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Abstract

It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder
populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect,
severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae,
Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized
that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic
variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However,
mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the
assumptions of independence upon which traditional association test statistics are based. We performed genome-wide
association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage
the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol,
triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma
glucose. We show that our study is well powered to detect common alleles explaining $5% phenotypic variance. However,
no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population,
common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians
have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.
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Introduction

The use of isolated populations has a long history in genetic

mapping, with benefits including founder effects, reduced genetic

diversity, reduced genetic and environmental heterogeneity, and

large, multi-generational pedigrees [1–3]. The resulting reduction

in allelic heterogeneity has contributed to the success of genetic

linkage and positional cloning approaches in isolated populations,

particularly for the identification of Mendelian disease mutations

[1]. While multiple rare mutations may segregate in an outbred

population, founding events and subsequent population bottle-

necks may reduce allelic diversity such that a single mutation

dominates the allelic spectrum in an isolated population. In

addition, previously rare mutant alleles may increase in frequency

through genetic drift or natural selection, thus contributing more

substantially to trait variation than in outbred populations and

increasing the power of genetic mapping studies. Conceivably, the

same properties that make isolated populations valuable for

Mendelian trait genetics may be exploited for genome-wide

association approaches to the study of complex genetic traits [3].
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We have been studying the native population of Kosrae,

Federated States of Micronesia, under the hypothesis that power

to detect mutant alleles might be enhanced by reduced allelic

heterogeneity, and that different genes (and thus biological

insights) might be obtained. Our initial analyses of genotyping

data from 30 Kosraen trios and ,110,000 genome-wide SNPs

showed that Kosraens exhibit strikingly reduced haplotype

diversity and extended LD, likely resulting from a strong founder

effect and repeated population bottlenecks [4–6]. These features

were much more dramatic than in commonly cited ‘‘founder’’

populations such as Finland and Iceland. Our prior analyses,

including resequencing on Kosrae, suggested that fixed marker

sets such as the Affymetrix SNP genotyping products would

provide better coverage for common variants in Kosraens than in

any HapMap population [4].

We also previously observed that native Kosraens exhibit

elevated rates of obesity and diabetes, as seen in other indigenous

populations [7–10]. It is likely that many common mechanisms

underlie the rising prevalence of obesity and metabolic disease in

both Caucasian and native populations. However, given the

reduced genetic diversity of isolated populations, the high

prevalence of metabolic disease raises the possibilities that

population-specific disease loci and fewer disease loci of relatively

larger effect segregate in Kosraens.

The genetic architecture of isolated populations introduces

analytic challenges which confound traditional association tests

[11]. Inbreeding and the historical lack of random mating in a

small population violate assumptions such as Hardy-Weinberg

equilibrium which underlie many association test statistics.

Members of isolated populations descend from a small number

of founders, thus are related, typically in large families. In addition

to ‘‘known’’ relationships, cryptic relatedness further confounds

the test statistic, as more distant relationships may be unreported

or incorrectly specified during patient interview.

We ascertained over 3,100 Kosraen adults in three screens

spanning a decade and performed genome-wide association

studies for 15 quantitative traits in this cohort. To do so, we

developed analytic strategies to address the complexities of

studying a population in which the majority of subjects are

related. Our work includes: extensive validation of the extended

Kosrae pedigree; identifying an analytic approach to maximize

power; calibrating the association score to correct for relatedness

in the cohort; and application of this method to the analysis of 15

quantitative traits. Results from the genome-wide association

analyses validate our approach by detecting previously known loci

for LDL-C, HDL-C, triglycerides and C-reactive protein.

Additionally, our data suggest novel loci contributing to

phenotypic variation in thyroid stimulating hormone (TSH) and

fasting plasma glucose (FPG). While empirical power calculations

suggest our study is well-powered to detect common variants of

relatively large effect ($5% variance explained) with genome-wide

significance, no such effects were observed in our data with

convincing statistical support.

Results

Sample Ascertainment
We performed a population-based screen of native Kosraens

over three separate visits to the island (Table 1). The 1994 cohort

was described previously [7,12]. Self-reported family relationships

were recorded for use in constructing pedigrees and blood was

collected for DNA extraction and genotyping. A rich phenotypic

dataset was collected for a majority of the adult population of the

island, including measurements of height, weight, body mass index

(BMI), waist circumference, plasma leptin, percent body fat,

fasting plasma glucose, blood pressure, plasma lipids (ApoA1,

HDL-C, ApoB, LDL-C, total cholesterol, triglycerides), thyroid

stimulating hormone (TSH), and plasma C-reactive protein

(CRP). Phenotypic data were carefully reviewed for errors in data

entry, unit conversion and spurious measurements, and to verify

that measurements of related traits are correlated (e.g., r2.0.7

between BMI and waist circumference). Any values that could not

be reconciled were excluded from the analysis. Heritability

estimates for each trait are typically within published ranges;

mean values, distribution, number of phenotyped individuals, and

heritability estimates for each trait can be found in Dataset S1.

Genotyping
A total of 2,906 individuals were successfully genotyped using

the Affymetrix 500 k mapping assay (minimum per-chip call rate

95%) (Table S1). SNPs were excluded from the analysis for the

following reasons: mapping to multiple genomic locations

(n = 3,462); missing .5% data (n = 43,849); or more than 10

Mendelian errors observed (n = 5,887) (Figure S1). Hardy-Wein-

berg equilibrium was not used as a quality filter, as it is difficult to

assess in our highly related cohort using standard formulae. For

the purposes of SNP quality control, allele frequencies were

estimated assuming all 2,906 genotyped individuals are unrelated.

After excluding monomorphic SNPs (n = 30,581), 408,775 SNPs

passed technical quality filters, including 78,862 SNPs of very low

frequency in Kosraens (0,MAF,0.01).

We next used data from 2,906 individuals genotyped for

400,301 polymorphic, autosomal SNPs to validate the Kosrae

pedigree.

Refining the Kosrae Pedigree with Genome-Wide Genetic
Data

Genetic accuracy of the Kosrae pedigree was assessed using

pairwise identity-by-descent (IBD) estimates generated in PLINK

[13]. For three types of known relationships (parent-child, full

sibling, and half-sibling), pairs of genotyped individuals were

evaluated to determine whether estimates of the proportion IBD

Author Summary

Isolated populations have contributed to the discovery of
loci with simple Mendelian segregation and large effects on
disease risk or trait variation. We hypothesized that the use
of isolated populations might also facilitate the discovery of
common alleles contributing to complex traits with
relatively larger effects. However, the use of association
analyses to map common loci influencing trait variation in
large, inbred cohorts introduces analytic challenges, as
extensive relatedness between subjects violates the as-
sumptions of independence upon which traditional associ-
ation test statistics are based. We developed an analytic
strategy to perform genome-wide association studies in an
inbred family containing over 2,800 individuals from the
island of Kosrae, Federated States of Micronesia. No alleles
with large effect were observed with strong statistical
support in any of the 15 traits examined, suggesting that
the contribution of individual common variants to complex
trait variation in Kosraens is typically not much greater than
that observed in other populations. We show that the
effects of many loci previously identified in Caucasian
populations are indistinguishable in Caucasians and Kos-
raens, despite very different population genetics and
environmental influences.

GWAS on the Island of Kosrae
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zero, one or two copies were consistent with the relationship

reported by the patients and their families. The pedigree was

corrected to reflect the true genetic relationship between pairs of

individuals whose IBD estimates were inconsistent with self-

reported relationships (Table 2). For example, 2,553 parent-child

pairs reported by study participants were validated by genetic

data, while 141 parent-child pairs were identified using IBD

estimates where the relationship was previously unknown, was

misreported, or not reported by study participants. In some cases,

individuals were added to the pedigree as ‘‘placeholders.’’ For

example, if genetic data indicated that one individual of a reported

sibship was actually a maternal half-sibling, an ungenotyped

‘‘placeholder’’ was added to the pedigree as the father of the

newly-discovered half-sib. Discrepancies between the genealogical

and genetic pedigrees on Kosrae are not unexpected given the

inherent inaccuracies of self-reported relationships, and are also

consistent with known adoption practices on the island.

Changes to the pedigree were made based on data from a

related pair in which both individuals were genotyped. However,

successive iterations of pedigree validation and correction for fully

genotyped, first-degree relatives produced a ‘‘ripple effect,’’ also

improving the accuracy of relationships involving individuals not

genotyped with the 500 k assay (Table 2), and second-degree and

other higher-order relationships across the extended pedigree.

After extensive comparisons with genetic data, the extended

Kosrae pedigree spans eight generations and includes over 4,300

individuals (living or deceased), averaging four individuals per

sibship (range 1–12). Nearly all (n = 2,900) of the subjects

successfully genotyped with the Affymetrix 500 k assay can be

joined in a single extended pedigree, with an additional six

individuals forming three independent nuclear families. We count

58 consanguineous offspring as well as numerous marriage loops.

Nearly 30% of all genotyped individuals have two genotyped

parents. Fifty-six individuals appear distantly related or unrelated

to any other study participants.

Development of a Strategy for Association Analyses
Our goal was to develop an analytic framework that

accommodates the complex familial relationships in the Kosraen

cohort while maximizing power to detect association. We were

unable to identify or develop software capable of simultaneously

computing over a complex pedigree of 2,900 individuals and

.330,000 SNPs. Thus, our strategy became to break the pedigree

into smaller units; a similar approach was recently taken by

Przeworski and colleagues in their study of recombination in the

Hutterites [14]. Below we also describe the data simulation

framework used to perform controlled comparisons between

analytic approaches, leading to the selection of an association

test. We use empirical power calculations to determine an effective

sample size for our highly related cohort and estimate the power of

our study across a range of effect sizes. We applied our method for

association analyses in a related cohort to the study of 15

quantitative traits in native Kosraens.

Table 1. Study participants successfully genotyped for the Affymetrix 500 k assay.

N total N unique % Male/Female Mean age Median age Age Range

1994 1,935 903 49.6%/50.4% 43 39 20–86

2001 1,968 889 40.8%/59.2% 28 24 16–80

2003 84 33 51.5%/48.5% 24 22 16–53

Multiple exams - 1,081 35.3%/64.7% 47 46 17–89

Total 3,987 2,906 41.6%/58.4% 40 38 16–89

Screenings took place in 1994, 2001, and 2003. For each screen, the total and unique number of individuals examined is shown, as some participants were examined in
multiple screens. For subjects examined more than once, age (years) is reported from the most recent exam.
doi:10.1371/journal.pgen.1000365.t001

Table 2. Evaluation and refinement of the extended Kosrae pedigree using identity-by-descent estimates.

Relationship type Confirmed Conflicting Newly discovered

Two individuals genotyped Parent-Child 2,553 2 141

Full sibling 4,147 72 110

Half sibling 351 72 271

One individual genotyped Parent-Child 3,266 229 109

Full sibling 2,384 126 33

Half sibling 162 28 104

No individuals genotyped Parent-Child 1,415 43 28

Full sibling 941 34 21

Half sibling 51 0 18

For each type of relationship, the number of related pairs is shown where the reported relationship and identity-by-descent estimates from genetic data were in
agreement (‘‘Confirmed’’), conflicting, or added based on genetic data (‘‘Newly discovered’’). Estimates for genome-wide IBD sharing and sharing 0, 1, or 2 copies IBD
were used to distinguish between the three relationship types. Individuals were added to the pedigree as necessary to represent genetic relationships, such as the
addition of a ‘‘placeholder’’ father to reflect a newly-discovered maternal half-sib relationship. Corrections to the pedigree were made based on data from related pairs
with two genotyped individuals, but impacted relationships throughout the extended pedigree.
doi:10.1371/journal.pgen.1000365.t002

GWAS on the Island of Kosrae
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Breaking the Pedigree
We broke the extended pedigree to create smaller units that

could be feasibly analyzed by existing software packages for large

numbers of markers, while maximizing the number of genotyped

individuals included in the analysis (as an initial, rough proxy for

power) and maintaining some degree of information about

relatedness between study participants. Alternative methods for

breaking the pedigree were systematically explored, as described in

the Materials and Methods.

We selected sibships-without-parents as the unit of analysis

(Figure 1A). The 2,848 non-consanguineous genotyped Kosraens

were grouped into 586 sibships consisting of two or more

individuals who share a mother and father (Figure 1B). Any

genotyped parents are considered only in the context of the

parents’ sibship. Of the individuals not included in a sibship of size

$2 (n = 612), a subset was identified in which any two members of

the subset were related to the degree of first cousins or less, as

determined by genome-wide IBD sharing. In the context of

association analyses, this subset of individuals can be considered as

sibships of size one, where relatedness between family groups is no

more than first cousins.

The actual number of individuals included in the association

analysis varies with the availability of phenotypic data, as

individuals lacking phenotype data were omitted from the analysis

of each trait. The extended Kosrae pedigree was thus broken into

sibships for analysis of each of 15 quantitative traits. For example,

in LDL-C, 560 sibships size $2 and 240 sibships of size 1

(n = 2,366 individuals total) were analyzed for association. For

BMI, the analysis was limited to individuals who had reached full

adult height (females age $22 and males age $24) [15], and

comprised 2,073 individuals in 467 sibships of size $2 and 202

sibships of size 1.

Since the Kosrae cohort spans multiple generations, members of

one sibship are frequently parents or cousins of other sibships.

Because traditional association tests assume independence between

family groups, we anticipated that relatedness between sibships

would inflate the association test statistic [16,17].

Selection of an Association Test: Within and between
Families

We used simulation to evaluate association tests and the

distribution of association statistics, with the goal of selecting an

association test that maximized power for our chosen family

configuration of sibships-without-parents. We compared two

different approaches for association analyses of quantitative traits:

a within-family test vs. a combined within- and between-family

test. We selected the FBAT software to represent within-family test

statistics, with the expectation that it would be robust to

population stratification and relatedness between families [18].

The QFAM module in PLINK includes options for within-only

(PLINK/QFAM-Within) as well as within- and between-family

tests (PLINK/QFAM-Total) [13]. Both options of PLINK/

QFAM use permutation testing to derive empirical p-values;

however, we expected the between-family test to exhibit score

inflation due to known relatedness between sibships.

We used a modified simulation framework to evaluate and

compare performance of the association approaches. An effect of

known size was spiked into a Kosraen phenotype (BMI) and

analyzed using observed Kosraen genotypes and family structure.

We chose to modify an observed phenotype instead of simulating

genotypes in order to preserve the complex familial correlations

between genotype and phenotype on Kosrae. We selected BMI as a

representative quantitative phenotype for its moderate heritability

(h2 = 0.47 on Kosrae) and near-complete phenotyping in our cohort.

Genotype data for 1,000 SNPs were randomly drawn from the

larger dataset. After omitting rare SNPs (MAF,0.01), 770 SNPs

remained. For each simulation, we modified the BMI phenotype to

contain an association to a single SNP contributing an additional 1%

to the total phenotypic variance. While this constitutes a fairly

substantial single locus effect, it constitutes a small influence on the

trait as a whole that does not distort the overall heritability and

genome-wide relationships between genotype and phenotype. A

total of 770 modified phenotypes were generated, each containing

an artificial association to a different SNP in addition to the heritable

and other variation in the observed BMI phenotype. Across datasets,

the randomly-selected SNP associated with the spiked-in effect

spanned a range of allele frequencies greater than 0.01.

Each dataset was analyzed in parallel using FBAT for a within-

family association test, or using PLINK/QFAM for within-only or

combined within- and between-family tests. The performance of

each method was evaluated by tallying across datasets the rank of

the spiked SNP within its respective dataset. The method that

consistently assigned a higher rank to the spiked SNP was

identified as the more powerful approach for association analyses.

While genomic control is used in the actual association tests to

control the false positive rate, we note that rank order is not

changed by genomic control, and thus we did not employ it at this

stage of evaluating methods.

Figure 1. Breaking the extended Kosrae pedigree. A) The
extended Kosrae pedigree is broken into sibships without parents.
Parent-child or cousin relationships may exist between different
sibships. Tests of association are performed within sibships (gray
arrows) and between sibships (black arrows). Individuals without
siblings (sibships of size 1) are filtered based on genome-wide IBD
sharing to produce a maximal set of individuals with pairwise
relationships equivalent to first cousins or less. Panel B shows the
number of sibships of each size for n = 2,848 Kosraen individuals
genotyped with the Affymetrix 500 k assay.
doi:10.1371/journal.pgen.1000365.g001

GWAS on the Island of Kosrae
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Comparison of the within-only vs. combined within- and

between-family association test confirmed that greatest power, as

measured by the rank order of the true effects, was obtained

through the use of a combined within- and between-family

association test (Figure 2). Within-family tests implemented in

FBAT and PLINK/QFAM-Within identified the spiked SNP as

the best result in 36% and 43% of all spiked datasets, respectively.

A combined within- and between-family test as implemented in

PLINK/QFAM-Total increased identification of the spike as the

best-associated SNP to 68%. PLINK/QFAM-Total also ranked a

greater proportion of spiked SNPs in the top 5 results than FBAT

(78% PLINK/QFAM-Total vs. 65% FBAT), indicating that the

between-family test adds substantial power to the study. In a full

genome scan of ,340,000 markers, these rank thresholds

approximately correspond to the top 440 or 2,200 results,

respectively, for a true effect explaining 1% of the variance.

We then examined p-value distributions for the PLINK/

QFAM-Within and PLINK/QFAM-Total tests (data not shown).

As expected, p-values for the within-family test follow the null

distribution while the combined within- and between-family

(QFAM-Total) test exhibited a systematic deviation from the null.

Such inflation of the nominal association score is typical for

genotyping artifacts as well as excess known or cryptic relatedness

in a between-family test of association, and was anticipated from

the known relatedness between sibships. We determined that the

major source of score inflation in the combined within- and

between-family association test (QFAM-Total) was relatedness in

the cohort (Dataset S1, Figure S2). Conceptually, including closely

related family units resembles population stratification, as the allele

frequencies (from IBD) and phenotypes (from heritability and

shared environment) are correlated in family members. In all

subsequent analyses, we applied genomic control to adjust the

association scores for excess relatedness [19].

After calibrating the distribution of test statistics to the null, we

again evaluated the within-only vs. within- and between-family

association tests using p-values to compare performance and to

assess study power. Because the ability to estimate power

accurately is poor when power is very low, we sought to improve

power to discriminate between performances of the two tests by

examining the spiked dataset containing an effect explaining 2%

phenotypic variance. Using p-values as the measure of signifi-

cance, we confirmed that the combined within- and between-

family association test implemented in PLINK/QFAM-Total has

24.4% power compared to the within-family only test at 15.3%

power to achieve an arbitrary threshold of p,1026 (Figure 3).

Based on these preliminary analyses, we selected an analytic

strategy as follows. The extended Kosrae pedigree is broken into

smaller family units, namely sibships without parents. The

remaining individuals are filtered on identity-by-descent estimates

to produce a set of individuals related no more closely than first

cousins, i.e. sibships of size one. The complete set of all sibships is

filtered for each trait to include only individuals who are both

successfully genotyped and phenotyped. Sibships are analyzed

using a combined within- and between-family association test as

implemented in PLINK/QFAM-Total, including permutation

testing to correct for within-family correlation between genotype

and phenotype. Finally, we compensate for relatedness between

family units and any residual stratification by applying genomic

control.

Empirical Power Calculations
We used the simulation data above to estimate the effective

sample size for the BMI phenotype by direct observation for small

effects (Figure 4A) and by extrapolation for larger effects

(Figure 4B). Power from the 2,073 individuals analyzed in

Kosraen sibships for BMI is comparable to that obtained from a

study of 840 unrelated individuals. The more than two-fold size

reduction from the actual cohort composed of sibships to an

effective number of unrelated individuals highlights the excess of

relatedness among our study participants.

Figure 2. Inclusion of a between-family test of association increases study power using rank as a metric. A known effect comprising 1%
of phenotypic variance explained was ‘‘spiked’’ into a dataset of 770 randomly selected SNPs with MAF$0.01. Study power was evaluated for within-
only (FBAT and PLINK/QFAM-Within) and within- and between-family (PLINK/QFAM-Total) tests of association. Across the 770 spiked datasets
generated, study power is measured as the fraction of datasets in which the ‘‘spiked’’ SNP exceeds a particular rank. Ranking first out of 770 SNPs in
each dataset approximates a rank of #440 in the context of a full genome-wide scan of ,340,000 markers.
doi:10.1371/journal.pgen.1000365.g002

GWAS on the Island of Kosrae
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Given the effective sample size of our cohort, we then used the

Genetic Power Calculator [20] to estimate study power for effects

explaining larger proportions of phenotypic variance, as our

hypothesis was that such effects might exist on Kosrae (Figure 4B).

Our study has ,87% power to detect effects explaining 5%

phenotypic variance at a genome-wide significant threshold of

p,561028, and .95% power to detect such effects at p,1026.

We concluded that our genome-wide association strategy for

quantitative traits on Kosrae is well-powered to identify loci with

relatively strong genetic effects, should they exist and are tagged by

SNPs on the genotyping array.

Results from the Genome-Wide Association Analyses of
15 Quantitative Traits

We applied our strategy for association analyses to the

examination of 15 quantitative traits, using measurements from

clinical screenings in 1994, 2001 and 2003. As anticipated from

the known relatedness between sibships, scores were inflated

compared to the null distribution. Score inflation ranged from

l= 1.10 for fasting plasma glucose to l= 2.05 for HDL-C (Figure

S3). Score inflation was correlated strongly with trait heritability

(r2 = 0.42). For reference, Table 3 provides a list of SNPs with

p#1025 for each trait, including genome-wide significant

association (p#561028) between SNPs on chromosome 11 and

triglycerides. Quantile-quantile (QQ) plots and the respective

genomic control correction factors (l) for select traits are shown in

Figure 5; plots for all 15 quantitative traits are presented in Figure

S3. The results from our genome wide scans indicate an excess of

association signal over that expected by chance for LDL-C,

triglycerides and thyroid stimulating hormone.

We observed strong association between SNPs in previously

established loci and HDL-C, LDL-C, triglyceride levels, TSH and

CRP, supporting the validity of our analytic approach. For HDL-

C, we observe association with rs4783962 and rs1800775 near

CETP (p = 1.6861024 and 1.7161024, respectively), with the

same allele and direction of effect as reported in Caucasian

populations [21,22]. The best-associated SNP for LDL-C is

rs4420638 in the APOE/C1/C4/C2 gene cluster on chromosome

19 (p = 1.8961027), a known locus influencing plasma levels of

LDL-C and total cholesterol [23]. We also observed association

between LDL-C levels and multiple SNPs in and around the gene

encoding HMG-CoA reductase (HMGCR), the target for choles-

terol-lowering statin drugs [24,25]. Studies in Caucasian cohorts

recently established this locus as a true association, with genome-

wide significant p-values ,1610220 [21]. For TSH, three SNPs

(rs4704397, rs6885099, and rs2046045) previously identified in

Caucasian cohorts are also associated in Kosraens, with p-values

ranging from 361024 to 1.861024 [26]. For CRP, SNPs at the

CRP and HNF1A gene loci show association and the same

direction of effect on Kosrae (p = 2.061025 and 361024,

respectively) as previously observed in a Caucasian cohort, in

which the associated SNPs were either directly genotyped or are in

perfect correlation (r2 = 1 in both HapMap CEU and ASN) [27].

The strongest association for CRP on Kosrae is with rs4420638

near the APOE gene (p = 1.661026; Table 3), another previously

known locus [27,28]. This SNP is less well-correlated with the

most highly-associated SNP reported in the literature (rs2075650;

r2 = 0.37 and 0.49 in HapMap CEU and ASN, respectively) [27].

Seven SNPs near APOC3/A5 have genome-wide significant

association (p,561028) with triglyceride levels (p = 1.261029 to

8.661029), including specific variants not previously implicated in

Caucasian cohorts. In Kosrae, the best-associated SNP for

triglyceride levels (rs7396835, p = 1.261029) is ,23 kb down-

stream of the variant recognized in Caucasians (rs2266788).

Correlation between these two SNPs has not been evaluated in

Kosraens, since rs2266788 is neither directly genotyped nor well-

covered by other SNPs in our 500 k dataset. However, rs2266788

is uncorrelated in HapMap Asian or Caucasian samples (r2#0.32

and r2#0.14, respectively) with any of the seven SNPs associated

with triglycerides in Kosraens. As the causal variant for this locus

has not been identified, it remains to be determined whether these

Figure 3. Inclusion of a between-family test of association increases study power using p-value as a metric. A known effect comprising
2% of phenotypic variance explained was ‘‘spiked’’ into a dataset of 770 randomly selected SNPs with MAF$0.01. Study power was evaluated for
within-only (PLINK/QFAM-Within) and within- and between-family (PLINK/QFAM-Total) tests of association. After calibrating the score distribution to
the null using genomic control, study power is measured as the fraction of datasets in which the ‘‘spiked’’ SNP exceeds a particular p-value threshold.
doi:10.1371/journal.pgen.1000365.g003
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seven SNPs tag a causal allele common to both populations or

whether independent causal variants segregate in these two ethnic

groups. Besides SNPs near APOC3/A5 and triglycerides, no other

loci across all 15 traits achieved genome-wide significance

(Table 3).

The most compelling evidence for a novel finding is observed in

the association results for thyroid stimulating hormone (TSH).

Among the top 20 results for TSH, 10 SNPs (p = 9.961027 to

4.861026) map to chromosome 9 at 97.6–97.8 Mb, a region

encompassing the gene thyroid transcription factor 2 (TTF-2)

Figure 4. Study power over varying effect sizes. A known effect explaining 0.5%, 1% or 2% of phenotypic variance was ‘‘spiked’’ into a dataset
of 770 randomly selected SNPs with MAF$0.01. Study power was evaluated using a combined score from within- and between-family tests of
association (QFAM-Total) with genomic control. A) Of 770 spiked datasets generated, power is measured as fraction of datasets in which the ‘‘spiked’’
SNP exceeds a particular p-value threshold. These data were used to estimate an effective sample size for Kosrae, from which power estimates for
effects explaining up to 8% of phenotypic variance were generated (panel B).
doi:10.1371/journal.pgen.1000365.g004
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Table 3. Associated SNPs with p#1025 for 15 quantitative traits.

Rank Chr Position (Mb) SNP A1 A2 MAF P-value b Var expl Nearest Gene(s)

BMI

1 10 1.7 rs6560749 T G 0.14 2.0E-06 20.32 2.4% adarb2

Height

1 7 41.3 rs10486715 A G 0.07 3.1E-06 20.44 2.6%

2 7 41.3 rs17718077 C G 0.07 3.1E-06 20.44 2.5%

Waist Circumference

1 3 160.7 rs2222328 C T 0.32 8.4E-07 20.22 2.1% schip1

2 9 22.7 rs613391 G C 0.49 5.3E-06 0.20 1.9%

3 9 22.6 rs527485 A G 0.50 6.7E-06 0.19 1.8%

4 9 22.7 rs976731 T A 0.47 7.3E-06 0.19 1.9%

5 9 22.7 rs976730 A T 0.47 8.4E-06 0.19 1.8%

Weight

1 9 24.1 rs2225614 C A 0.50 2.8E-06 20.21 2.3%

2 2 144.3 rs10928195 C G 0.08 4.1E-06 20.36 1.9% arhgap15

3 7 137.6 rs1874326 G A 0.47 9.0E-06 0.22 2.3% trim24

Leptin

1 3 31.5 rs882648 A G 0.36 1.2E-05 20.14 0.9% ensg00000181233

% body fat

1 20 44.9 rs6066084 A G 0.06 1.5E-06 0.85 8.7%

2 20 44.9 rs6018089 C T 0.06 1.6E-06 0.86 9.1%

3 20 44.9 rs6066085 C T 0.07 2.1E-06 0.85 8.9%

4 10 1.7 rs6560749 T G 0.14 7.5E-06 20.34 2.7% adarb2

5 8 3.8 rs2554622 C A 0.42 9.7E-06 0.23 2.5%

HDL-C

1 5 180.2 rs655601 A C 0.47 5.3E-06 0.23 2.6% mgat1

2 6 22.9 rs10498712 G A 0.25 8.7E-06 0.23 2.1%

LDL-C

1 19 50.1 rs4420638 G A 0.21 1.9E-07 0.31 3.1% tomm40,apoc2,apoe,apoc4,apoc1

2 19 50.4 rs2159324 T C 0.44 3.7E-07 20.21 2.2% mgc2650,bloc1s3,xtp7

3 5 74.7 rs3846663 T C 0.39 1.3E-06 0.21 2.1% col4a3bp,hmgcr

Total Cholesterol

1 19 50.1 rs4420638 G A 0.21 3.4E-07 0.28 2.5% tomm40,apoc2,apoe,apoc4,apoc1

2 10 15.5 rs7917302 C G 0.03 1.9E-06 20.39 0.9%

3 19 50.4 rs2159324 T C 0.44 2.3E-06 20.19 1.8% mgc2650,bloc1s3,xtp7

4 5 74.7 rs3846663 T C 0.39 5.5E-06 0.19 1.7% col4a3bp,hmgcr

5 10 15.8 rs7895372 G C 0.04 6.0E-06 20.35 1.0% itga8

6 7 8.8 rs17157663 A G 0.32 8.8E-06 20.18 1.5%

7 7 8.8 rs16874905 T C 0.32 9.9E-06 20.18 1.5%

Triglycerides

1 11 116.2 rs7396835 T C 0.32 1.2E-09 0.23 2.3%

2 11 116.2 rs7396851 T C 0.32 1.2E-09 0.23 2.3%

3 11 116.2 rs2727789 G T 0.34 2.1E-09 0.22 2.2%

4 11 116.2 rs2071521 G A 0.34 2.2E-09 0.21 2.0%

5 11 116.2 rs2849176 T C 0.34 2.9E-09 0.22 2.1%

6 11 116.2 rs2071523 C T 0.34 3.9E-09 0.21 2.1%

7 11 116.2 rs6589567 C A 0.37 8.6E-09 20.21 2.2% mgc13125,ensg00000110244,apoc3,apoa5,znf259

8 19 49.6 rs2722750 C G 0.39 3.8E-06 0.16 1.3% znf228,znf285

9 19 40.3 rs12978414 G C 0.14 4.0E-06 0.28 1.9% ensg00000179066,fxyd5,ensg00000126258,lgi4,fxyd3,fxyd7

10 19 50.1 rs4420638 G A 0.21 5.0E-06 0.22 1.6% tomm40,apoc2,apoe,apoc4,apoc1

11 4 80.9 rs10518224 A G 0.23 6.7E-06 0.19 1.3%
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Rank Chr Position (Mb) SNP A1 A2 MAF P-value b Var expl Nearest Gene(s)

Systolic BP

1 10 18.8 rs7069923 C T 0.49 1.1E-06 0.19 1.8% cacnb2

2 7 156.6 rs2527866 C A 0.23 2.9E-06 20.27 2.5% ube3c

3 10 18.8 rs4237348 T C 0.50 3.1E-06 0.18 1.5% cacnb2

4 10 18.8 rs4628581 A C 0.49 3.7E-06 0.18 1.5% cacnb2

5 7 156.6 rs2527865 T C 0.23 3.8E-06 20.27 2.5% ube3c

Diastolic BP

1 5 171.0 rs254893 A G 0.06 5.5E-06 20.58 4.1%

2 10 17.0 rs10508517 A G 0.43 6.1E-06 20.18 1.5% cubn

Fasting plasma glucose

1 10 50.2 rs10745259 T C 0.29 1.9E-05 0.19 1.5% c10orf71

Thyroid Stimulating Hormone

1 9 97.8 rs755109 C T 0.23 9.9E-07 20.31 3.3% hemgn,c9orf156

2 7 3.7 rs6462411 C T 0.20 1.3E-06 20.36 4.2% sdk1

3 9 97.7 rs10983893 C T 0.15 1.6E-06 20.31 2.4%

4 12 2.8 rs10848704 C T 0.35 1.7E-06 20.29 3.7% ensg00000118975,fkbp4

5 9 97.7 rs4743136 G C 0.25 1.7E-06 20.29 3.0%

6 7 3.7 rs10241703 T C 0.20 2.1E-06 20.34 3.7% sdk1

7 7 3.7 rs6958535 C T 0.20 2.6E-06 20.34 3.7% sdk1

8 9 97.6 rs925488 G A 0.19 2.6E-06 20.29 2.7%

9 9 97.7 rs10983932 T A 0.15 2.6E-06 20.31 2.4%

10 7 3.7 rs6959674 C T 0.20 3.2E-06 20.33 3.6% sdk1

11 7 3.7 rs11514766 T C 0.20 3.4E-06 20.34 3.7% sdk1

12 7 3.7 rs7804166 C T 0.20 3.4E-06 20.34 3.7% sdk1

13 9 97.6 rs1877431 A G 0.19 3.5E-06 20.29 2.7%

14 9 97.6 rs1588635 A C 0.19 3.9E-06 20.29 2.6%

15 9 97.8 rs10984516 T C 0.13 4.0E-06 20.33 2.4% hemgn,anp32b

16 7 3.7 rs1962785 C G 0.20 4.2E-06 20.34 3.6% sdk1

17 9 97.6 rs2805809 A G 0.18 4.3E-06 20.28 2.3%

18 7 3.6 rs12531984 G A 0.20 4.5E-06 20.34 3.7% sdk1

19 7 3.7 rs10243770 C T 0.18 4.7E-06 20.37 4.0% sdk1

20 9 97.7 rs10119795 C T 0.27 4.9E-06 20.27 2.8% c9orf156

21 7 3.6 rs12539695 G C 0.19 5.6E-06 20.34 3.6% sdk1

22 9 97.4 rs2805810 T C 0.16 5.7E-06 20.28 2.2% tmod1

23 7 3.7 rs6956479 G C 0.20 6.0E-06 20.34 3.7% sdk1

24 9 97.6 rs2668804 A C 0.18 6.1E-06 20.28 2.3%

25 9 97.7 rs7036589 A T 0.14 7.2E-06 20.30 2.2% c9orf156

26 6 98.8 rs6909430 G A 0.08 8.1E-06 20.49 3.8%

27 9 97.6 rs2808693 G A 0.18 9.6E-06 20.28 2.3% ensg00000188515

28 7 3.7 rs10245389 C T 0.20 9.9E-06 20.34 3.7% sdk1

C-reactive protein

1 19 50.1 rs4420638 G A 0.21 1.6E-06 20.28 2.6% tomm40, apoc2, apoe, apoc4, apoc1

2 12 112.4 rs11066587 G C 0.16 4.5E-06 0.26 1.8%

3 12 119.7 rs1039302 T C 0.36 5.2E-06 0.21 2.0% sppl3

4 2 24.2 rs7561273 A G 0.32 6.1E-06 20.22 2.1% ensg00000173957, ubxd4, fkbp1b, flj21945

5 12 119.7 rs10437838 T A 0.35 6.2E-06 0.21 2.0% sppl3

6 12 112.4 rs11066595 G C 0.16 6.8E-06 0.26 1.8%

7 2 24.0 rs17711796 C T 0.35 7.3E-06 20.22 2.2% ensg00000163019

8 12 119.7 rs10431387 G A 0.36 8.0E-06 0.21 2.0% sppl3
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(MIM 602617). Missense mutations in TTF-2 have been reported

in conjunction with thyroid agenesis and congenital hypothyroid-

ism in humans [29–31]. The two best-associated SNPs for TSH,

rs755109 and rs10983893, are located ,19 kb upstream and

,77 kb downstream of the TTF-2 coding region, respectively.

Analyses conditioning on the best-associated SNP, rs755109,

suggest that a single association signal underlies association

between SNPs in this region and plasma levels of TSH in

Kosraens (data not shown).

In another example of association observed near a strong

biological candidate, rs10998046 on chromosome 10 near

MAWBP (MIM 612189) is modestly associated with fasting plasma

glucose in Kosraens (p = 1.1261024). Upregulated expression of

this gene has been reported in rat models of insulin resistance [32].

Meta-analysis of these data with publicly available results from the

Diabetes Genetics Initiative [33] produces a combined p-value of

2.1061026, with 7 other neighboring SNPs producing combined

p-values of 2.5361026 to 5.7361026. While extended linkage

disequilibrium limits our ability to identify the causal variant in

Kosraens or to exclude association to other genes in the associated

region, these loci represent promising results for follow-up in other

cohorts.

Evidence for Many Variants of Small Effect Segregating
on Kosrae

Our study was motivated by the hypothesis that the reduction in

allelic heterogeneity resulting from the founder effect on Kosrae,

combined with drift and natural selection, might produce common

variants with relatively large effects segregating through the

population. Empirical power calculations demonstrated that

effects $5% should be readily detected (95% power) at p#1026.

Given these power calculations, and the evidence for a series of

known associated loci as described above, the consistent lack of

strong association across the majority of traits argues strongly that

common variants of large effect are unusual on Kosrae (Table 3),

as they are in the larger populations studied to date in GWAS.

The best observed p-value for each trait at a novel locus ranged

from 1.961025 for fasting plasma glucose (rs10745259) to

8.461027 for waist circumference (rs2222328). Only two of fifteen

traits, TSH and waist circumference, have strong, novel

associations with p#1026. No novel associations were detected

in any trait with p,861027. Interestingly, these data indicate that

on Kosrae, common variants in LD with SNPs on the genotyping

array are of small effect in this founder population, similar to the

genetic architecture observed in Caucasian populations.

If the effect sizes for common variants are similar in Kosraens

and Europeans, then the lack of strong associations is unsurprising

given the modest size of our cohort. We observe modest evidence

for SNPs near multiple other loci which have been convincingly

replicated in other cohorts [21,22,27,33,34], including HDL-C

and LPL (p = 0.025, rs17411024) or LIPC (p = 4.561023,

rs11071386); triglycerides and GCKR (p = 0.015, rs780094), and

LDL-C and APOB (1.661023, rs7575840). These and other

common variants of small effect identified in Caucasian popula-

tions may also influence trait variation on Kosrae, despite lack of

genome-wide statistical significance for association.

Comparison of Effects and Allele Frequencies in
Caucasians and Kosraens for Known Associated Loci

We examined data for previously associated SNPs not under the

null hypothesis of no effect on trait value, but rather under the

alternative hypothesis that the effect seen in Europeans was also

observed on Kosrae. We compared the effect sizes (b-coefficients)

and allele frequencies for known loci in Caucasians to those

observed in our study. Specifically, we identified 45 established

associations for BMI, height, lipids, fasting plasma glucose, TSH

and CRP (Table 4) where the best-associated SNP in the literature

was directly genotyped in Kosraens or had a strong proxy

(r2$0.95) in HapMap Caucasians and Asians [18–22,34–36]. A

test of heterogeneity for the magnitude and direction of b-

coefficients was performed for 39 SNPs with MAF$0.05. Six

SNPs were omitted from the comparison of effect sizes, as there is

little power to estimate the individual effects for SNPs observed at

very low frequencies.

Of the 39 SNPs examined for effect sizes on Kosrae, only 6 loci

had significantly different (p#0.01) effects in Caucasians and

Kosraens (p = 5.5610242 to 6.861024), of which 4 SNPs were

associated with height in Caucasians. Over 70% of the loci

evaluated (n = 28) had effects which were of indistinguishable

magnitude and direction (p$0.1) in the two populations.

We next considered whether differences in allele frequency

could underlie the lack of association in Kosraens to loci with

strong support in European studies. Of 45 established associations

(Table 4), allele frequencies were compared for 36 SNPs directly

typed on the Affymetrix array. For each risk allele, we identified

SNPs on the Affymetrix array with frequencies in HapMap CEU

within 2% of the risk allele frequency in HapMap CEU. For that

set of SNPs, we generated a distribution of allele frequency

differences between HapMap CEU and Kosrae. To determine

whether a risk allele has an unusual difference in frequency

between Kosraen and HapMap CEU, we examined the difference

in frequency for the risk allele in the context of the complete

distribution of allele frequencies. Over 85% of the SNPs evaluated

(n = 32) have statistically indistinguishable frequencies in Kosraens

and Europeans (empirical p$0.1) while none of the loci examined

had significantly different (empirical p#0.01) frequencies in the

two populations.

Rank Chr Position (Mb) SNP A1 A2 MAF P-value b Var expl Nearest Gene(s)

9 12 119.7 rs6489780 G C 0.35 8.4E-06 0.20 1.8% sppl3

10 12 119.7 rs10849788 A G 0.36 9.0E-06 0.20 1.8% sppl3

11 2 23.9 rs2081302 A C 0.34 9.2E-06 20.22 2.2% ensg00000119778, ensg00000119771

12 12 119.8 rs3809314 A G 0.36 9.8E-06 0.20 1.8% ensg00000174074, sppl3

A1 is the associated (minor) allele. MAF, minor allele frequency. b, effect size expressed as the number of standard deviations change in phenotype for each copy of the
associated allele. ‘‘Var expl,’’ population phenotypic variance explained. Genes within 30 kb of the SNP are shown where applicable. For leptin and fasting plasma
glucose, there were no results with p#1025; instead, the single best result is given.
doi:10.1371/journal.pgen.1000365.t003

Table 3. cont.

GWAS on the Island of Kosrae

PLoS Genetics | www.plosgenetics.org 10 February 2009 | Volume 5 | Issue 2 | e1000365



Together, these data suggest that Kosraens segregate many of

the common variants that have been identified in Caucasian

populations, and that effect sizes for a majority of those variants on

Kosrae is not detectably different from that observed in

Caucasians despite a dramatically different population history

and environment. The empirical similarity of these genetic

architectures lends support to the concept of combining associa-

tion studies across populations to take advantage of neutrally

Figure 5. Quantile-quantile plots showing genome-wide association results for five selected quantitative traits. The extended Kosrae
pedigree was broken into sibships. Association for each quantitative trait was evaluated using PLINK/QFAM-Total. Scores were adjusted for inflation
due to excess relatedness using genomic control. Panel A highlights SNPs with known association to HDL-C, LDL-C and triglycerides. Panel B shows
an excess of association for thyroid stimulating hormone (TSH), while association scores for fasting plasma glucose (FPG) follow the null distribution.
doi:10.1371/journal.pgen.1000365.g005
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Table 4. Association results on Kosrae for select previously known, associated loci.

Caucasian Kosraen

SNP Study Nearest Gene(s) Allele Freq P-value b on 500 k Freq P-value b Phet b Phet Freq

BMI

rs9939609 1 FTO A 0.45 2.0E-20 0.10 same 0.12 0.10 0.14 0.65 0.16

rs17782313 2 MC4R C 0.28 2.8E-15 0.05 same 0.08 0.55 20.06 0.26 0.42

Height

rs6763931 3 ZBTB38 A 0.48 1.4E-27 0.07 rs6440003 0.25 0.16 0.08 0.88 2

rs724016 4 ZBTB38 G 0.48 8.3E-22 0.37 rs6440003 0.25 0.16 0.08 2.8E-06 2

rs1042725 4 HMGA2 T 0.49 2.7E-20 20.48 same 0.55 0.70 0.01 5.5E-42 0.84

rs6060369 4 GDF5-UQCC C 0.36 1.4E-16 0.44 same 0.31 0.51 0.05 5.2E-08 0.85

rs798544 3 GNA12 G 0.72 6.5E-15 0.06 same 0.47 0.18 0.08 0.68 0.18

rs3748069 3 GPR126 A 0.73 4.5E-14 0.07 rs7755109 0.25 0.36 0.07 0.92 2

rs1812175 3 HHIP C 0.81 9.7E-12 0.08 same 0.63 0.05 0.11 0.60 0.48

rs7153027 3 TRIP11, FBLN5, ATXN3,
CPSF2

A 0.61 1.1E-10 0.06 same 0.77 0.46 20.06 0.14 0.47

rs6830062 3 LCORL, NCAPG T 0.84 1.3E-10 0.06 same 0.94 0.86 0.03 0.80 0.60

rs3760318 3 CRLF3, ATAD5, CENTA2,
RNF135

C 0.64 1.8E-09 0.06 rs7225461 0.56 0.31 0.07 0.90 2

rs2282978 3 CDK6, PEX1, GATAD1,
ERVWE1

C 0.37 9.8E-09 0.06 same 0.06 0.61 20.07 0.33 0.10

rs967417 3 BMP2 C 0.57 1.5E-08 0.04 same 0.13 0.90 0.03 0.97 0.05

rs4743034 3 ZNF462 A 0.24 2.1E-08 0.05 same 0.14 0.41 20.10 0.21 0.71

rs678962 3 DNM3 G 0.16 3.2E-08 0.05 rs12411264 0.14 0.77 20.01 0.06 2

rs4533267 3 ADAMTS17 A 0.28 3.3E-08 0.06 same 0.40 0.19 0.07 0.76 0.51

rs7846385 3 PXMP3, ZFHX4 C 0.34 4.7E-08 0.05 same 0.16 1.00 20.01 1.00 0.26

rs2562784 4 SH3GL3-ADAMTSL3 G 0.17 6.4E-08 0.34 same 0.42 0.20 20.08 2.9E-11 0.15

rs4794665 3 NOG, DGKE, TRIM25, COIL,
RISK

A 0.53 9.9E-08 0.04 same 0.26 0.65 20.04 0.40 0.33

HDL-C

rs1800775 5 CETP C 0.43 1.0E-73 20.18 same 0.58 1.7E-04 20.19 0.86 0.55

rs4846914 5 GALNT2 G 0.42 2.0E-13 20.07 same 0.58 0.58 20.03 0.34 0.54

rs2156552 5 LIPG, ACAA2 A 0.20 2.0E-07 20.07 same 0.03 0.45 0.10 2 0.24

rs3890182 5 ABCA1 A 0.09 3.0E-10 20.10 same 0.37 0.18 0.07 6.8E-04 0.12

rs328 5 LPL G 0.13 9.0E-23 0.17 rs10503669 0.98 0.04 20.38 2 2

LDL-C

rs12654264 5 HMGCR T 0.42 1.0E-20 0.10 same 0.42 2.4E-05 0.18 0.07 1.00

rs693 5 APOB A 0.49 1.0E-21 0.12 same 0.09 0.15 0.11 0.88 0.05

rs4420638 5 APOE cluster G 0.18 1.0E-60 0.19 same 0.21 1.9E-07 0.30 0.05 0.92

rs16996148 5 CILP2,PBX4 T 0.06 3.0E-08 20.10 same 0.17 0.58 20.03 0.11 0.66

Triglycerides

rs328 5 LPL G 0.13 2.0E-28 20.19 rs10503669 0.98 0.53 0.10 2 2

rs693 5 APOB A 0.49 2.0E-07 0.08 same 0.09 0.17 0.10 0.81 0.05

rs12130333 5 ANGPTL3, DOCK7,ATG4C T 0.24 2.0E-08 20.11 same 0.04 0.87 0.02 2 0.44

rs780094 5 GCKR T 0.38 3.0E-14 0.13 same 0.27 1.5E-02 0.12 0.88 0.68

rs17321515 5 TRIB1 G 0.40 4.0E-17 20.08 same 0.70 1.3E-02 20.11 0.47 0.20

rs16996148 5 CILP2,PBX4 T 0.06 4.0E-09 20.10 same 0.17 1.6E-03 20.16 0.25 0.66

rs4846914 5 GALNT2 G 0.42 7.0E-15 0.08 same 0.58 1.6E-03 20.16 2.0E-06 0.54

rs17145738 5 BCL7B,TBL2,MLXIPL T 0.12 7.0E-22 20.14 same 0.03 0.79 20.02 2 0.73

Fasting plasma glucose

rs563694 6 G6PC2 A 0.65 6.4E-33 n/a same 0.95 0.28 0.21 2 0.13

rs1799884 7 GCK A 0.20 1.0E-09 0.06 same 0.14 0.06 0.15 0.26 0.82
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arising differences in allele frequency and LD patterns to aid in

confirmation and fine mapping of common disease variants.

Discussion

We describe genome-wide association analyses in a population-

based cohort with extensive family structure, and explore the value

of genetic studies in a population isolate with high levels of linkage

disequilibrium and relative allelic homogeneity [4]. Our goal was

to take advantage of the population genetic features of this isolated

population while maximizing the power to detect associations. We

broke the extended Kosrae pedigree into sibships to create a

computationally tractable dataset that uses as many genotyped

individuals as possible. Empirical power calculations show that

testing for association both within and between sibships gives more

power than within-family tests alone. We used permutation testing

and genomic control to correct for score inflation. Association to

true biological variants was clearly observed for several known

lipid loci, including APOE, CETP, HMGCR and APOC3/A5. Our

ability to detect multiple loci with known association indicates that

our analytic strategy is adequate to identify true disease loci.

Suggestive evidence for association was observed for thyroid

stimulating factor (TSH) to SNPs in the gene encoding thyroid

transcription factor 2 (TTF-2), a strong biological candidate with

no previously known association. Associations near APOC3/A5 for

triglycerides and near TTF-2 for TSH also highlight the possibility

of island-specific variants or differences in LD between Kosraens

and Caucasians that may be useful in identifying causal variants

common to both populations.

Our study tests the hypothesis that reduced genetic diversity,

genetic drift and/or natural selection might have resulted in a class

of common alleles with large effects on metabolic phenotypes.

Reduced diversity is evident in our study and consistent with our

earlier observations [4], with 20% of the SNPs (n.109,000)

passing technical quality filters having minor allele frequencies

,0.01 in Kosraens. Empirical estimates of study power showed

that we have 95% power to observe effects explaining $5%

phenotypic variance at p,1026. And yet, no large effects of this

sort were detected. This is similar to the pattern observed in other

populations, where the majority of common variants have

individually modest effects, typically explaining #2% of pheno-

typic variance [21,22,35–37]. Our genome-wide data expand on

and confirm previous work suggesting that many genes of small

effect influence trait variation in both outbred and founder

populations such as Kosrae [38].

While our cohort encompasses ,65% of the adult population

on Kosrae, limited sample size, coupled with substantial

relatedness between study participants, reduces the power of our

study in comparison to recently published genome-wide associa-

tion studies and meta-analyses for common diseases. It is

interesting, given the widespread and reasonable predictions that

gene-by-gene and gene-by-environment effects modulate marginal

associations, that a comparison of allele frequencies and the

direction/magnitude of effects for loci originally identified in

Caucasian cohorts shows that a majority with statistically

indistinguishable effects in Kosraens.

We also note that the set of biologically relevant variants

influencing metabolic traits is unlikely to be wholly identical

between Kosraens and Caucasians. For example, heritability of

total plasma cholesterol is similar in Kosraens and Caucasians, but

the population mean is approximately 20 mg/dL lower in

Kosraens. Variants specific to Kosraens may underlie the

phenotypic difference between populations; these variants may

lie in novel genes or genes previously implicated in disease or trait

variation. Identification of such variants in Kosraens and other

ethnic groups may shed light on biological pathways and aspects of

disease biology that might otherwise be overlooked in purely

Caucasian studies.

Caucasian Kosraen

SNP Study Nearest Gene(s) Allele Freq P-value b on 500 k Freq P-value b Phet b Phet Freq

Thyroid Stimulating Hormone

rs4704397 8 PDE8B A 0.48 1.3E-11 0.21 same 0.77 3.0E-04 0.25 0.60 0.28

C-Reactive Protein

rs7553007 9 CRP A 0.33 2.2E-26 20.20 same 0.38 0.03 20.11 0.06 0.86

rs1892534 9 LEPR A 0.38 6.5E-21 20.17 same 0.82 0.13 20.09 0.18 0.03

rs7310409 9 HNF1A A 0.39 6.8E-17 20.15 rs2393791 0.44 3E-04 20.16 0.82 2

rs780094 9 GCKR A 0.41 6.7E-15 0.14 same 0.73 0.99 7E-4 0.01 0.12

rs4129267 9 IL6R A 0.40 2.0E-8 20.10 rs4537545 0.36 0.02 20.10 1.00 2

1Frayling et al. (2007) Science 316:889.
2Loos et al. (2008) Nat Genet 40:768.
3Gudbjartsson et al. (2008) Nat Genet 40:609.
4Lettre et al. (2008) Nat Genet 40:584.
5Kathiresan et al. (2008) Nat Genet 40:189.
6Chen et al. (2008) J Clin Invest 118:2620.
7Weedon et al. (2005) Diabetes 54:576.
8Arnaud-Lopez et al. (2008) Am J Hum Genet 82:12.
9Ridker et al. (2008) Am J Hum Genet 82:1185.
For SNPs not directly genotyped on the Affymetrix array (n = 9), association results are reported for a proxy on the Affymetrix chip with strong correlation (r2$0.95) to
the original SNP in both HapMap Caucasian and Asian populations. The effect size (b) is expressed as the number of standard deviations change in phenotype for each
copy of the associated allele. ‘‘Phet b’’ denotes p-values for the test of heterogeneity between the Caucasian and Kosrae effect sizes. SNPs with low frequency in Kosraens
(MAF,0.05; n = 6) were omitted from the test of heterogeneity for effect sizes. ‘‘Phet Freq’’denotes p-values for similarity between frequency of the risk allele in
Caucasians and Kosraens. SNPs not directly genotyped on the Affymetrix array were omitted from the comparison of allele frequencies. ‘‘2,’’ not analyzed.
doi:10.1371/journal.pgen.1000365.t004
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Validation of any novel association results in our study is

hampered by the lack of genome-wide scans in cohorts with an

ethnic origin and population history similar to Kosrae. The majority

of studies to date have been performed in Caucasians. Further work

is required to assess in Kosraens the extent of genetic drift and

selection under strikingly different environmental pressures. Rep-

lication of true ‘‘island’’ variants would likely be difficult or

impossible in existing Caucasian cohorts and underscores the need

for the inclusion of diverse ethnic groups in genetic studies.

It is also worth noting that although extended LD on Kosrae

facilitates locus identification through greater genome coverage, it

hampers fine-mapping efforts. In the event that novel association

results can be validated or replicated in other populations, a

comparison of LD patterns between populations will likely be

important to identify the causal variant.

While future methods will no doubt improve on our analytical

approach, we describe approaches which may be useful to others

undertaking genetic studies in population isolates. Tools for

validating pedigrees with genetic data greatly facilitated the review

of millions of pairwise IBD estimates, highlighted inconsistencies in

the reported pedigree, and assisted in the identification of

previously unknown first-degree relationships. We show that

applying a combined within- and between-family test of

association to the subunits of a large extended pedigree increases

study power. In addition, the simulation framework we describe

for empirical power calculations will be useful for evaluating and

comparing the performance of other methods for association

analyses as they become available.

The current analysis assesses the role of common variants

influencing phenotype on the island of Kosrae, but does not

evaluate the role of rare variants. In fact, the analytic challenges

posed by extensive relatedness in this cohort and the previously

demonstrated extended LD in the population suggest that

Kosraens may be particularly informative for other analytic

methods such as homozygosity mapping. Recent, severe popula-

tion bottlenecks and subsequent rapid expansion have greatly

enriched Kosraens for long stretches of homozygosity. These

homozygous segments act as proxies for rare recessive variants

segregating in the population and are predicted to greatly increase

our power to detect such variants. We are currently developing

methods for homozygosity mapping in this unique population. We

anticipate that homozygosity approaches for the detection of rare,

recessive alleles, coupled with direct sequencing studies to

characterize variation on Kosrae not captured by existing

genotyping platforms, will complement the association studies for

common variants presented here. Together, these three approach-

es will provide a more complete picture of genetic variation in

population isolates, and the underlying role of drift and natural

selection on the architecture of metabolic traits on Kosrae.

Materials and Methods

Ethics Statement
The study was approved by the Institutional Review Boards at

all participating institutions, including Rockefeller University

(protocol #JFN-0282-0707), Massachusetts Institute of Technol-

ogy (COUHES protocol #0602110607) and Massachusetts

General Hospital (protocol #2006-P-000211/6; MGH). All

patients provided written informed consent (in English or Kosraen)

for the collection of samples and subsequent analysis.

Sample Collection
During screenings performed in 1994, 2001 and 2003, patients

were recruited by public announcements and came to the clinic

following an overnight fast. The 1994 screen was described

previously [7,12]. Briefly, informed consent was obtained from

each patient (forms available in Kosraen), along with self-reported

information on identity of family members, medical history,

current medications, lifestyle, diet, exercise, and ethnicity. Blood

was collected from Kosraens in the fasted state and centrifuged.

Plasma and buffy coats were frozen and shipped to Rockefeller

University for serological assays and DNA extraction, respectively.

IRB approval was obtained from all participating institutions.

Clinical Data
Quantitative trait measurements were log- or square root-

transformed to approach normality, adjusted for age and gender

where applicable, and converted to Z-scores. An average Z-score

was used for patients screened in multiple collection years or

monozygotic twins. Individual trait descriptions are available in

the Supplemental materials (Dataset S1).

Genotypes were analyzed for association with fifteen quantita-

tive traits: body mass index (BMI), height, weight, waist

circumference, plasma leptin, percent body fat, diastolic and

systolic blood pressure, fasting plasma glucose, thyroid stimulating

hormone, HDL-C, LDL-C, total plasma cholesterol, triglycerides

and high-sensitivity plasma C-reactive protein.

Genotyping
Data from the Affymetrix 500 k assay were generated at

Affymetrix, South San Francisco, CA. Genotypes were called with

the BRLMM algorithm. A minimum call rate of 95% was

required for each chip (Table S1). The two chips in the 500 k

assay (enzyme fractions Sty and Nsp) were matched by genotype

concordance and gender concordance between each chip and the

clinical data for that sample. Of the ,3,100 subjects ascertained,

2,906 individuals were successfully genotyped according to these

criteria. Per-SNP quality filters included: mapping to a unique

genomic location, minimum per-SNP call rate of 95%, fewer than

10 Mendelian errors, and minor allele frequency (MAF) .0.

408,775 SNPs met these criteria. For the purposes of SNP quality

control, allele frequencies were estimated assuming all 2,906

genotyped individuals were unrelated. Hardy-Weinberg equilibri-

um was not used as a quality filter, as it cannot be assessed by

standard formulae in our highly related cohort.

Autosomal SNPs with MAF$0.01 were analyzed for association

with each trait, where MAF was calculated using the individuals

phenotyped for that trait. Sibling relationships were accounted for

according to default procedures in PLINK. The number of SNPs

analyzed ranged from 332,890 (TSH) to 345,026 (Height).

Pedigree
Study participants provided names and birthdates of their

relatives during the patient interview. Information from multiple

patient records was cross-referenced and used to reconstruct

extended pedigrees. Relationships reported by subjects in the 1994

screen were validated genetically using Mendelian inheritance

checks and identity-by-state analyses with microsatellite markers

and the pedigree was modified to reflect the genetically accurate

relationships [12,39]. Subjects screened in 2001 and 2003 were

originally incorporated into the pedigree on the basis of

genealogical information.

SNP genotyping data were subjected to identity-by-descent

estimation using PLINK [13]. Thresholds of IBD sharing for

parent-child, full-sibling, and half-sibling relationships were

empirically determined from the distribution of genome-wide

IBD scores for known relationships. We used empirical ratios of

total sharing and the proportion of genome shared in 0, 1, or 2

GWAS on the Island of Kosrae
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copies between two individuals to evaluate whether genetic

evidence supported putative relationships reported in the Kosrae

pedigree. A complete list of putative first-degree relative pairs

(parent-child, sibling, half-sibling) was extracted from the pedigree.

For each putative first-degree relative pair, we examined genetic

evidence supporting or refuting that relationship and corrected

relationships in the Kosrae pedigree accordingly. For example, in

a set of individuals forming a putative nuclear family, we verified

that all combinations of parent-child relationships and sibling

relationships met our criteria for genetic relatedness. ‘‘Placehold-

er’’ individuals were added to the pedigree as necessary to reflect

genetic relationships, such as the addition of a ‘‘placeholder’’

father for a newly-discovered maternal half-sibling. The correction

of numerous relationship pairs and our ability to detect cryptic

relationships enabled consolidation or elimination of over 70 non-

genotyped ancestors, resulting in ‘‘tightening’’ of the Kosrae family

tree.

Thirteen pairs of monozygotic twins and thirty-five duplicate

sample pairs were identified by genotype similarity. Sample

identity was confirmed from patient records (name, birth date) and

one subject from each pair was included in the association

analyses.

We identified 58 offspring from consanguineous matings, where

a common ancestor could be identified in the extended Kosrae

pedigree; these consanguineous offspring were excluded from

association analyses. An additional nine individuals were excluded

from the dataset, as they self-reported non-Micronesian ethnicities

and could not be connected to the pedigree.

Breaking the Pedigree
Three approaches were considered to break the extended

pedigree into smaller units.

Founders consist of a filtered subset of sibships-without-parents,

such that any genotyped offspring of a founder sibship are

removed from the dataset. Founder sibships are drawn primarily

from the upper levels of the Kosrae family tree. For example, 582

‘‘founders’’ in 247 sibships were identified for the BMI phenotype.

Sibships without parents consist of two or more individuals known

to share both parents. Since the Kosrae cohort spans multiple

generations, members of one family group are frequently parents

or cousins of other family groups. Information about parents is

used to define a sibship; however, any genotyped parents are

considered only in the context of their own siblings. For BMI,

1,871 individuals were included in 467 sibships of size $2.

Nuclear families consist of two genotyped parents and one or more

offspring. Where one genotyped parent is available, offspring are

included as a sibship without parents and the genotyped parent is

included in the context of its own siblings. Where no genotyped

parents are available, individuals contribute as members of a

sibship without parents.

‘‘Sibships of size one’’ and ‘‘Unrelateds’’. Genome-wide

estimates of identity-by-descent (pihat) were used to select a subset

of distantly related individuals. Genotyped individuals were

randomly ordered, and individuals were selected if they were

related to every other member of the group below a set threshold.

A threshold of pihat #0.125 was used for individuals included in

the association analyses (‘‘sibships of size one’’), corresponding to a

relationship of first cousin or less. This selection process was

repeated for 1,000 iterations, after which the largest set of

individuals was identified for further use. These individuals

contribute in the Between-family association score. For example,

202 ‘‘sibships of size one’’ contribute to the analysis for BMI.

A more stringent threshold of pihat #0.08, applied to the entire

dataset of 2,906 study participants, resulted in n = 133 individuals

related as less than first cousins. These individuals are treated as

independent observations (‘‘unrelateds’’), suitable for use in any

analysis requiring unrelated individuals (e.g., calculating allele

frequencies, LD).

Selection of a scheme to break the extended pedigree. In

selecting a method to break the extended Kosrae pedigree, we

considered three factors: maximum use of genotyped individuals (a

rough proxy for power); minimal inflation of the association test

statistic; and the practical consideration of retaining similar family

structures across multiple traits.

‘‘Founders’’ (n = 582) have the fewest relationships with other

individuals in the complete pedigree and were expected to

minimize association score inflation due to excess relatedness

between families. However, the exclusion of over 2,300 genotyped

individuals from the analysis and concomitant loss of power

persuaded us against this family configuration.

Sibships-without-parents and nuclear families include similar

numbers of individuals for a given trait. We note that the optimal

configuration of nuclear families varies across phenotypes, whereas

sibships-without-parents minimize differences in family structure

across multiple traits. Individuals lacking a phenotype are simply

omitted from a sibship and do not radically change the number of

sibships available for analysis. The extended Kosrae pedigree was

broken into sibships-without-parents separately for each trait and

analyzed for association.

‘‘Spiked’’ Datasets for Data Simulations
We performed empirical evaluations of power for each

association method using simulated datasets. We ‘‘spiked’’ an

effect of known size (explaining an additional 0.5%, 1% or 2%

variance) into an existing Kosraen phenotype (BMI) and analyzed

this modified phenotype with observed Kosraen genotypes,

thereby retaining the true genotype-phenotype correlation be-

tween related study subjects. A subset of 1,000 SNPs across the

genome were randomly selected and filtered to retain SNPs with

MAF.0.01. The remaining 770 SNPs were analyzed for

association with the spiked phenotype. A total of 770 spiked

phenotypes were generated, in which each phenotype was altered

to reflect association to a different SNP of the random subset.

These 770 phenotypic datasets were analyzed for association to the

spiked SNP using FBAT and PLINK/QFAM under an additive

model [13,40].

Calculating Effective Sample Size
We used empirical power estimates from the BMI ‘‘spiking’’

experiment and the module for variance components QTL

association for sibships in the Genetic Power Calculator [20] to

estimate the effective sample size of our cohort, or the number of

unrelated individuals required to obtain power equivalent to that

provided by the Kosraen sibships. Power calculations were

performed assuming no dominance, minor allele frequency of

0.2, and direct genotyping of the causal variant. For BMI, the

2,073 individuals included in the association analysis have power

equivalent to ,840 unrelated individuals.

Association Analyses
Quantitative trait data were analyzed under an additive model

using the QFAM module of PLINK [13]. Nominal scores were

permuted to obtain an empirical p-value while maintaining

familial correlation between genotype and phenotype. The

permutation procedure employed by QFAM corrects for related-

ness within families. Between-family relatedness is not addressed in

QFAM and is the major source of score inflation (see Dataset S1,

GWAS on the Island of Kosrae
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Figure S2). Genomic control was used to correct for score inflation

introduced by relatedness between family units (sibships) [19].

We account for multiple testing by assuming a threshold of

p#561028 for genome-wide significance, following the work of

Pe’er et al (2008) and Dudbridge and Gusnanto (2008) [41,42].

This approach assumes approximately 106 independent tests

across the genome and requires an additional p#0.05. This

significance threshold is likely conservative on Kosrae, where the

true number of independent tests is likely to be smaller because of

the extended LD, and so alleviates the multiple testing burden.

Comparison of Allele Frequencies for Known Associated
Loci

Association results for known, associated loci were drawn from

studies in large Caucasian cohorts for multiple traits. For each

Caucasian risk allele where the SNP was directly genotyped in

Kosraens, we determined its frequency in HapMap CEU. We

identified SNPs on the Affymetrix array that have frequencies in

HapMap CEU within 2% of the frequency of the risk allele in

HapMap CEU. For each SNP in that set, we calculated the difference

in allele frequency between HapMap CEU and Kosrae. These values

were used to generate an empirical distribution of allele frequency

differences. For the risk allele, we calculate the difference in allele

frequency between HapMap CEU and Kosrae, and place this

difference on the empirical distribution to determine significance.

Comparison of Effect Sizes for Known Associated Loci
Association results for known, associated loci were drawn from

studies in large Caucasian cohorts for multiple traits. Caucasian

loci were limited to SNPs directly genotyped in Kosraens, or

where a strong proxy was genotyped in Kosraens (r2$0.95 in

HapMap CEU and ASN). SNPs with MAF,0.05 on Kosrae were

omitted from comparison, as power is low to estimate effect sizes

accurately for rare SNPs. We assumed the Caucasian b estimates

for each of the traits to be a fixed value. A test of heterogeneity for

the magnitude and direction of the effect in Caucasians and

Kosraens was performed as follows [43]:
bk{bc

sbk

�
�
�

�
�
�*T : Where bk

and bc are the effect sizes for Kosrae and Caucasian populations,

sbk
is the standard deviation on the bk, and is distributed like a T.

Supporting Information

Figure S1 Marker quality control for SNPs in the Affymetrix

500 k assay.

Found at: doi:10.1371/journal.pgen.1000365.s001 (0.01 MB PDF)

Figure S2 Excess relatedness is the major source of association

score inflation. Association score inflation was evaluated in three

subsets of the Kosrae cohort using the BMI phenotype. Score

inflation is greatly reduced in ‘‘unrelated’’ (less than first cousins)

individuals and in a set of sibships filtered to remove all parent-

child relationships between sibships, as compared to all available

sibships in the cohort.

Found at: doi:10.1371/journal.pgen.1000365.s002 (0.06 MB PDF)

Figure S3 Quantile-quantile plots showing genome-wide asso-

ciation results for 15 quantitative traits. For each trait, the number

of individuals used in the analysis, heritability, and genomic

control correction factor (lambda) are given.

Found at: doi:10.1371/journal.pgen.1000365.s003 (0.17 MB PDF)

Table S1 Genotyping statistics for the Affymetrix 500 k assay.

Found at: doi:10.1371/journal.pgen.1000365.s004 (0.04 MB

DOC)

Dataset S1 Supplemental Trait Descriptions.

Found at: doi:10.1371/journal.pgen.1000365.s005 (0.81 MB

DOC)
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