA) hap‑
lotype block lengths (Mb), and (C, D) number of SNPs in correctly phased 
blocks (× 1000), obtained with AlphaPhase1.1, AlphaPhase1.3, Beagle3.3, 
Beagle4.0, Beagle4.1, Beagle5.0, Beagle5.1, Beagle5.2, ShapeIT2 and Sha‑
peIT4.1, computed for the 98 validation individuals and plotted as a func‑
tion of the proportion of the genome, in scenario 1 (A, C) with only the 
98 validation individuals, and in scenario 2 (B, D) with the 264 sequenced 
individuals. The black curves with dots represent the total length of each 
chromosome (if they were perfectly phased) as a function of the propor‑
tion of the genome they cover. Figure S3. Distribution of haplotype block 
lengths in both scenarios. The quality adjusted (QA) haplotype block 
lengths (Mb) were obtained with AlphaPhase1.3, Beagle4.1, Beagle5.2, 
Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for the 98 validation indi‑
viduals (A) in scenario 1 with only the 98 validation individuals, and (B) in 
scenario 2 with the 264 sequenced individuals. Red stars represent mean 
values. Figure S4. Pedigree tree of the 264 Holstein-Friesian cattle used 
in this study. Individuals in blue are males, the ones in orange are females, 
and the ones surrounded in red are the 98 validation individuals (offspring 
from trios, that is with both parent sequenced) used to compare the 
algorithms. Table S1. Number of SNPs per chromosome in both scenarios. 
Total number of whole-genome sequence SNPs and mean numbers of 
informative SNPs for each chromosome in each scenario (scenario 1: using 
the 98 validation individuals; scenario 2: using the 264 sequenced indi‑
viduals). Table S2. Summary statistics of the switch error counts in both 
scenarios. Minimum, mean, median and maximum switch error counts 
(SEC), obtained with all the evaluated LD-based phasing algorithms, 
computed for the 98 validation individuals in each scenario (scenario 1: 
using the 98 validation individuals; scenario 2: using the 264 sequenced 
individuals). Table S3. Summary statistics of the switch error rates in both 
scenarios. Minimum, mean, median and maximum switch error rates (SER, 
%), obtained with all the evaluated LD-based phasing algorithms, com‑
puted for the 98 validation individuals in each scenario (scenario 1: using 
the 98 validation individuals; scenario 2: using the 264 sequenced indi‑
viduals). Table S4. Summary statistics of the quality adjusted haplotype 
block lengths in both scenarios. Minimum, mean, median and maximum 
quality adjusted (QA) haplotype block lengths, obtained with all the 
evaluated LD-based phasing algorithms, computed for the 98 validation 
individuals in each scenario (scenario 1: using the 98 validation individuals; 
scenario 2: using the 264 sequenced individuals). Table S5. Results of 
different metrics used to assess phasing quality in both scenarios before 
improving genotype quality with Beagle4.1. Median values of switch error 
counts (SEC), switch error rates (SER, %), quality adjusted (QA) haplo‑
type block length (bp), and QAN50 (bp), obtained with AlphaPhase1.3, 
Beagle4.1, Beagle5.2, Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for 
the 98 validation individuals in each scenario (scenario 1: using the 98 
validation individuals; scenario 2: using the 264 sequenced individuals). 
Table S6. Genome percentage included in correctly phased segments 
longer than different thresholds in both scenarios before improving 
genotype quality with Beagle4.1. Percentage of the genome covering 
quality adjusted (QA) haplotype blocks of minimal length of respectively 
1, 5, 10 and 50 Mb, obtained with AlphaPhase1.3, Beagle4.1, Beagle5.2, 

Eagle2.4, FImpute3.0 and ShapeIT4.1, computed for the 98 validation 
individuals in each scenario (scenario 1: using the 98 validation individuals; 
scenario 2: using the 264 sequenced individuals). Table S7. Results of 
different metrics used to assess phasing quality in the second scenario 
using different parameter settings with ShapeIT4.1. Median values of 
switch error counts (SEC), switch error rates (SER, %), quality adjusted (QA) 
haplotype block length (bp), and QAN50 (bp), obtained with ShapeIT4.1 
using different values (4, 8, 16, 32, 64 and 128) of the parameter --pbwt-
depth, computed for the 98 validation individuals (scenario 2: using the 
264 sequenced individuals). Table S8. Genome percentage included in 
correctly phased segments longer than different thresholds in the second 
scenario using different parameter settings with ShapeIT4.1. Percentage of 
the genome covering quality adjusted (QA) haplotype blocks of minimal 
length of respectively 1, 5, 10 and 50 Mb, obtained with ShapeIT4.1 using 
different values (4, 8, 16, 32, 64 and 128) of the parameter --pbwt-
depth, computed for the 98 validation individuals (scenario 2: using the 
264 sequenced individuals). Table S9. Results of different metrics used to 
assess phasing quality in the first scenario without and with the pedigree 
information. Median values of switch error counts (SEC), switch error rates 
(SER, %), quality adjusted (QA) haplotype block length (bp), and QAN50 
(bp), obtained with AlphaPhase1.1 and FImpute3.0 without and with (−
ped) the pedigree information, computed for the 98 validation individuals 
(scenario 1: using the 98 validation individuals). Table S10. Genome 
percentage included in correctly phased segments longer than different 
thresholds in the first scenario without and with the pedigree informa‑
tion. Percentage of the genome covering quality adjusted (QA) haplotype 
blocks of minimal length of respectively 1, 5, 10 and 50 Mb, obtained with 
AlphaPhase1.1 and FImpute3.0 without and with (−ped) the pedigree 
information, computed for the 98 validation individuals (scenario 1: using 
the 98 validation individuals).
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