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FOXP family DNA methylation
correlates with immune

infiltration and prognostic value
in NSCLC

Dong-Mei Hu'?, Wen-Di Zhang'?, Zhuang-E Shi'?,
Meng-Yu Zhang®?, Rui Li?, Qing-Xiang Wang*?, Xiu-Li Ji®**!
and Yi-Qing Qu'*

'Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical
Care Medicine, Qilu Hospital of Shandong University, Jinan, China, 2Laboratory of Basic Medical
Sciences, Qilu Hospital of Shandong University, Jinan, China, *Department of Pulmonary Disease,
Jinan Traditional Chinese Medicine Hospital, Jinan, China

Background: Forkhead box P (FOXP) family was introduced as a double-edged
sword in tumorigenesis and influenced immunotherapy response by
modulating host immunity. This study aimed to summarize the involvement
of the FOXP family in non-small cell lung cancer (NSCLC).

Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA),
and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
were used to analyse the expression levels of the FOXP family in NSCLC. The
prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv,
UALCAN, and cBioPortal were applied to analyse the DNA methylation and
mutation status of the FOXP family respectively. COEXPEDIA, STRING, and
GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB
was used to investigate all of the immune-related characteristics regulated by
the FOXP family.

Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC
tissues than that in normal tissues. Groups with low expression levels of
FOXP1/4 and high expression levels of FOXP2/3 were associated with poor
prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated
with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated
with prognosis. Pathway enrichment analysis indicated the FOXP family was

Abbreviations: FOXP, Forkhead box P; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; NSCLC, non-small cell lung cancer; GEPIA, Gene Expression Profiling Interactive
Analysis; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; DEG, differentially
expressed genes; GTEx, Genotype-Tissue Expression; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; RT-gPCR, Reverse transcription-quantitative polymerase chain reaction; EMT,
epithelial-mesenchymal transition; GO, Gene Ontology; CC, cellular component; MF, molecular
function; KEGG, Kyoto Encyclopedia of Genes and Genomes;, MHC, Major Histocompatibility
Complex; OS, The Overall Survival; ICls, immune checkpoint inhibitors; PD-1, programmed cell
death receptor 1; PD-L1, programmed cell death 1 ligand 1; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; PPI, protein-protein interaction; LLS, log-likelihood scores; TILs, tumour-
infiltrating lymphocytes; TKI, tyrosine kinase inhibitor; HR, hazard ratio.
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mainly related to immune-related pathways. After DNA methylation, the
correlations between FOXP family and immune factors were opposite to
that before alteration in NSCLC.

Conclusion: This study elucidated FOXP family could serve as vital diagnostic
and prognostic biomarkers in NSCLC. Our study highlighted novel potential
functions of FOXP family DNA methylation in regulation of immune-related

signatures in NSCLC.
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non-small cell lung cancer, FOXP family, prognostic value, immune infiltration, DNA

methylation

Introduction

Lung cancer accounts for a large proportion of malignant
tumours in the world, of which non-small cell lung cancer
(NSCLC) accounts for approximately 85% (Hirsch et al., 2017).
According to diverse histological subtypes, NSCLC can be divided
into lung adenocarcinoma (LUAD) and lung squamous cell
(LUSC) (Ruiz-Cordero and Devine, 2020). At
present, surgery, cisplatin-based therapy, stereotactic body

carcinoma

radiation therapy, definitive concurrent chemotherapy, and
radiation therapy have significantly reduced the risk of death in
NSCLC. However, these treatments are only suitable for a very
small proportion of NSCLC patients. Meanwhile, according to data
from recent years, the long-term survival rate of NSCLC patients is
still very poor (Evison and AstraZeneca, 2020). Most recently,
immune checkpoint inhibitors (ICIs), including inhibitors of the
programmed cell death receptor 1 (PD-1) axis, have apparently
altered the NSCLC management landscape (Camidge et al., 2019).
However, effective biomarkers for guiding NSCLC patients to use
ICI drugs are still lacking (Zhang et al, 2021). Therefore,
investigating the molecular mechanisms that drive NSCLC
initiation and progression, searching for more sensitive
biomarkers, and identifying biomarkers for ICI efficacy are the
current research hotspots. The forkhead box P (FOXP) family
consists of four members, including FOXP1, FOXP2, FOXP3, and
FOXP4 (Kim et al., 2019). The FOXP family is responsible for the
occurrence of many tumours. For example, FOXP1 is related to the
occurrence of drug resistance in patients with ovarian cancer
during treatment (Hu et al., 2020). FOXP1 also has a function
in the occurrence of cancer cachexia that causes weakness
(Neyroud et al,, 2021). FOXP2 promotes tumour progression in
triple-negative breast cancer through the mechanisms of targeting
specific molecules (Wu et al., 2018). FOXP3 is involved in the
regulation of autophagy-related proteins in gastric cancer (Li et al.,
2020a). Overexpression of FOXP4 is closely implicated in the
malignant prognosis of breast cancer by promoting the biological
process of EMT (Ma and Zhang, 2019). Therefore, we know that
the FOXP family plays a role in tumour suppressor genes and
oncogenes in tumours (Kim et al., 2019). However, the roles of the
FOXP family in the effect and mechanism of immune infiltration
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have not yet been determined. In this article, we comprehensively
analysed FOXP family mRNA expression/DNA methylation
signatures, mutations, functional pathways of coexpression
networks, survival ~value, epigenetic alterations, and
relationships with immune-related factors. Furthermore, we
performed real-time quantitative PCR (RT—qPCR) to detect the

expression levels of the FOXP family.

Materials and methods
UALCAN

UALCAN (http://ualcan.path.uab.edu/), an online website
was used to compare the difference in the mRNA expression
levels of the FOXP family between NSCLC tissues and normal
tissues obtained from The Cancer Genome Atlas (TCGA)
(Chandrashekar et al,, 2017). Then, we explored the changes
in FOXP family expression levels in different pathological stages
with this tools. In addition, we used UALCAN to analyse the
effect of DNA methylation on the translational levels of the
FOXP family.

Gene expression profiling interactive
analysis

GEPIA (http://gepia.cancer-pku.cn) was used to analyse the
mRNA levels of the FOXP family in NSCLC tissues compared to
normal tissues using the open public data from TCGA (Tang
et al,, 2017). Under the condition of selecting the corresponding
cancer species, the website can automatically output the
corresponding scatter diagrams, bar charts, and box plots
according to the input gene name.

Kaplan—Meier plotter

Kaplan—Meier  plotter  (http://kmplot.com/analysis/)

provided data and algorithms for analysing the prognostic
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significance of patients with expression imbalances of
the FOXP family (Peng et al., 2017). All the patients
were divided into two groups according to the median
of FOXP family genes

survival

to measure
the
plotted
explore the overall survival (OS) analysis by the log-

expression levels
the
two

difference in time between above

groups. Kaplan—Meier curves were to
rank test. p values < 0.05 were defined as statistically

significant.

MethSurv database

The MethSurv database (https://biit.cs.ut.ee/methsurv/)
was used to perform survival analysis of DNA methylation
of the FOXP family in NSCLC by selecting a specific
gene name and cancer type using the TCGA dataset.
The “Region-based analysis” module was wused by
choosing “LUAD TCGA March 2017” and “LUSC TCGA
March 2017”.

R/Bioconductor package

We visualized the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
of the FOXP
family using R/Bioconductor packages (“BiocManager,”
“DOSE,” Profiler,”
“ggplot2”)  which
Bioconductor (http://www.bioconductor.org/packages/
release/bioc/html/). The
with a p value < 0.05 were demonstrated to have great

analysis results of coexpressed genes

“cluster “org.Hs.eg.db,” “enrichplot”

and were  downloaded  from

enrichment analysis results

significance.

TISIDB

TISIDB (http://cis.hku.hk/TISIDB/index.php) was applied to
infer the relative abundance of immune-related characteristics of
28 lymphocyte (TIL) types,
immunomodulators, chemokines, and receptors regulated by
the FOXP family in NSCLC tissues. On the foundation of the
mRNA expression of the FOXP family profiles, gene set variation

tumour-infiltrating

analysis (GSVA) examined which types of immune-related
characteristics were regulated by the current genes with
epigenetic alterations (copy number alteration and DNA
methylation). In addition, TISIDB provided data on the
degree of infiltration of immune-related characteristics in
NSCLC tissues to infer the regulatory effect of the FOXP
family. Finally, TISIDB was applied to explore the expression
of the FOXP family in different immune subtypes (Ru et al,
2019).
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Cancer single-cell state atlas

Cancer single-cell state atlas (CancerSEA) (http://biocc.
hrbmu.edu.cn/CancerSEA/) provided datasets
applied to assess the functional roles of the FOXP family in
NSCLC. The CancerSEA supported the evaluation of
14 functional states at the single-cell level using public

that was

datasets  including epithelial-mesenchymal  transition

(EMT), DNA damage, and so on.

COEXPEDIA

COEXPEDIA  (https://www.coexpedia.org) is an online
database. The corresponding predicted target genes were
obtained according to the coexpression trend of consistency
and the common pathways involved in the regulation of the
occurrence and development of disease. COEXPEDIA offered a
network reflecting clear interactions between the members of the
FOXP family and the corresponding coexpressed genes.

cBioPortal

cBioPortal used to
the consequence of alteration frequency and
mutation type of the FOXP family in NSCLC (Gao et al.,

2013). cBioPortal precisely presented the details of all forms

(https://www.cbioportal.org/) was
ascertain

of mRNA dysregulation, gene amplification, and deep deletion
with the FOXP family in NSCLC patients by the OncoPrint
module.

STRING

STRING (https://string-db.org) was used to construct a
protein—protein interaction (PPI) network for the retrieval of
interacting genes (Szklarczyk et al., 2017). In this article, STRING
was used to examine the interactions among the FOXP family
and determine the hub regulatory genes. The genes not only
required a minimum interaction score > 0.4, but were also
imported into Cytoscape (version 3.7.2) with the cytoHubba
app to screen the modules of the top 10 hub genes.

GeneMANIA

GeneMANTIA (http://www.genemania.org) administers data
on protein and genetic interactions, pathways, and coexpression
to predict gene clusters with similar functions (Warde-Farley
et al., 2010). This site relies on credible evidence sources of
literature to forecast functionally identical genes of the FOXP
family to clarify the interaction mechanism of the FOXP family.
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Cell lines and culture conditions and
reverse transcription-quantitative
polymerase chain reaction

A human lung epithelial cell line (BEAS-2B Cell Article: No.
CL-0496), LUAD cell lines (A549 Cell Article: No. CL-0016,
NCI-H1299 Cell Article: No. CL-0165, and PC9 Cell Article: No.
CL-0298), and LUSC cell line (NCI-H226 Cell Article: SNL-388)
were purchased from Procell Life Science & Technology Co. Ltd.
(Wuhan, China) on 10 December 2021. All cell lines were
identified by short tandem repeat (STR) analysis. The human
lung epithelial cell line BEAS-2B and the LUAD cell line
PC9 were cultured in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco). NSCLC cell lines (A549, NCI-H1299, and
NCI-H226) were cultured in RPMI 1640. The two types of
culture media both contain 10% heat-inactivated foetal bovine
serum (FBS). The gas concentration in the incubator was set to
5% CO,, and the temperature was set to 37°C. The method of
evaluating the gene expression was RT—qPCR. TRIzol reagent
(Invitrogen) was applied to extract total RNA. After the
concentration of extracted RNA reached the appropriate
standard, we wused miRNA reverse transcription and
complementary DNA (cDNA) reverse transcription kits to
carry out reverse transcription. Then, RT—qPCR was
performed on a Bio-Rad after the corresponding steps were
executed according to the manufacturer’s instructions for TB
Green Premix Ex Taq II (Takara). Finally, we used the 2744
method to calculate relative mRNA expression. The reference
gene was glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
and the sequences of the primers for the GAPDH and FOXP
family are listed in Supplementary Table S1.

Statistical analysis

The statistical data were analysed using GraphPad Prism
9.3.1 by Student’s test and ordinary one-way ANOVA to evaluate
the differential expression. The statistical data are presented as
the mean + SEM. Kaplan—Meier Plotter was used to explore the
overall survival (OS) analysis by the log-rank test. The prognostic
values of single CpGs in DNA methylation analysis were assessed
via the likelihood-ratio test. p values < 0.05 obtained from all the
above analyses were defined as statistically significant.

Results

The mRNA expression levels of the
forkhead box P family in NSCLC

A flowchart was created to illustrate our study (Figure 1A).
UALCAN was used to compare the difference in the mRNA
expression levels of the FOXP family between normal samples
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and NSCLC samples. The summary of the transcriptional levels
of the FOXP family is shown in the form of heatmaps (Figures
2A,B). Moreover, the GEPIA database was applied to verify the
expression of the FOXP family between NSCLC tissues and
normal tissues (Figures 2C-J). Compared to normal tissues,
there were lower expression levels of FOXP1 in LUAD and
LUSC, a lower expression level of FOXP2 in LUAD, higher
expression levels of FOXP3 in LUAD and LUSC, a higher
expression level of FOXP4 in LUAD, and a lower expression
level of FOXP4 in LUSC. In addition, the expression level of
FOXP2 was not significantly different in LUSC. We examined the
mRNA expression levels of the FOXP family in cell lines (BEAS-
2B, A549, NCI-H1299, PC9, and NCI-H226) (Figures 2K-N).
The outcomes of RT-qPCR showed that the mRNA expression
levels of FOXP1, FOXP3, FOXP4 did have statistical differences
between LUSC cell line (NCI-H226) and normal human lung
epithelial cell line (BEAS-2B). However, when tested individually
to verify the differential expression levels of FOXP family
between LUAD cell lines and normal control, we found that
only two members (FOXP1 and FOXP3) were statistically
significant between LUAD cell lines (A549, PC9, and NCI-
H1299) and normal human lung epithelial cell line (BEAS-
2B), which were consistent with analysis of GEPIA database.
In order to find the source of this difference, we conducted meta-
analysis to explore the expression difference of FOXP family
from different database using LUNG CANCER EXPLORER
(https://Ice.biohpc.swmed.edu/lungcancer/index.php#page-top)
database. The results showed that the different expression trends
of FOXP2 and FOXP4 objectively existed in LUAD among
different data sets. After meta-analysis, it was more likely that
the expression of FOXP2 was no statistically significant, and the
expression of FOXP4 was upregulated in LUAD patients
compared with normal controls (Supplementary Figure SI).
Therefore, we concluded that FOXP1 was downregulated, and
FOXP3 was upregulated between LUAD patients compared with
normal controls, while the expression levels of FOXP2 and
FOXP4 in LUAD compared with normal controls need to be
verified by more clinical samples. Besides, FOXP1 and
FOXP4 were downregulated, FOXP3 was upregulated, and
FOXP2 was not statistically significant between LUSC patients
with normal controls.

Relationship between the transcriptional
levels of the forkhead box P family and
clinicopathological stages in non-small
cell lung cancer

Next, the inconsistency of the transcriptional expression

levels of the FOXP family members among the
clinicopathological parameters of NSCLC patients was
analysed by UALCAN (Supplementary Figures S2-S5). The

clinicopathological parameters included histological subtypes,
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clinicopathological sta;

T
Plotter in NSCLC Patients

COEXPEDIA

analyses of coexpressed
R/Bioconduct

or package

The mRNA expression levels of FOXP
family in NSCLC

The relationship between the
transcriptional levels of FOXP family and
es in NSCLC

The prognostic features of FOXP family

The coexpression networks of the FOXP I
family and GO and KEGG pathway

STRING GeneMANIA

Genetic alteration and interaction analyses
of FOXP family in NSCLC

DNA methylation analysis of FOXP
family

MethSurv

Analysing the functional states of the

FOXP family at single-cell level

CancerSEA

FIGURE 1

The degree of immune factors infiltration
regulated by FOXP family in NSCLC

Analysis explanation with a detailed flow diagram of this study. (A) The study comprised eight parts: | The mMRNA expression levels of FOXP family

in NSCLC; Il The relationship between the transcriptional levels of FOXP family and clinicopathological stages in NSCLC; Il The prognostic features of
FOXP family in NSCLC patients; IV The coexpression networks of the FOXP family and GO and KEGG pathway analyses of coexpressed genes; V
Analysing the functional states of the FOXP family at single-cell level; VI The degree of immune factors infiltration regulated by FOXP family in
NSCLC; VIl Genetic alteration and interaction analyses of FOXP family in NSCLC; VIII DNA methylation analysis of FOXP family.

TISIDB

individual cancer stages, patient age, patient smoking habits,
nodal metastasis status, and TP53 mutation status. As shown
in the histograms in Figures 3A,B, the transcriptional levels of
FOXP1/3/4 were basically markedly correlated with the above
six clinicopathological stages in LUAD. However, there was no
discernible difference in the relationship between the
of  FOXP2 the  six
clinicopathological stages in LUAD (Figure 3A). The
of FOXP1/2/3
correlated with the above six clinicopathological stages in
LUSC, while the difference in FOXP4 was unremarkable
(Figure 3B). In brief, the above results preliminarily
suggested that the FOXP family was
characteristics that included age factors, inducements,

transcriptional ~ level and

transcriptional levels were markedly

involved in

Frontiers in Genetics

05

progression, metastasis, and mutation types in NSCLC
patients.

Prognostic features of the forkhead box P
family in non-small cell lung cancer
patients

In this step, Kaplan—Meier Plotter was used to explore the
prognostic value of the FOXP family in NSCLC. Survival curves
were generated to present the association between the overall
survival (OS) rate of NSCLC patients and the corresponding
gene expression levels of the FOXP family. All results are shown
in Figures 4A-H; Supplementary Figure S6. Upon stratification
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FIGURE 2
The differential expression of FOXP family in NSCLC. (A) The heatmap represented the transcriptional levels of FOXP family in patients with
LUAD compared with normal samples using UALCAN. (B) The heatmap represented the transcriptional levels of FOXP family in patients with LUSC
compared with normal samples using UALCAN. (C-J) The compare the mRNA expression of FOXP1/2/3/4 between LUAD/LUSC and normal tissue
samples by using GEPIA dataset; The box plot showed the relative expression levels of family in normal tissue and NSCLC tissue. p < 0.05 was
defined as statistically significant. (K—N) The mRNA levels of FOXP family between LUAD cell lines (A549, NCI-H1299, and PC9)/LUSC cell line (NCI-
H226) and normal human lung epithelial cell line (BEAS-2B) by RT-qPCR. (Legend: ***p < 0.001; **p < 0.01; *p < 0.05; ns. p > 0.05; LUAD, Lung
adenocarcinoma; LUSC, Squamous cell carcinoma of lung; FOXP, Forkhead box P; RT-qPCR, Reverse transcription-quantitative polymerase chain
reaction).

CI 0.52-0.84, log-rank p = 0.00075). Higher FOXP1 expression
was correlated with better prognosis of NSCLC (Figure 4B, n =
572, HR = 0.69, 95% CI 0.58-0.81, log-rank p = 9e-06). Lower

according to the median level, higher

FOXP1 expression was correlated with better prognosis of
LUAD (Figure 4A, n = 336, hazard ratio (HR) = 0.66, 95%

expression
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FIGURE 3
The relationship between the expression levels of FOXP family and clinicopathological stages. (A) The Bar graphs showing the expression of
FOXP family differences between the clinicopathological stages of LUAD and normal tissues. (B) The Bar graphs showing the expression of FOXP
family differences between the clinicopathological stages of LUSC and normal tissues.

FOXP2 expression was correlated with better prognosis of
LUAD (Figure 4C, n = 348, HR = 1.31, 95% CI 1.03-1.67,
log-rank p = 0.027). Lower FOXP2 expression was correlated
with better prognosis of NSCLC (Figure 4D, n = 596, HR = 1.38,
95% CI 1.17-1.63, log-rank p = 0.00012).
FOXP3 expression was correlated with better prognosis of
LUAD (Figure 4E, n = 372, HR = 1.37, 95% CI 1.09-1.73,
log-rank p = 0.0072). Lower FOXP3 expression was correlated

Lower
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with better prognosis of NSCLC (Figure 4F, n = 984, HR = 1.25,
95% CI 1.1-1.41, log-rank p = 0.00065). Higher
FOXP4 expression was correlated with better prognosis of
LUAD (Figure 4G, n = 336, HR = 0.71, 95% CI 0.56-0.9,
0.0053). Higher FOXP4 expression was
correlated with better prognosis of NSCLC (Figure 4H, n =
569, HR = 0.77, 95% CI 0.65-0.91, log-rank p = 0.0017). Groups
with FOXP1/2/3/4 expression were not associated with

log-rank p =
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The relationship between the expression of FOXP family and survival. (A) The survival curves reflected the relationship between the patients’
overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in LUAD. (B) he survival curves reflected the relationship between
the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP1 in NSCLC. (C) The survival curves reflected the
relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in LUAD. (D) The survival
curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of FOXP2 in NSCLC. (E)
The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene expression levels of
FOXP3 in LUAD. (F) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the corresponding gene
expression levels of FOXP3 in NSCLC. (G) The survival curves reflected the relationship between the patients’ overall survival (OS) rate and the
corresponding gene expression levels of FOXP4 in LUAD. (H) The survival curves reflected the relationship between the patients’ overall survival (OS)
rate and the corresponding gene expression levels of FOXP3 in NSCLC.

prognosis in LUSC patients (Supplementary Figure S6). Overall,
groups with low FOXP1/4 and high FOXP2/3 expression were
associated with poor prognosis (p value < 0.005). Both the high

mRNA expression of FOXP1/4 and the low mRNA expression
of FOXP2/3 were related to improved prognosis (p value < 0.05)
in NSCLC patients.
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FIGURE 5

10.3389/fgene.2022.937069

POFUT2

ADORAT

PREKIC

The coexpression network of FOXP family. (A) The coexpression network presented the coexpressed genes of FOXPL. (B) The coexpression
network presented the coexpressed genes of FOXP2. (C) The coexpression network presented the coexpressed genes of FOXP3. (D) The

coexpression network presented the coexpressed genes of FOXP4

Coexpression networks of the forkhead
box P family and gene ontology and kyoto
encyclopedia of genes and genomes
pathway analyses of coexpressed genes
Genes coexpressed with the FOXP family were
investigated by the COEXPEDIA website. The coexpression
networks of the FOXP family are displayed in Figures 5A-D.
The log-likelihood score (LLS score) was used to evaluate the
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correlations between the FOXP family and its linked genes.
The larger the LLS score, the more relevant the coexpression
trend of the FOXP family member and its linked genes. The
LLS scores of all coexpressed genes are summarized in
GO and KEGG enrichment
analyses for coexpressed genes related to the FOXP family

Supplementary Table S2.

were implemented to analyse biological functions and
pathways associated with the FOXP family. The biological

process (BP), molecular function (MF), and cellular
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GO functional and KEGG pathway enrichment analyses were performed on the coexpressed genes. (A) The GO functional enrichment analysis
result on the coexpressed genes of FOXP1 using three annotation systems (BP; CC; MF). (B) The KEGG pathway enrichment analysis result on the
coexpressed genes of FOXP1. (C) The GO functional enrichment analysis result on the coexpressed genes of FOXP2. (D) The KEGG pathway
enrichment analysis result on the coexpressed genes of FOXP2. (BP, Biological process; MF, Molecular function; CC, Cellular component).

component (CC) of GO enrichment analysis are displayed in
Figures 6A,C, 7A,C. In addition, the 20 most relevant KEGG
pathways for coexpressed genes are presented in Figures 6B,D,
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7B,D. Notably, GO enrichment results showed that the
coexpressed genes of the FOXP family mainly acted on the
immune process in MF, such as differentiation of immune cells
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GO functional enrichment analysis and KEGG pathway enrichment analysis are performed on the coexpressed genes. (A) The result of GO
functional enrichment analysis on the coexpressed genes of FOXP3. (B) The result of KEGG pathway enrichment analysis on the coexpressed genes
of FOXP3. (C) The result of GO functional enrichment analysis on the coexpressed genes of FOXP4. (D) The result of KEGG pathway enrichment

analysis on the coexpressed genes of FOXP4.

(lymphoid, monocyte, and T cell), fucosyltransferase activity,
phosphatidylinositol phosphate kinase activity, transcription
coactivator activity, and transcription costimulatory factor
regulation. KEGG pathway analysis results showed that
coexpressed genes clusters of the FOXP family acted on
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1

typical cancer- and immune-related signalling pathways
including the T cell receptor, sphingolipid, cGMP-PKG,and
phospholipase D signalling pathway. These results strongly
implied that the FOXP family was involved in the process of
immune regulation in NSCLC.
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A The 14 functional states of the FOXP family at the single-cell level in NSCLC via the CancerSEA database
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The correlation between the FOXP family and 14 functional states at single-cell level. (A) The result of the correlation between expression of the
FOXP1/2/4 with functional states (including angiogenesis, apoptosis, invasion, EMT, differentiation, proliferation, DNA damage, metastasis, hypoxia,
inflammation, cell cycle, DNA repair, stemness, and quiescence). (B) The sample Kim (Exp0068) showed the result of the correlation between the
FOXP1 with functional states. (C) The sample Kim (Exp0066) showed the result of the correlation between the FOXP2 with functional states. (D)
The sample Kim (Exp0068) showed the result of the correlation between the FOXP4 with functional states. (EMT, epithelial-mesenchymal transition).

Analysing the functional states of the
forkhead box P family at the single-cell
level

Enrichment analysis results showed that coexpressed gene
clusters of the FOXP family acted on several typical cancer
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pathways. To better understand the relevance and underlying
mechanisms of the FOXP family in NSCLC, we investigated the
14 functional states of the FOXP family at the single-cell level via
the CancerSEA database (Figure 8). The results indicated that
FOXP1 was mainly positively correlated with differentiation and
hypoxia, FOXP2 was mainly negatively correlated with cell cycle,
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DNA damage, DNA repair, invasion, metastasis, proliferation,
and FOXP4 was mainly positively correlated with hypoxia,
invasion, stemness (Figure 8A). Besides, the single-cell analysis
result related to FOXP3 were not stated here for the CancerSEA
database lacked the FOXP3 data at the single-cell level. we need
to supplement this part in the future. In terms of functional
relevance in different T cell groups, Kim (Exp0068) showed that
FOXP1 had positive correlations with angiogenesis, apoptosis,
metastasis, and stemness (Spearman’s coefficients, 0.74, 0.91,
0.34, and 0.36 respectively; p value < 0.05) and a negative
correlation with EMT (-0.88, p value < 0.01) in NSCLC. Kim
(Exp0066) showed that FOXP2 had negative correlations with
cell cycle, DNA damage, proliferation, DNA repair, metastasis,
and invasion(Spearman’s
coefficients, —0.53, —0.53, —0.52, —0.48 and —0.41 respectively;
p value < 0.05) in NSCLC. Kim (Exp0068) reported that high
FOXP4 with
metastasis, angiogenesis, inflammation, and
hypoxia, (Spearman’s coefficients, 0.71, 0.64, 0.59, 0.59,
and 0.25 respectively; p value < 0.05)

expression  was  positively  correlated

stemness

and negatively
associated with cell cycle (Spearman’s coefficients, —0.65, p
value < 0.01) in NSCLC. These discoveries indicate that the
FOXP family may crucially affect the tumour progression of
NSCLC.

The degree of immune factor infiltration
regulated by the forkhead box P family in
non-small cell lung cancer

To augment the understanding of the relationship between
the FOXP family and immune infiltration, the connection
between the FOXP family and various immune signatures,
which included the immune-related characteristics of 28 TIL

types,
immunostimulator, and MHC molecules), chemokines and

immunomodulators (immunoinhibitor,
receptors, was investigated. All the heatmaps showing the
10;
the
heatmaps that the FOXP family was related to immune

correlation results are presented in Figures 9,

Supplementary Figure S7. It was obvious from
signatures. To further analyse the relevant mechanisms of
the FOXP family in regulating immunity, we selected two
modules, the one with the most relevant expression and the
other with the most relevant infiltration after copy number
alteration and DNA methylation as representatives (the rho of
the Spearman correlations test was the highest). When
different immune molecules showed upregulation and
downregulation trends under the same conditions, two
modules were chosen to represent the upregulation and
downregulation molecular The
immune signatures regulated by FOXP1 were Act CD4 and
Tem CD8 in LUAD, NK cells, and neutrophils in LUSC. The

infiltration abundances of Act CD4 and Tem CD8 in LUAD

clusters. representative
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tumour tissue were negatively correlated with the expression
of FOXP1, and FOXP1 was low in LUAD tissue. That is, the
abundances of Act CD4 and Tem CD8 infiltration increased in
LUAD The of the
were —0.258 and -0.042, respectively, and there were

tissue. correlation  scores two
positive correlations due to copy number alteration and
DNA  methylation of FOXP1. The representative
lymphocytes regulated by FOXP1 in LUSC were NK cells
and neutrophils. As we confirmed above, FOXP1 was
expressed at low levels in LUSC tissues and was positively
correlated with the abundance of NK cells and neutrophil
infiltration. The relative rho scores were 0.526 and 0.312,
respectively, so NK cells and Neutrophil infiltration were
abundant. The degree of decrease in LUSC and was
negatively correlated due to the variations in copy number
alteration and DNA methylation. By analogy, the regulation of
copy number alteration and DNA methylation is shown in the
Figures 11A-F. The downregulation of FOXP1 affected the
results, including ActCD4, TemCD8, TGFBRI1, TIGIT,
TNFRSF25, ICOS, TAP1, TAP2, CCL14, CXCL10, CCLS5,
CX3CR1, CCR5, NK, neutrophils, KDR, ADORA2A,
ENTPD1, TMEM1730, HLA-DOA, TAPBP, CCL12, CCL28,
CCL26, CXCR4, and CXCRI1. The immune infiltration
coefficient of FOXP2 in NSCLC tissue was less than those
of FOXP1/3/4. The upregulation of FOXP3 mainly affected
TemCD8, ActCD4, TIGIT, CTLA4, ICOS, IL2RA, HLA-B,

HLA-DPB1, HLA-DOB, CCL19, CCL11, CCRS8, ImmB,
ActB, TIGIT, IDOI1, ICOS, CD27, HLA-DPB1, CCLS5,
CCL19, CCR8, and CCR7. The downregulation of
FOXP4 was mainly associated with ActCD4, Thl,

PDCD1LG2, HAVCR-2, TNFSF4, CD40, B2 M, HLA-B,
CCL26, CCL14, CCRI1, CD56bright, Eosinophil, PVRL2,
ADORA2A, ICOSLG, CXCR4, TAPBP, HLA-DOA, CCL26,
CCL28, CCR10, and CCR6. We also constructed rate scores to
compare the influence of copy number alteration and DNA
methylation on the FOXP family (Figures 11G-L). The results
presented that both copy number alteration and DNA
methylation on the FOXP family play effects on the
infiltration correlation results of immune factors in NSCLC,
and it was obvious that the changes of immune infiltration
correlation after DNA methylation on the FOXP family were
significant than those after FOXP family copy number
alteration. The multiple influences were different due to
different pathological types of NSCLC. Therefore, we could
infer that the corresponding conclusion that copy number
alteration and DNA methylation regulated the infiltration of
corresponding immune factors by the FOXP family. In
addition, except for FOXP2 in LUAD and FOXP4 in LUSC,
the remaining FOXP family members had significantly
different effects on immunophenotyping C1-C6 in NSCLC
(Figure 12). Therefore, it was confirmed that the FOXP family
participated widely in modulating various immune molecules
to affect immune infiltration in NSCLC progression.
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The relationship between the degree of immune factors infiltration in NSCLC and the expression of FOXP family. (A) The hotmap presented the
correlations between the FOXP family and immune-related characteristics of 28 TIL types. (B) The hotmap presents the correlations between the
FOXP family and immunoinhibitor.
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Genetic alteration and interaction 2.7% of the NSCLC samples, respectively (Figure 13A). The
analyses of the forkhead box P family in genetic alterations of structural variants, mutations,
non-small cell lung cancer amplifications, deep deletions, and copy number alterations
of the FOXP family all occurred in NSCLC (Figure 13B). The

Upon analysis of the FOXP family in the OncoPrint details of all mutations in NSCLC are summarized in
module on cBioPortal, the results revealed that gene Supplement Figure 6. FOXP1 had 15 missense mutations,
alterations in FOXP1/2/3/4 occurred in 3%, 3%, 2.2%, and 3 splice mutations, and one fusion mutation. FOXP2 had
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The relationship between the degree of immune factors infiltration in NSCLC and the expression of the FOXP family. (A) The heatmap presented
the correlations between the FOXP family and immunostimulator. (B) The heatmap presented the correlations between the FOXP family and MHC
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one missense mutation and one Fusion mutation. FOXP3 had
one missense mutation. FOXP4 had no mutation. Only
FOXP1 had domain mutations (Figure 13C), while the
remaining FOXP2/3/4 had no
(Figure 13D). The abovementioned multiple alterations of

domain  mutations

the FOXP family might partially explain the mechanism of
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occurrence and progression in NSCLC. In addition, we
conducted a PPI network analysis of the FOXP family by
STRING to investigate the feasible interactions in their
internal and related genes. Multiple nodes (34) and edges
(212) are shown in the PPI network (Figure 13E). The STRING
results mainly displayed the functions connected with
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FIGURE 11

The effects of FOXP family expression, copy number alteration, and DNA methylation on immune factors. (A—F) These histograms present the
correlation scores of the top two most relevant immune infiltration module and correlation scores modified by copy number alteration and DNA
methylation. (G—L) These histograms present the fold relationship between copy number alteration and DNA methylation correlation scores of the
FOXP family in NSCLC. (CNA, Copy number alteration; MET, DNA Methylation).

immunity, including regulation of T cell homeostatic regulatory T cell differentiation. We further investigated the
proliferation, the activity of T-helper 17 cells, the signalling results of STRING in Cytoscape and then curtained and locked
pathway mediated by interleukin-2, and the adjustment of out 10 hub genes (IL2, IFNG, FOXP3, CTLA4, STAT3, IRF4,
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FIGURE 12

The relationship between immune types and the FOXP family. (A) The violins plot showed statistical relationships between FOXP1 and immune
types C1-C6 in LUAD. (B) The violins plot showed statistical relationships between FOXP1 and immune types C1-C6 in LUSC. (C) The violins plot
showed statistical relationships between FOXP2 and immune types C1-C6 in LUAD. (D) The violins plot showed statistical relationships between
FOXP2 and immune types C1-C6 in LUSC. (E) The violins plot showed statistical relationships between FOXP3 and immune types C1-C6 in
LUAD. (F) The violins plot showed statistical relationships between FOXP3 and immune types C1-C6 in LUSC. (G) The violins plot showed statistical
relationships between FOXP4 and immune types C1-C6 in LUAD. (H) The violins plot showed statistical relationships between FOXP4 and immune
types C1-C6 in LUSC. [C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet);
C6 (TGF-b dominant)].
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The DNA methylation analysis of FOXP family in NSCLC. (A—H) the promoter methylation levels of the FOXP family in LUAD/LUSC compared

with normal samples.

JUN, SMAD3, FOS, TP53), as shown in Figure 13F. The FOXP
family was input to the GeneMANIA website to link genes
with similar functions. Functionally similar genes surrounded
the outside of the FOXP family in the presentation
(Figure 13G). The GeneMANIA results affirmed that the

Frontiers in Genetics

functions of the FOXP family and their related clusters
were chiefly related to the differentiation of lymphocytes
and T cells and the regulation of leukocytes. The above
results support that the FOXP family participates in the
immune process of NSCLC under the condition of interaction.
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TABLE 1 The prognostic value of single CpG of FOXP family in NSCLC by MethSurv (p < 0.05).

Gene Tissue CpG RefGene group Relation to HR p-value
CpG island
FOXP1 LUAD ¢g00201568 Body Open_Sea 1.097 0.0026
cg00707452 TSS1500 S_Shore 0.839 0.0043
cg01173432 5'UTR Open_Sea 1.308 0.0066
cg01186551 5'UTR Open_Sea 0.923 0.0068
cg01189917 TSS1500 S_Shore 0.965 0.0076
cg01232145 Body Open_Sea 0.746 0.015
cg01331540 Body Open_Sea 1.095 0.015
cg01534217 5'UTR Island 1111 0.019
¢g02002523 Body Open_Sea 0.847 0.02
¢g02220284 Body Open_Sea 1.318 0.02
¢g02336104 5'UTR Open_Sea 1.133 0.022
¢g02520804 5'UTR N_Shore 1.101 0.027
¢g02862354 Body Island 0.886 0.036
LUSC €g22798400 Body Open_Sea 0.638 0.006
€g02520804 5'UTR N_Shore 0.682 0.02
¢g00052246 Body Open_Sea 1.46 0.034
cg01173432 5'UTR Open_Sea 1.564 0.038
¢g00201568 Body Open_Sea 1.409 0.046
cg01189917 TSS1500 S_Shore 1.474 0.049
€g25481160 Body N_Shelf 0.673 0.05
FOXP2 LUAD —
LUSC —
FOXP3 LUAD —
LUSC ¢g04920616 TSS200 Open_Sea 0.684 0.032
FOXP4 LUAD cgl2911122 5'UTR S_Shore 1.759 0.00058
€g26432961 5'UTR S_Shore 1.891 0.0035
cg08696640 5'UTR S_Shelf 1.558 0.0068
cg05734456 5'UTR Island 1.489 0.014
cg04617914 TSS1500 N_Shore 1.45 0.024
cg17620505 5'UTR N_Shelf 1.574 0.028
cg01508045 5'UTR Island 1.558 0.029
LUSC ¢g03442064 5'UTR Island 1.568 0.0057
cg00806680 Body N_Shore 0.688 0.022
cg08727957 TSS1500 Island 0.696 0.026
cg05140895 TSS200 Island 0.644 0.038

Notes: HR, hazard ratio.

DNA methylation analysis of the forkhead
box P family

In the process of using TISIDB to study the effect of the
FOXP family on immune infiltration, we found that the FOXP
family significantly changed the correlation degrees between
immune signatures after undergoing epigenetic alterations of
copy number alteration and DNA methylation. These cBioPortal
findings suggested that copy number alteration of the FOXP
family played a role in the progression of NSCLC. Therefore, we
used DNA methylation as a representative epigenetic alteration
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to evaluate its effect on the expression levels of the FOXP family
and patients prognosis. We first applied the UALCAN database
to determine the relationship between DNA methylation and the
expression of the FOXP family in NSCLC. The DNA methylation
level of FOXP1 was no statistically significant in NSCLC than
those in normal samples (Figures 14A,E). The DNA methylation
level of FOXP2 was higher in LUAD but lower in LUSC (Figures
14B,F). The DNA methylation levels of FOXP3/4 in NSCLC were
lower than those in normal samples (Figures 14C,D,G,H).
According to these data, the expression levels of FOXP2/3/
4 were significantly associated with DNA methylation in
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NSCLC. In addition, the results showed that 20 CpGs of FOXP1,
1 CpGs of FOXP3, and 12 CpGs of FOXP4 presented important
statistical significance related to prognosis. Moreover, with the
occurrence of different CPG sites, FOXP family members’ DNA
methylation statuses were related to different prognoses. Specific
details of the results including the types of CpG, RefGene groups,
relationship to CpG islands, HRs, and p values, are listed in
Table 1.

Discussion

The treatment of NCSLC with immunotherapy including
ICIs, has improved the clinical benefits for patients and greatly
innovated the traditional chemotherapy regimen (Cogdill
et al, 2017). Nonetheless, many patients are still rejected
for immunotherapy due to not meeting the inclusion
criteria. As a result, research on advanced and effective
modulators at immune-related critical points is in full
swing. To further understand the molecular regulatory
mechanism of the immune system in the management of
NSCLC. Our article elaborates on the specific regulatory
details of specific immune molecules from the perspective
of the FOXP family.

At present, the FOXP family is observed to play negative
or positive roles in particular cancers. For example,
FOXP1 drives the occurrence of malignant behaviour by
dominating the expression level of PKLR in gallbladder
cancer (Wang et al, 2019). FOXP2 participates in the
process of invasion and metastasis of breast cancer via the
TGEFB/SMAD pathway (Chen et al, 2018). Aberrant
expression of FOXP3 in colorectal cancer is related to
immune overdrive in a high-risk subpopulation (Cui et al,,
2021). FOXP4 directly acts on LEF-1 and gives impetus to the
occurrence of laryngeal squamous cell carcinoma (Shi et al.,
2021). At the same time, many recently published works in
the literature show that the FOXP family participates in the
process of immune system reconstruction of tumour tissue
by activating or inhibiting the specific function of immune
molecules (Fleskens and van Boxtel, 2014). The FOXP
family, as a major contributor, can regulate tumour-
associated inflammation and immune responses in tumour
progression. For example, FOXP1 inhibits the behaviour of
immune activation and the expression of MHC class II in
diffuse large B-cell lymphomas (Brown et al, 2016).
FOXP3
immunosuppressive response of T cells (Klimenko, 2011).
FOXP3 CD44 breast by
participating in the corresponding regulatory role (Zhang
2015).
unambiguously confirms that epigenetic alteration plays a

is defined as a manager to administer the

restrains cancer

directly

et al, Furthermore, increasing evidence
role in the process of cancer, and various epigenetic

alterations can be used as maker molecules to evaluate the
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risk of tumour prognosis (Richardson et al., 2018; Zhang and
Zhang, 2020). For instance, the regulation of immune cells is
closely related to the copy number alteration of TRPV1 in
renal cell carcinoma (Zheng et al., 2020). Abnormal DNA
methylation impacts gene expression and survival time in
breast cancer patients (Gyorffy et al., 2016). Therefore, the
underlying mechanism of FOXP family expression/copy
number alteration/DNA methylation in the regulation of
immune-related signatures was initially elucidated in this
paper.

Previous studies have shown that FOXP3 is overexpressed to
facilitate the invasion and metastasis of NSCLC (Li et al., 2021).
Our results showed there were different expression levels of the
FOXP family according to different pathological types in NSCLC
compared with normal tissue. UALCAN presented that the
expression levels of the FOXP family had significant effects on
the clinical parameters, including patient age, smoking habits,
histological subtypes, individual cancer stages, nodal metastasis
status, and TP53 mutation status. The Kaplan—Meier Plotter
showed that the overexpression levels of FOXP1/4 were involved
in the better prognosis, and the overexpression levels of FOXP2/
3 were associated with poor prognosis of NSCLC. It may be an
option to analyse the mRNA expression levels of the FOXP
family members in NSCLC patients to provide powerful markers
to define prognosis.

GO and KEGG pathway analyses of coexpressed genes of
the FOXP family indicated that the FOXP family possessed
roles in activating the Wnt, PI3K/AKT/mTOR, and FOCAD-
FAK pathways to the
progression of relevant immune responses in NSCLC.

regulate tumourigenesis and
Combined with previous research, the above typical
pathways were associated with NSCLC progression
(Heavey et al., 2014; Stewart, 2014; Liu et al., 2020). Our
study further clarified the role of the FOXP family in the
development of NSCLC. Likewise, CancerSEA showed the
functional states of the FOXP family have a necessary
the of the

differentiation, apoptosis, angiogenesis, invasion, EMT,

relationship ~ with activity cell cycle,
proliferation, hypoxia, inflammation, and stemness at the
single-cell level. The results validated previous evidence that
the FOXP family was involved in the progression of a variety
of cancers. For example, the FOXP family regulates 8 cell
proliferation in concert with NFATC2 (Simonett et al,
2021). Furthermore, FOXP2 targets GRP78 in breast
cancer to promote tumour proliferation and metastasis
(Wu et al, 2018). In addition, FOXP1 inhibits guidance
proteins to promote angiogenesis in cell activity
(Grundmann et al,, 2013). Taken together, the functional
states of the FOXP family accurately revealed that the FOXP
family might crucially affect the progression of NSCLC. The
results of PPI interaction and GeneMANIA analyses further
demonstrated the occurrence of cooperation and interaction

between FOXP members. These results implied that FOXP
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members could function through alliance mechanisms in
NSCLC. Our study showed that the FOXP family was
prominently dysregulated in NSCLC, and we then carried
out the an analysis of genetic alterations. Unsurprisingly,
there was the evidence of fusion, mutation, and amplification
of the FOXP family in NSCLC. These genetic alterations were
undoubtedly involved in the molecular malignant behaviour
of NSCLC.

The DNA methylation process of specific genes mediates
different biological results of cancer. For example, DNA
methylation is related to the occurrence of drug resistance in
patients with glioblastoma during treatment (Lu et al., 2020). In
addition, the absence of DNA methylation can cause immune
evasion in various cancers (Jung et al, 2019). To explore the
particular mechanism of the FOXP family in NSCLC, we
investigated the connection between the promoter methylation
levels and the expression levels of the FOXP family using
UALCAN databases. The that the
expression levels of FOXP2/3/4 were correlated with their

outcomes showed
promoter methylation levels in NSCLC. In addition, we
analysed the DNA  methylation
modification behaviour at different sites of the FOXP family
and patient survival time. Significant prognostic values (p value <
0.05) were observed for FOXP1/3/4. In short, analysis of FOXP
family DNA methylation provides a new approach to the
prognosis of NSCLC.

Data from recent years have shown that the combined use

relationship ~ between

of ICIs has improved the survival time of NSCLC patients by
blocking the checkpoint inhibition process. Our study
presented the correlations between FOXP family expression/
copy number alteration/DNA methylation and immune
signatures. The results showed that the FOXP family without
epigenetic alterations mainly controlled the degrees of
infiltration of immune-related factors (Tem CDS8, TXNDCS5,
TAP1, TAP2, CCL5, NK, KDR, ENTPDI1, and HLA-DOA) in
NSCLC. Previous that
CDS8 inhibits tumour growth in mouse models and plays a

studies have confirmed Tem
vital role in cancer immune surveillance and treatment (Wang
et al, 2020). TXNDC5 promotes pulmonary fibrosis by
augmenting TGFP signalling through TGFBRI stabilization
(Lee et al, 2020). TAP1 and TAP2 are typical tumour
predictors (Gostout et al., 2003; Henle et al., 2017). CCL5, as
a receptor antagonist, plays a positive role in the process of
tumour progression by attracting macrophages (Van Damme
et al., 2004). The activation of NK cells is related to immune
dysfunction and a harmful tumour microenvironment (Li et al.,
2020b). There is currently a small-molecule tyrosine kinase
inhibitor (Moulder, #137) for KDR that is effective for lung
cancer (Dai et al., 2019; Song et al., 2020). FOXP3 regulates the
expression and infiltration of ENTPDI1 to promote the
occurrence of tumours (Sun et al., 2010). HLA-DOA has
confirmed that the degree of infiltration in the tissue is

directly proportional to the degree of inflammation (Okada
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et al., 2016). After copy number alteration and DNA
methylation, our results revealed that the correlations
between the FOXP family and immune parameters were
opposite to those before alteration in NSCLC. In addition,
the influence of DNA methylation was stronger than that of
copy number alteration. In addition, due to the different
pathological types of NSCLC, the multiples of the influence
intensity were also different. Altogether, our results partly
that FOXP
alteration/DNA methylation regulated the infiltration of

showed family ~ expression/copy number
corresponding immunity in NSCLC. This paper provided
more detailed molecular mechanisms for the development of
new immune checkpoints from the perspective of FOXP family.

Our research has many details that need to be
further verified. The data required for the content of
bioinformatics analysis in this paper are from public
databases. Further basic and clinical trials are still required
to explore the detailed molecular mechanism of the FOXP

family in NSCLC.

Conclusion

This paper systematically analysed molecular mechanism of
FOXP family member regulation, including the expression levels,
correlation with clinicopathological stages, DNA methylation
levels, epigenetics alterations, prognostic values, relationship
with immune regulation and functional analysis based on
coexpression in NSCLC. Activation of FOXP family-related
pathways could significantly change the patient’s response to
tumour immunity. Our article showed that the FOXP family
members, as diagnostic and prognostic biomarkers, provide new
information for the development of ICI drugs for patients with
NSCLC.
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