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Summary 
Human immunoglobulin M (IgM) rheumatoid factors (RFs) show primary direct enzyme-linked 
immunosorbent assay (ELISA) reactivity with Fab rather than Fc fragments of monoclonal antibody 
(mAb) II-481 directed against the Fc3'-binding site of herpes simplex virus glycoprotein gE. This 
preferential anti-Fab specificity suggests that RFs react with antigen-binding portions of mAb 
II-481 as anti-idiotypic antibodies directed at the combining site regions of mAb reacting with 
the Fc3'-binding region of gE. Analysis of this idiotype-anti-idiotype reaction employed polymerase 
chain reaction amplification and sequencing of the variable heavy and light (VH and VL) regions 
of mAb 11-481. When VH and VL regions of mAb II-481 were synthesized as overlapping 7-met 
peptides on polypropylene pins, a panel of 10 polyclonal and 6 rnonoclonal human IgM RFs 
reacted primarily with epitopes within the three solvent-exposed mAb 11-481 complementarity 
determining regions (CDRs). Preincubation of single CDR heptamer peptides with IgM RFs 
in free solution, resulted in 63-100% inhibition of RF binding to mAb II-481 on the ELISA 
plate, confirming the antigenic importance of linear CDR regions for RF reactivity. Combinations 
of two or three CDR peptides frequently produced 94-100% inhibition of RF binding to whole 
mAb II-481. Control peptides, singly or in combination, showed no inhibition. Computer modeling 
suggested that the R.F-reactive mAb II-481 Fv region and a previously demonstrated R.F-reactive 
CH3 epitope displayed considerable three-dimensional similarities in conformation. These studies 
may provide insight into limited shape homologies possibly involved in an R.F anti-idiotypic reaction. 

H uman RFs represent one of the first types of autoanti- 
bodies ever described (1, 2), and over the five decades 

since their initial description, have provided a fascinating sub- 
ject to study in parallel with the humoral immune response 
in rheumatoid arthritis (RA): (3-7). The original observa- 
tions on immunochemical and serologic reactions of RFs in- 
dicated that they represented autoantibodies directed at sites 
on the Fc region of human IgG. Indeed the primary anti-Fc 
specificity of human RFs was supported by formation of 22S 
and 11S complexes when 19S IgM or 7S IgG RFs reacted 
with autologous IgG (3-5). Moreover, anti-Fc specificity of 
human RFs was also supported by a multitude of studies of 
antiallotypic RF specificity for Gm determinants dependent 

1 Abbreviations used in thispaper: FR1, framework region 1; gE, glycopro- 
tein E; R.A, rheumatoid arthritis. 

on localized single or double amino acid substitutions within 
various regions of CH3 and CH2 of the Fc portion of IgG 
(8-10). 

Recently, there have been a number of indications that, 
besides Fc, human RFs may have other parallel specificities 
such as the Pab portion of monoclonal mouse IgG antibodies 
directed at the Fc'y-binding region of the HSV glycoprotein 
E (gE) (11, 12). The reaction of human IgM RFs from pa- 
tients with RA with the mouse monoclonal IgG-2b anti- 
body II-481 to gE (the HSV-1 Fcy-binding protein) was shown 
to resemble an idiotype-anti-idiotype reaction since, in most 
instances, RFs reacted much more strongly with Fab than 
with Fc fragments of mAb II-481 (12). If R.Fs from patients 
with RA react as anti-idiotypes against the Fv regions of 
mAb I1-481 directed at the Fcy-binding regions of gE, then 
the Fab portion and presumably the three CDRs of mAb 
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II-481 should contain immunodominant  antigenic epitopes 
very similar or identical to RF-reactive regions on the Fc por- 
tion of IgG (13, 14). The present report provides evidence 
which supports that this is indeed the case. Moreover, data 
presented here also provide molecular and single amino acid 
epitope definition of an idiotype-anti-idiotype reaction be- 
tween a common human autoantibody (R,F) and the Fv por- 
tion of mAb II-481 directed at the Fc3/-binding region of 
the herpes simplex gE (14). The results presented here also 
suggest that similar conformations may be shared between 
the RF-reactive Fv regions of mAb II-481 and RF-reactive 
sites on CH3 of  IgG. 

Materials and Methods 
Mouse Monoclonal Cell Lin~ The cell line II-481 B-2.4 producing 

the IgG-2b mouse mAb 11-481 (15) directed at gE of HSV-1 was 
kindly provided by Dr. Pat Spear (Northwestern University Med- 
ical School, Chicago, IL) and was grown in OPTI-MEM media 
(GIBCO BRL, Gaithersburg, MD) supplemented with 5% FCS, 
0.3 mg glutamine, 100 U of penicillin, and 0.1 mg streptomycin 
(Sigma Chemical Co., St. Louis, MO) per ml. Cells were collected 
by centrifugation and supernatants tested for reactivity with iso- 
lated gE (5 ~g/ml) as well as with whole HSV-1 by ELISA (11, 
12). The cell line mAb product 11-481 showed strong anti-gE 
specificity. 

mRNA Isolation and cDNA Synthesis. mRNA was isolated from 
3 x 10 s cells using the Fast Track mRNA Isolation Kit (In- 
vitrogen, San Diego, CA). Briefly, cells were lysed in detergent- 
based buffer containing RNase and protein degrader and applied 
to oligo (dT) cellulose for adsorption. DNA, dissolved membranes, 
proteins, cell debris, and nonpolyadenylated RNAs were washed 
off the resin with salt buffers while the mRNA was eluted in the 
absence of salt. Purity and concentration of the mRNA was deter- 
mined spectrophotometrically. Transcription of mRNA into first 
strand cDNA was performed according to the method of Gubler 
and Hoffman (16) with the cDNA Synthesis Kit from Boehringer 
Mannheim Biochemical (Chicago, IL). Briefly, the mRNA sample 
was heated to 65~ for 5 min and then incubated with AMV re- 
verse transcriptase, oligo (dT) 15 primer or random primer, p(dN)6, 
RNase inhibitor, and deoxynucleotide mixture at 42~ for 1 h. 

Oligonucleotide Primers. The oligonucleotide primers used in 
PCR are shown in Fig. 1. The 5' primer for the light and 3' primers 
for the L and H chains were those of Larrick and co-workers (17, 
18) whereas the 5' primer for the H chain was from Orlandi et 
al. (19). Originally, the primers were designed from known se- 
quences of mouse IgG antibodies (20, 21). The 5' primers were 
constructed from information available on conserved sequences of 
the first framework regions (FR1) of L and H chains, whereas the 
3' primers were designed for annealing within the constant regions 
of C K L chains or CH 1 H chains. EcoRI and HindlII restriction 
sites were added to the 5' and 3' primers, respectively. Two bases 
(G) were added outside the restriction endonuclease site to improve 
enzyme digestion. 

PCR. 2/~1 of the cDNA-RNA hybrid and 100 pmol of the 
primer were added to the PCR mixture (GeneAmp; Perkin Elmer 
Cetus, Norwalk, CT) in a total volume of 100/~1. Amplification 
was done in a thermal cycler for 40 cycles (Perkin Elmer Cetus). 
Each cycle consisted of heating to 94~ for 1 min, primer annealing 
at 55~ for 3 rain, and primer extension at 72~ for 3 min. PCR 
products were analyzed with ethidium bromide on a 2% agarose gel. 

Cloning and DNA Sequencing. PCR bands were reamplified be- 

fore being digested with EcoRI and HindlII restriction enzymes, 
isolated on gel, and ligated into plasmid pGem-3Zf(+) (Promega, 
Madison, WI). After selection of appropriate clones, each strand 
of the PCR product was sequenced by the dideoxynucleotide chain 
termination method (Sequenase version 2.0 kit; United States Bio- 
chemical Corp., Cleveland, OH) using T7 and Sp6 primers 
(Promega). mRNA from two separate cell clones was isolated, trans- 
formed to cDNA-RNA hybrids, and amplified by PCR to assure 
reproducibility of results. Two clones from each amplified VH and 
VL PCR product were selected and sequenced. 

Study of Human RF Reactivity with VH and VL Primary Amino 
Acid Sequences of mAb 11-481. The amino acid residues making 
up positions 20-105 on the VH and 14-100 on the VL regions 
of mAb II-481 were synthesized as overlapping 7 mers on Geysen 
pins as previously described (14, 22-27). Pins containing the VH 
or VL primary amino acid sequences were then tested directly with 
a panel of 10 a~nity-isolated polyclonal and 6 monoclonal human 
IgM RFs obtained as previously described (22-24). The procedure 
for testing of the pins containing the overlapping 7 mers of VH 
or VL followed the procedure previously outlined in detail (14). 
Synthesis control pins containing the peptides with the sequences 
PLAC and GLAC were incubated with the positive control mAb 
(PT-02-20027; Cambridge Research Chemicals, Cambridge, MA). 
The next day, the pins were washed four times for 10 rain with 
PBS containing 0.05% Tween-20. Depending on the primary 
reacting antibody, the pins were then incubated with peroxidase- 
conjugated goat F(ab')2 anti-human IgM (for human IgM RF) or 
anti-mouse IgG (Jackson Laboratories, West Grove, PA) diluted 
in PBS containing 1% BSA, 200 #g/well, for 1.5 h at room tem- 
perature. After four wash steps, the pins were incubated with the 
O-phenylene-diamine substrate and color developed for 15 min. After 
completions of assays, a disruption procedure was employed to re- 
move bound antibodies as previously described (14, 23, 24). Pins 
could then be reused 25-35 times before losing their antigenicity. 

Synthesis of CDR Peptides and Inhibition of RF Binding to mAb 
11-481. After distinct RF-reactive linear sequences had been 
identified within the VL or VH CDRs using the pin ELISA assay, 
these reactive regions were synthesized as eight free heptamer pep- 
tides using the original Merrifield technique (28). These CDR pep- 
tides were used in competition/inhibition ELISA assays with RFs 
reacting with mAb 11-481 on the ELISA plate. Titrations of in- 
creasing amounts of RF reacting with mAb II-481 (5 #g/ml) on 
the plate were used to establish the maximum binding concentra- 
tion of each RF. Concentrations of RF producing 50% maximum 
binding were preincubated with a broad micromolar range of each 
of the eight CDR peptides before completion of the ELISA reac- 
tion between the RF and mAb II-481 on the plate. In many in- 
stances, various combinations of VL or VH mAb II-481 CDR pep- 
tides were studied to determine if inhibition of RF binding was 
increased using several peptides derived from different CDR regions. 
Several control peptides were used in parallel. A laminin peptide 
of the same length but no homologous sequence (CIKVSVS) was 
used as one control. Additional control peptides included: 
GMERVRWCATDGEG (melanoma peptide); LHNHYT (pep- 
tide from Cv3 of human IgG); CNSRQTDREDELI (Klebsiella 
peptide); ADAQTDREDLRTLLRY (HLA B27 peptide); AAE- 
DWCKKGDT (IgA Cy3 peptide); and NSRQTDR (KlebsieUa pep- 
tide). Positive control inhibition was obtained with whole mAb 
11-481 or Fc of IgG. 

Computer Analysis ofli-481 Sequences. We used the previously 
established three-dimensional structure of the Fab portion of mouse 
IgG mAb D1.3 (29) available through the Brookhaven Data Base 
to provide a template for a tentative model of the VH and VL pot- 
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tions of mAb I1-481. Since the first eight amino acid residues of 
the VH and VL chains of mAb 11-481 were missing because of 
primer annealing, these residues were replaced by the first eight 
amino acids from the VH chain of mAb Id B5.7 (30), and the 
missing residues for the VL chain by those from mAb A17 (31). 
In the comparable FRs of these latter mAbs, the amino acid res- 
idue homologies were 89% identical for the VH and 94% iden- 
tical for VL to those of mAb 11-481. Therefore, it was assumed 
that a similar homology existed for the first eight amino acids in 
the rather conserved FILl regions of mAbs Id B5.7, A17, and II-481. 

The sequences of the Fab portions of mouse mAb D1.3 and 
human mAb 11-481 were aligned using the BESTFIT sub-routine 
of the GCG package (version 7.0; Genetics Computer Group, 
Madison, WI) (32). The overall identity was 80% for the L chain 
and 81% for the H chain and thus justified the use of standard 
methods of modeling by homology. The program used was Sybyl 
version 6.0 (Tripos Associates, Inc., St. Louis, MO) running on 
the VAX 4000-60 workstation. Structures were displayed on the 
Evans and Sutherland PS390 graphics system. 

The loops of the H chain were modeled using the LOOP subrou- 
tine from Sybyl and the backbones displaying the smallest random 
mean square deviation values were selected. Individual amino acid 
substitutions were made using the MUTATE command in the 
BIOPOLYMER module. After the whole H chain was built, the 
structure was optimized for side-chain geometry and energy 
minimized employing the MAXIMIN2 module (1,000 cycles, no 
electrostatics, and vacuum conditions) with a standard Tripos force 
field. 

To model the L chain of the Fab portion of IgG mAb II-481, 
the H chain ofmAb D1.3 was replaced with the above constructed 
H chain of mAb II-481 and the resulting hybrid was used in the 
subsequent modeling. An attempt to model both chains separately 
did not provide satisfactory results. Therefore, the loops containing 
residues 26-32 and 90-96 of the L chain were modeled in the hy- 
brid as described for the H chain. The whole structure was op- 
timized for the side chain geometry and energy minimized as de- 
scribed above for the H chain modeling. In particular, the linear 
amino acid sequences within the three solvent-accessible CDR 
regions of the VL and VH of mAb II-481, which showed direct 
reactivity with tLFs in pin ELISA, could be visualized and their 
physical proximity estimated. This strategy also allowed for con- 
struction of a tentative shape of the mAb II-481 combining site 
using space-fiUing spheres based on Connolly solvent-accessible sur- 
faces (33). The whole modeling procedure was verified by using 
VL and VH sequences of other IgG 2bK mouse mAbs such as IL19.9 
(34, 35) which had already been extensively studied with respect 
to three-dimensional crystal structures. The validation process 
confirmed that the modeling steps we used accurately predicted 
most elements of Fv structure of previously studied mouse IgG 
2bK antibodies where the crystal structures had been established. 
However, these predictions, of course, were not always perfect since 
the hypervariable regions of some antibodies actually assumed only 
one of several possible conformations. 

Results 

mRNA from the hybridoma cell line producing mAb II- 
481 was isolated and transformed by reverse transcriptase to 
cDNA-RNA hybrids. When the DNA sequence of the VL 
and VH regions of the Fv portion of mAb II-481 was amplified 
by PCR from the cDNA-RNA hybrids, the L chain primer 
pair (5'-EcoRI/FR1-ML [K] and 3'-HindlII/ML [K] constant) 
gave a major PCtL product of *400 bp whereas the H chain 

Mouse light kappa chain 

Amino acids 1-8 
5': Eco RI/FR1-ML(kappa): 
5'-GGGAATTCGA(CT)ATTGTG(AC)T(AG)AC(AC)CA(AG)(GT)(AC)TCAA-3' 

EcoRI 

Amino acids 116-122 
3': Hind III/ML(kappa) const: 
5'-GGAAGCTTACTGGATGGTGGGAAGATGGA-3' 

HindIII 

Mouse heavy gamma chain 

Amino acid 1-8 
5': Eco RI/VHIBack(FR1): 
5'-GGGAATTCAGGT(CG)(AC)A(AG)CTGCAG(CG)AGTC(AT)GG-3' 

EcoRI 

Amino acid 121-131 
3 ' :  Hind III/MH(gamma)const: 
5' - GGAAGCI-TA (TC) CTCCACACACAGG (AG) (AG) CCAGTGGATAGAC - 3' 

H ind I I I  

Figure 1. 5' and 3' end oligonucleotide PCtL primers for mouse vari- 
able light K chain and mouse variable heavy 3' chain. Bases in parentheses 
stands for equimolar amounts of bases at that position. The 5' end restric- 
tion enzyme site EcoRI and the 3' end restriction site HindlII are underlined. 

primer pair (5'-EcoRI/VH1 Back [FR1] and 3'-HindlII/MH 
[3'] constant) gave a band of m410 bp (Fig. 2). 

After the PCR products were ligated into plasmid pGem 
3Zf(+), they were cloned and sequenced. The nucleotide and 
amino acid sequences of the L and H chain variable regions 
including the four FR and three CDR regions are shown 
in Fig. 3, A and B. The variable L and H chain regions con- 
sisted of 107 and 113 amino acid residues, respectively. The 
L chain was identified as mouse K subgroup I and the H chain 
as subgroup IB (21). 

mRNA of two independent clones from the mAb II- 
481-producing cell line was isolated and from each PCR- 
amplified mRNA-cDNA hybrid, two clones were selected 
and completely sequenced. In all, four separate sequences from 
the VL and four from the VH were obtained. No mutations 
were detected in the four sequenced clones from L chain. In 
one of the four clones from the H chain, G was substituted 
for C at amino acid 77, changing the corresponding amino 
acid residue Gln to His at this position. 

Figure 2. PCR products of the vari- 
able part of mouse mAb II-481 L (lane 
2) and H (lane 3) chains. 10/zl from a 
100-/zl PCR reaction was applied in each 
lane on a 2% agarose gel stained with 
ethidium bromide together with a 1-kb 
marker ladder (lane 1). 
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A 
9 i0 

5"-TTC GAT ATT GTG ATA ACA CAG GCT CAA TCA TCT CTG GCT GTG TCT 
Primer Ser Ser Leu Ala Val Set 

FRI 20 . . . . . . . . . .  27A 27B-27C 
GCA GGA GAA AAG GTC ACT ATG ACC TGT AAG TCC AGT CAA AGT GTT TTA 
Ala Gly Glu Lys Val Thr Met Thr Cys Lys Ser Ser Gin Ser Val Leu 

27D 27E-27F CDRI----30 . . . . . . . . . . . . . .  dO 
TAC AGT TCA GAT CAT AAG AAC TAT TTG GCC TGG TAC CAG CAG AAA CCA 
Tyr Ser Ser Asp His Lys ASh Tyr Leu Ala Trp Tyr Gin Gin Lys Pro 

FR2 50 . . . . . . . .  CDR2 . . . . . . .  
GGA CAG TCF CCT AAA CTA CTG ATC TAC TGG GCA TCC ACT AGB GAA TCT 
Gly G~n Ser Pro Lys Leu Leu l ie Tyr Trp Ala Ser Thr Arg G]u Ser 

60 70 
GGT GTC CCT GAT CGC TTC ACA GGC AGT GGA TCT GGG ACA GAT TTT ACT 
Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr 

FR3 80 
CTT ACC ATC AAC AAT GTA CAA ACT GAA GAC CTG GCA GTT TAT 
Leu Thr lle Ash ASh Va] Gin T~r Glu Asp Leu Ala Va] Tyr 

B 
9 IO 

5' AG GTG CAG CTG CAG GAG TCA GGC CCT GGG ATT TTG CAG CCC TCC 
Primer Pro G~y l le  Leu Gin Pro Ser 

20 FRI 30 -- 
CAG ACC CTC AGT CTG ACT TGT TCT TTC TCT GGG TTT TCA CTG ACC ACT 
Gin Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Thr Thr 

- -CDRI . . . . . .  35A-3SB 40 FR2 
TAT GGT ATA GGA GTG GGC TGG ATT CGT CAG CCT TCA GGG AAG GGT CTG 
Tyr Gly l l e  Gly Va] Gly Trp l le  Arg Gin Pro Ser Gly Lys Gly Leu 

50 .................... CDR2 ........ 60 .... 
GAG TGG CTG GCA CAC ATT TGG TGG AAT GAT AAT AAG TTC TAT AAC ACA 
Glu Trp Leu Ala His I le  Trp Trp Ash Asp ASh LyS Phe Tyr Ash Thr 

. . . . . . . . . .  70 FR3 
GTC CTG AAG AGC CGG CTC ACA ATC TCC AGG GAC ACC TCC AAC AAC CAG 
Val Leu Lys Ser Arg Leu Thr l le Ser Arg Asp Thr Ser Ash Ash Gin 

80 82A 82B 82C 90 
TTC TGT GTA TTC CTC AGG ATC GCC AGT ATG GAC ACT GCA GAT ACT GCC ACA TAG 
Phe Cys Va] Phe Leu Arg lle A]a Ser Met Asp Thr Ala Asp Thr Ala Thr Tyr 

---90- -CDR3----94 96 . . . .  100 FR4 
CAT CAA TAC CTC TCC TCG TTC ACG TTC GGA GGG GGG ACC AAG CTG GAA 
His Gin Tyr Leu Ser Ser Phe lhr  Phe Gly G]y Gly Thr Lys Leu Glu 

107 II0 CL 
ATA CAA CGG GCT GAT GCT GCA CCA ACT GTA TCC ATC TTC CCA 
I le  Gin Arg Ala Asp Ala Ala Pro Thr Val Primer 

CCA TCC 

AGT AAG CTT 

. . . . . . . . . .  CDR3- --IO0-100A . . . . . . .  
TAC TGT GCT CGG ATG AGG GAC GGG GCC TGG TT, GCT TAC TGG GGC CAA 
Tyr Cys A]a Arg Met Arg Asp Gly A1a Trp Phe Ala Tyr Trp Gly Gin 

FR4 ] I0 113 CHI 120 
GGG ACT CTG GTC ACT GTC TCT GCA GCC AAA ACA ACA CCC CCA TCA GTC 
Gly T~r Leu Val Thr Val Ser Ala Ala Lys ~hr Thr Pro Pro Set 

TAT CCA CTG GTT CCT GTG TGT GGA GATAA 
Primer 

Figure 3. (A) Sequence of the 
variable part of mouse mAb II-481 
L chain (amino acids 9-107) with 
FR and CDR. Primers and part 
of constant light (CL) chain se- 
quences (amino acids 108-115 are 
also shown). (B) Sequence of the 
variable part of mouse mAb II-481 
H chain (amino acids 1-113) with 
FR and CDR. Primers and part of 
constant H chain region 1 (CH1; 
amino acids 114-120) sequences are 
also shown. These sequence data are 
available from EMBL/GenBank/ 
DDBJ under accession numbers 
X81462 (H chain) and X81463 (L 
chain). 

Human Potyclonal and Monoclonal RFs React with 7 mers of 
mAb 11-481 VII and VL Primary Amino Acid Sequence When 
the entire VH sequence of mAb II-481 was synthesized as 
overlapping 7 mers on Geysen pins and tested for reactivity 
with polyclonal RFs, four to five major regions of positive 
reactivity were identified. Localized major positively reacting 
regions were found at 7 mers beginning with residues 20-27, 
32-39, 44-58, and 94-105 on the VH segment. Some RFs 
also showed moderate reactions with 7 mers at positions 65-68. 

All of the major reactive VH-region sites were solvent acces- 
sible. Some variability was noted from RF to RF in terms 
of exact localization and numbers of reactive VH regions. 
However, the overall patterns of reactive ELISA profiles for 
most polyclonal RFs were remarkably similar. An example 
of results obtained with individual RFs is shown in Fig. 4 A. 

When the VL sequence ofmAb II-481 was also tested with 
the same panel of polyclonal RFs, localized reactive epitopes 
were found at 7 mers beginning with residues 25-32, 31-38, 
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Figure 4. (A) Example of results 
of pin ELISA assays done with pins 
encompassing residues 20-105 of the 
variable H chain of mouse mono- 
clonal II-481 as overlapping hep- 
tamers on each pin. The residue 
numbers are shown on the 
horizontal axis. Residues within the 
CDR-1, -2, and -3 regions are 
shown in capital letters. Optical den- 
sities of ELISA assays done with 1 
of 10 polyclonal IgM RF (Cla) and 
the heptamer peptide on each pin 
are shown as vertical bars. (B and 
C) Examples of result of pin ELISA 
assay done with pins encompassing 
residues 14-100 of the variable L 
chain of mouse monoclonal II-481 
as overlapping heptamers on each 
pin. The residue numbers are shown 
on horizontal axis and the residues 
within the three CDR regions are 
designated in capital letters. Optical 
densities of ELISA assays done with 
2 of the 10 polyclonal IgM RFs and 
the heptamer peptide on each pin 
are shown as vertical bars. 
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46-53, 56-64, 69-72, and 85-97. All of these reactive regions 
were judged to be solvent accessible. Again, some variability 
was noted from RF to RF in terms of exact localization and 
number of the most reactive VL regions. Examples of the 
profiles of RF VL reactivity are shown in Fig. 4, B and C. 
No correlation could be found between patterns of RF CDR 
or VH/VL reactivity and RF anti-IgG subclass or Gm 
specificity. 

Monoclonal human IgM RFs generated from B cells of 
patients with RA were also tested with the overlapping 7 
mers of the VH and VL II-481 sequence. Major VH and VL 
regions of RF reactivity were similar to those previously ob- 
served with the polyclonal IgM RFs. Individual monoclonal 
RFs reacted with all or some of these sites. Examples of mono- 
clonal RF patterns of VH and VL reactivity are shown in 
Fig. 5, A and B. Overall, the monoclonal RFs duplicated 
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similar patterns recorded with many of the polyclonal RFs 
previously studied, although exact localization and numbers 
of reactive regions varied slightly. 

ELISAs performed with control antibodies including normal 
polyclonal human IgM without RF activity as well as mono- 
donal Waldenstr6m's IgM paraproteins, also without RF ac- 
tivity, were completely negative with the entire set of syn- 
thetic peptides corresponding to the VH and VL of mAb 
II-481 (data not shown). 

Human Polyclonal and Monoclonal IgM RFs React Primarily 
with CDR Regions on VH and VL Chains of mAb 11-481. After 
the reactivity profile of each polyclonal and monoclonal human 
IgM RF against the VH and VL overlapping 7 mers ofmAb 

II-481 was established by pin ELISA, it became clear that 
both polyclonal and monoclonal RFs reacted predominantly 
with regions on both VH and VL chains which were ex- 
tremely close to or within CDR-1, -2, and -3 regions of mAb 
II-481. All of the reactive CDR regions were solvent acces- 
sible and therefore could be considered as important poten- 
tial antigenic sites. 

The profiles of reactivity of polyclonal IgM RF with re- 
spect to the VH CDR regions are shown in Table 1. It can 
be seen that 6 of the 10 polyclonal IgM RFs tested reacted 
with heptamers that included one or more amino acid residues 
from all three CDR regions. Four RFs reacted with two of 
the three CDRs. The profiles of the same 10 polyclonal RFs' 
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Figure 5. (A) Example of results 
of pin ELISA assays done with pins 
encompassing residues 20-105 of the 
variable H chain of mouse mono- 
clonal II-481 as overlapping hep- 
tamers on each pin. The residue 
numbers beginning each 7 met are 
shown on the horizontal axis. Op- 
tical densities of ELISA assays done 
with monoclonal IgM RF N28 and 
the heptamer peptide on each pin 
are shown as vertical bars. (B) Ex- 
ample of result of pin ELISA assay 
done with pins encompassing 
residues 14-100 of the variable L 
chain of mouse monoclonal 11-481 
as overlapping heptamers on each 
pin. Optical densities of ELISA 
assays done with one of the six 
monoclonal IgM RFs and the hep- 
tamer peptide on each pin are shown 
as vertical bars. 
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reactivity with mAb 11-481 VL 7 mers are shown in Table 
2. Five ILFs reacted with epitopes from all three CDR regions, 
two reacted with two CDRs, and three with only one CDR. 
Of interest was the epitope represented by SGVPDRF which 
occurred largely just after the second CDP, in the FR3 re- 
gion. This region contained only one residue (the serine at 
position 56) within the CDR-2. 

For monoclonal IgM RFs, the profile of VH reactivity is 
shown in Table 3. Four of the six monoclonal RFs reacted 
with 7 mers which included one or more residues from all 
three CDRs. One monoclonal RF reacted with two CDRs 
and one (H4) with only one CDR. The VL reactivity profile 
for three monodonal IgM RF is shown in Table 4. Two of 
three showed reactions with residues within all three CDRe; 
the third (H4) showed a strong reaction with only one CDP,. 

Cross-inhibition of lgM RF Reacting with mAb 11-481 Using 
mAb 11-481 CDR Peptides, A series of inhibition experiments 
was conducted in which polyclonal IgM RFs known to react 
with the Fab portion of mAb II-481 were preincubated with 
peptides synthesized from the CDR RF-reactive regions of 

mAb II-481 before completion of the ELISA reaction between 
RFs and mAb II-481 on the ELISA plate. 

Results of competition ELISA assays using peptides from 
the three CDRs of mAb II-481 to inhibit the binding of var- 
ious polyclonal IgM RFs to I1-481 on the ELISA plate are 
shown in Table 5 and Fig. 6. It can be seen that the patterns 
of CDR peptide inhibition were quite different for each RF 
tested and that within the profile of peptides tested, at least 
one CDR 7-mer peptide showed maximum inhibition for 
each RF (63-100%). Results of these inhibition experiments 
correlated quite well with the pin ELISA direct binding assays 
where the entire I1-481 VH or VL linear sequence had been 
previously assayed. Of interest was the major degree of inhi- 
bition (62-90%) recorded with the SGVPDRF peptide from 
the CDP,-1 VL region and the high levels of inhibition 
(80-100%) found with CDR-2 VH peptide H I W W N D N  
when individual polyclonal IgM RFs were tested. Fig. 6 shows 
final 96% inhibition for CDR-2 VH peptide H I W W N D N  
with P,F AGEB. and a broad range of lesser inhibition with 
the other CDR peptides tested. No inhibition was recorded 

Table 1. Polyclonal IgM RF profiles with Variable Heavy Chain of Mouse mAb 11-481 

Polyclonal 
IgM RF CDR1 Region CDR2 Region CDR3 Region 

Age YG I GVGW* EWLAH I W DGAWFAY 
RDGAWFA 

MRDGAWF 
Abr YGIGVGW LEWLAHI RDGAWFA 

AHIWWND DGAWFAY 
Cla YGIGVGW EWLAHIW DGAWFAY 

HI WWNDN RDGAWFA 
(LTISRDT) MRDGAWF 

Har None GLEWLAH RDGAWFA 
HI WWNDN MRDGAWF 

Lop YGIGVGW GLEWLAH DGAWFAY 
LEWLAHI RDGAWFA 

HI WWNDN 
New TYGIGVG FYNTVLK 
McC TTYGIGV GLEWLAH 

EWLAHIW 
HI WWNDN 

Sot GIGVGWI EWLAHIW 
WLAHIWW 

LAHIWWN 
Str None GLEWLAH 

HI WWNDN 
Wea None HIWWNDN 

None 
MRDGAWF 

RDGAWFA 
FAYWGQG 

AWFAYWG 
GAWFAYW 

DGAWFAY 
MRDGAWF 

RDGAWFA 

* Reactive residues within or adjacent to each CDR are shown as single letter amino acid designation; residues underlined are actually within the 
respective CDRs. When several reactive 7 mers are shown beneath a single CDR, the first sequence listed showed maximum reactivity with test 
RF. Residues shown in parentheses were weakly positive in ELISA reactions with RFs. 
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Table 2. Po~cbnal ~M RF Profi~ with Variable L Chain ~ Mouse mAb H-481 

Polyclonal 
IgM RF CDR1 Region CDR2 Region CDR3 Region 

Age SSQSVLY* LLIYWAS YFCHQYL 
SQSVLYS LIYWAST FCHQYLS 

NYLAWYQ SGVPDRF CHQYLSS 
YLAWYQQ GVPDRFT HQYLSSF 

Abr VLYSSDH YWASTRE (HQYLSFT) 
SGVPDRF 

GVPDRFT 
Cla VLYSSDH LIYWAST YFCHQYL 

NYLAWYQ SGVPDRF 
GVPDRFT 

Har None SGVPDRF None 
Lop SQSVLYS YWASTRE YFCHQYL 

SSQSVLY SGVPDRF 
VLYSSDH GVPDRFT 

NYLAWY 
McC NYLAWYQ SGVPDRF AVYFC~ 

YLAWYQQ GVPDRFT 
New KVTMTCK LIYWASTR None 

VTMTCKS 
TMTCKSS 

Sor VLYSSDH YWASTR None 
NYLAWYQ S_GVPDRF 

GVPDRFT 
Sti None SGVPDRF None 

GVPDRFT 
Wea None SGVPDRF None 

GVPDRFT 

* Residues underlined are actually within respective CDR. The first 7 mers listed showed maximum RF reactivity and those shown below, positive 
RF ELISA reactions but of lesser magnitude. 

for the control laminin 7-met peptide CIKVAVS or the five 
other control peptides, and complete inhibition was always 
recorded when either whole Fc fragment or mAb 11-481 was 
used as inhibitor. When mAb II-481 CDR peptides were 
used as inhibitors of RFs binding to whole II-481 on the 
ELISA plate, a broad range of micromolar concentrations of 
peptides were tested and maximum inhibition of RF binding 
was found with highest peptide concentrations tested. By 
contrast, much lower concentrations of whole Fc or whole 
mAb II-481 were sufficient for complete inhibition (Fig. 6). 

It can be seen from Table 5 that with all RFs tested for 
inhibition using single CDR peptides, usually one or two 
such peptides showed highest levels of inhibition varying from 
28-100%. In no instance did any of the panel of six control 
peptides show inhibition. Accordingly, a second kind of in- 
hibition experiment was conducted in which combinations 
of two or three I1-481 CDR peptides were tested for inhibi- 

tion of RF binding to mAb II-481 on the ELISA plate. Typ- 
ical results are shown in Table 6. It can be seen that combina- 
tions of two or three CDR peptides almost always showed 
an increment of inhibition beyond what had been recorded 
with the single CDR peptides alone. In some instances, the 
percent inhibition was actually higher than the sum of inhi- 
bitions with the single peptides tested alone as inhibitors, 
and in only two instances (RF LOP and ABR), the two in- 
hibiting peptides studied together did not far surpass the de- 
gree of inhibition recorded when the CDR. peptides were 
tested alone. From Table 6 it can also be seen that combina- 
tions of two or three CDR peptides produced 50-100% in- 
hibition with 88-100% inhibition in 10 of 12 experiments. 
The fact that two or sometimes three CDR peptides pro- 
duced an increment in observed inhibition of RF binding 
over what had been recorded with single CDR peptides 
provided additional confirmation of the validity of the assays. 
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Table  3. Monoclonal IgM RF Profiles with Variable H Chain of Mouse mAb 11-481 

Monoclonal 
IgM RF C D R 1  Region C D R 2  Region C D R 3  Region 

D53 EWLAH I W 

N28 

WWNDNKF 
WNDNKFY 

EWLAH W 
WLAH WW 

LAH WWN 

H6 

YGIGVGW* 
GIGVGWI 

IGVGWIR 
SFSGFSL 

FSGFSLT 
GFSLTTY 

GIGVGWl 
GVGWIRQ 

VGWIRQP 
GFSLTTY 

SLTTYGI 
YGIGVGW 

GIGVGWl 

EWLAH W 
WLAH WW 

LAH WWN 

H4 None EWLAH W 
WWNDNKF 

WNDNKFY 
FYNTVLK 

DGAWFAY 
GAWFAYW 

AWFAYWG 
GAWFAYW 

AYWGQGT 

MRDGAWF 
RDGAWFA 

DGAWFAY 
GAWFAYW 

AWFAYWG 
WFAYWGQ 
None 

RF 114 VGW I RQP EWLAH I W None 

WLAH I WW 
G4 TYGIGVG EWLAHIW YYCARMR 

GVGWlRQ WLAHIWW 
KFYNTVL 

* Residues within respective CDR are shown as underlined. When several reactive 7 mers are shown beneath a single CDR, the first sequence 
listed showed maximum RF reactivity. 

Tab le  4. Monoclonal IgM RF Profiles with Variable L Chain of Mouse mAb 11-481 

Monoclonal IgM RF C D R 1  Region C D R 2  Region C D R 3  Region 

D53 LYSSDHK* PKLLIYW YFCHQYL 
YSSDHKN KLLIYWA LAVYFCH 

SDHKNYL LLIYWAS VYFCHQY 
DHKNYLA 

KNYLAWY 
N28 SSOSVLY 

SOSVLYS 

H4 

KNYLAWY 
NYLAWYQ 

LYSSDHK 
YSSDHKN 

LIYWAST 

(LIYWAST)t 

QYLSSFT 

None 

* Residues within respective CDR are shown as underlined. 
t H4 reaction with L I YWAST was borderline in optical density (OD 0.250). 
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Table 5. Inhibition of Polyclonal IgM RF Binding to mAb II-481 Using 7-mer Peptides from the VL and VII CDRs 
of mAb 11-481 

Polyclonal IgM RF tested 
Actual sequence of 

mAb II-481 C D R  CDR. peptide CLAU AGER LOP STR WEAK MCC SOR ABR 

CDK-1 VL NYLAWYQ 40* 45 20 28 30 40 45 12 

CDR-1 VL SQSVLYS 10 12 18 0 0 0 0 6 

CDR-2 VL SGVPDRF 15 28 25 18 [ ]  [ ]  

CDR-2 VL LIYWAST 20 32 8 8 5 8 14 4 

CDR-3 VL YFCHQYL 10 44 10 0 0 14 0 0 

CDR-X VH VClCVGW 24 12 0 0 14 40 12 

CDR-2 VH H I W W N D N  32 [ ]  [ ]  10 26 16 8 ~ ]  

CDR-3 VH R D G A W F A  0 40 45 [ ]  4 32 14 22 

Control peptides: 

Laminin CIKVAVS 0 0 0 0 0 0 0 0 

Human Cv3 LHNHYT 0 0 0 0 0 0 0 0 

Klebsiella CNSRQTDREDELI  0 0 0 0 0 0 0 0 

HLA B27 AKAQTDREDLRTLLR.Y 0 0 0 0 0 0 0 0 

IgA C~3 A A E D W C K K G D T  0 0 0 0 0 0 0 0 

Klebsiella N S R Q T D R  0 0 0 0 0 0 0 0 

Whole Fc human IgG 100 100 100 100 100 100 100 100 

mAb II-481 100 100 100 100 100 100 100 100 

* Numbers refer to percent inhibition of each R.F binding to mAb II-481 using preincubation with the CDR peptide tested. 
t Experiments where a single CDR peptide produced 60% or more inhibition are boxed. 

Also, in no instance did any combination of two or three 
control peptides show any inhibition of RF binding (data 
not shown). 

The finding that the isolated immunoreactive peptides such 
as YGIGVGW from the VH CDR-1, SGVPDKF from the 

100 

9 0  CDR-1 VL SQSVLYS 

a 80 CDR-1 VH YGIGVGW 
Z CDR-2 VL SGVPDRF 

7 0  CDR-1VL  NYLAWYG 
CDR-2 VL UYWAST 

m 
~- 60 CDR-3 VH RDGAWFA 
Z CDR-3 VL YFCHQYL 

so 
n- 

40 

3O 

20 

10 F~ 
R-2 VH HIWWNDN 

10-2 10 "1 1 10 102 

[Final Competitor] ~M 

Figure 6. Competition/inhibition ELISA experiment in which AGER 
poly~lonal IgM KF used at a concentration producing 50% maximum 
binding for mAb II-481 on the ELISA plate was preincubated with a broad 
range of concentrations of mAb I1-481, KF-reactive heptapeptides. Max- 
imum inhibition in this case occurred with CDK-2 VH peptide 
HIWWNDN and the positive control Fc of IgG. No inhibition was ob- 
served with control peptides such as the laminin peptide CIKVAVS. 

VL CDK-2, or RDGAWFA from the VH CDR-3 of mAb 
II-481 produced 100-63% inhibition of binding between IgM 
R.Fs and the whole mAb 11-481 confirmed the importance 
of these CDR epitopes reacting with the test RFs. Inhibi- 
tion results using single or combinations of the CDR pep- 
tides reacting with RFs in free solution confirmed the im- 
portance of these portions of rnAb II-481 CDKs as principal 
sites for RF binding in this idiotype-anti-idiotypic reaction. 

Computer Modeling and Analysis of mAb 11-481 RF-reactive 
Regions. A three-dimensional representation of the mAb II- 
481 was constructed using the previously established struc- 
tures of mouse mAb D1.3 (29), B5.7 (30), and mAb A17 
(31) as described in Materials and Methods. It was quite clear 
that major differences in conformation appeared within the 
Fv regions of the respective molecules (Fig. 7, A and B). The 
solvent-accessible, RF-reactive CDR regions of mAb 11-481 
were then highlighted on our model and are shown in Fig. 
7 C with blue highlighting the H chain RF-reactive CDRs 
and yellow, the L chain RF-reactive CDK regions. An esti- 
mate of the actual shape of the mAb I1-481 combining site 
was generated using Connolly solvent-accessible surfaces (33). 
This showed that the Fv region of mAb II-481 exhibited a 
characteristic Mexican hat (sombrero) appearance (Fig. 8 A). 
Because this shape very much resembled a prominent RF- 
reactive epitope on CH3 previously studied in some detail 
(36) (Fig. 8 B), direct comparisons of the topographical similar- 
ities of these two RF-reactive regions-the hypothetical too- 
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Table 6. Competition ELISA Results in Which Polyclonal lgM RF Were Preincubated with Combinations of mAb 11-481 CDR 
Peptides before Completion of the ELISA with mAb 11-481 on the Plate 

Combination of mAb II-481 CDR 
Peptides Tested in Inhibition 

Polyclonal IgM RF tested 

CLAU AGER LOP STR WEAK MCC SOR ABR 

CDR-1 VL NYLAWYQ (40)* 
94* 

Plus CDR-2 VH HIWWNDN (32)* 
CDR-1 VL NYLAWYQ (40) 
Plus CDR-2 VL LIYWAST (20) 72 
Plus CDR-2 VH HIWWNDN (32) 

CDR-1 VL NYLAWYQ (45) 88 
Plus CDR-3 VL YFCHQYL (44) 
CDP,-1 VL NYLAWYQ (45) 
Plus CDR-3 VL YFCHQYL (44) 96 
Plus CDR.-3 VH RDGAWFA (40) 
CDR.-1 VL NYLAWYQ (20) 
Plus CDR-2 VL SGVPDRF (25) 52 
Plus CDR-3 VH RDGAWFA (45) 
CDR-1 VL NYLAWYQ (28) 98 
Plus CDR-3 VH RDGAWFA (63) 
CDR-1 VL NYLAWYQ (30) 
Plus CDR-2 VL SGVPDRF (72) 
CDR-1 VL NYLAWYQ (40) 
Plus CDR-2 VL SGVPDRF (80) 
CDR-1 VL NYLAWYQ (45) 
Plus CDR.-2 VL SGVPDRF (90) 

CDR-1 VL NYLAWYQ (45) 
Plus CDR-1 VH YGIGVGW (40) 
CDR-2 VL SGVPDRF (90) 
Plus CDR-1 VH YGIGVGW (40) 
CDR-2 VL SGVPDtLF (62) 
Plus CDR-2 VH HIWWNDN (80) 

Lamin control peptide 
CIKVAVS s 0 0 0 0 
Whole Fc human IgG 100 100 100 100 

100 

100 

100 

100 

100 

50 

0 0 0 0 
100 100 100 100 

* Numbers in parentheses indicate inhibition by single peptide alone (see Table 5). 
* Numbers indicate percent maximum inhibition with indicated combinations of CDR peptides tested over a broad micromolar concentration range. 
s Control peptides tested with RFs included CIKVAVS (laminin); GMERVRWCATDGEG (melanoma); LHNHYT (human Cv3); CNSRQTDREDELI 
(KlebsieUa); ADAQTDREDLRTLLRY (HLA B27); AAEDWCKKGDT (IgA Cs3); and NSRQTDR (Klebsiella). None singly or in combination showed 
any inhibition of RF binding to mAb 11-481. 

deled structure of  the Fv portion of mAb II-481 and the pre- 
viously identified CH3  r e g i o n - w e r e  made using the Sybyl 
computer graphics program. The remarkable apparent similar- 
ities in shape between these two different RF-reactive regions 
of  entirely different antibody molecules are illustrated in Fig. 
8 C. W h e n  10 A sections of the Fv RF-reactive region of 
mAb II-481 were examined (Fig. 8, D and E), preservation 
of the Mexican hat sombrero configuration was noted at many 
different levels. These comparisons supported a marked 

hypothetical conformational similarity between the two com- 
pletely different RF-reactive Ig domains: the Fv portion of 
mAb 11-481 and the C H 3  region of human IgG. 

Discussion 

HSV induces Fcy-binding proteins on infected cells and 
on virions. These Fc'y-binding proteins are coded for by the 
HSV genome and are able to bind the Fc part of human IgG 
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Figure 7. (A) Composite view as produced by Sybyl graphics of the 
template molecule (mouse mAb D1.3) used to produce the model of the 
Fab regions of mAb 11-481 and the actual completed model of II-481. The 
template mAb D1.3 is shown in red and the modeled mAb 11-481 in green 
and yellow. The upper portions containing the VL and VH regions are 
considerably different. (B) An enlarged view of the antibody combining 
sites of both molecules is shown in the two-color mode. The green/yellow 
carbon trace shows the modeled V regions of mAb 11-481 and the red 
represents the same V regions of the template mAb D1.3. (C) Computer 
graphics scheme of Fv region of mAb 11-481 showing RF-reactive residues 
within VL CDRs in yellow and RF-reactive residues within VH CDRs 
in blue. All RF-reactive residues shown in yellow or blue were judged 
to be solvent accessible. 

Figure 8. (A) Comparative Sybyl computer graphics views of the sur- 
face of the mAb II-481 combining site area (modeled in white showing 
what appears to be a Mexican hat configuration). The constant regions 
of the molecule shown in blue extend upward to the right. (/3) By com- 
parison, the surface modeling of a previously established CH3 RF-reactive 
region (EGLHNHY at residues 430-436 in CH3) is shown in red. The 
similarities in overall shape of the two R.F-reactive IgG regions (one at 
the Fv portion of mAb II-481 in white) and the other at an outpouching 
of the IgG CH3 region (in red) are shown when the actual shapes of the 
two RF-reactive regions are overlaid. (D and E) Represents several 10 A 
cuts through the Fv region ofmAb II-481 showing variations of the shape 
at several levels. 

1884 Monoclonal Anti-Fc3, Ab Contains CDR Regions Reacting with RFs 



(37-39). Mouse mAb II-481 reacts with the HSV-1 Fc'y- 
binding protein, gE, and the binding site of the mAb is directed 
at the Fc binding site on gE (14). 

In the present study we have examined the reactions of 
human polyclonal and monoclonal IgM RFs with mouse mAb 
II-481 directed at the Fc3,-binding glycoprotein of HSV-1 
as an example of an idiotype-anti-idiotype reaction. The op- 
portunity to study this reaction was provided by our previous 
observations that many human RFs reacted with the Fab 
antigen-binding portions of mAbs to herpesvirus Fcy-binding 
glycoproteins (12, 14). These findings suggested that some 
KFs could be generated as anti-idiotypic antibodies directed 
against HSV-1 Fey-binding proteins (11, 12, 13, 40) as shown 
in Fig. 9. The reaction between mAb I1-481 and R.F was 
inhibited by either IgG or highly purified gE (the Fcy-binding 
herpes glycoprotein) (11, 12). Moreover, using an entirely 
different mAb (88-S) also directed against the Fc3/-binding 
protein of HSV-2, a similar ILF specificity was demonstrated. 
Positive reactions were recorded for KF reacting with whole 
mAbs II-481 and 88-S and with their Fab but not their Fc 
fragments (12). These findings indicated that combining sites 
of many KFs may react with Fv regions of antibodies reacting 
with Fc3~-binding regions of the two herpesviruses HSV-1 
and HSV-2. 

If RFs from patients with RA react as anti-idiotypes against 
the Fv regions ofmAb II-481, the antibody combining regions, 
therefore, the six (three VH, three VL) CDKs of mAb II- 
481 should contain antigenic epitopes very similar or iden- 
tical to antigenic regions on CH3 and CH2 of human IgG 
reacting with human KF. Evidence supporting this latter hy- 
pothesis has been presented in the present report. The pri- 

mary amino acid sequence of the VH and VL regions ofmAb 
11-481 was established by PCK mKNA expansion and se- 
quencing of the eDNA from the cell line producing the mAb. 
When the primary amino acid sequences of VH and VL mAb 
I1-481 had been established, the entire solvent-accessible VH 
and VL regions of the latter were synthesized and tested as 
overlapping heptamers for RF reactivity. This approach showed 

IgG 

Ab0 - - ~ F ( a b ) ,  2 

Fc~BP i t ~ Abl 

Ab2 =RF 

Figure 9, Anti-idiotTpe hypothesis regarding a conceivable assodation 
of vira| Fc~-binding protein and rheumatoid factor (RF). Viral Fc~-binding 
protein on virions and on virus-infected cells are able to bind the Fc part 
of IgG (AbO). KF might be produced as anti-idiotypic antibodies (Ab2) 
against antibodies (AbI) directed towards the internal image of the viral 
Fc'y-binding proteins. The reactivity of most R.Fs is also directed against 
the Fc part of IgG (AbO). 
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frequent localization of RF reactivity to the VH and VL CDR. 
regions. Although each polyclonal or monoclonal KF dis- 
played a slightly different reactive profile, the principal anti- 
mAb 11-481 CDK reactivity of all KFs tested was clearly evi- 
dent. No correlation was noted between anti-IgG subclass 
or anti-Gm specificity of RFs tested and their patterns of re- 
activity with VL or VH linear residues. It is recognized that 
testing RFs with linear heptamers of primary sequence is 
clearly not equivalent to assays of the whole Fv region since 
a number of antigenic epitopes on the VL and VH regions 
of mAb II-481 may be conformationat and depend on 
three-dimensional structure. Nevertheless, the remarkable 
general overall patterns of reactivity with small solvent- 
accessible linear regions of the CDRs suggest that they may 
contribute to important reactive sites for R.Fs. Further strong 
evidence that the linear regions within the three mAb 11-481 
CDR.s contributed important reactive epitopes for test KFs 
was provided by the CDR peptide inhibition data summa- 
rized in Tables 5 and 6. For each RF, a single CDR peptide 
produced 63-100% inhibition of binding between test RFs 
and whole mAb II-481 on the ELISA plate. With the panels 
of RFs tested, some single CDR peptides or combinations 
of CDK peptides inhibited KF binding to mAb II-481 better 
than others, although many KFs had reacted with most VL 
or VH CDR regions in the pin ELISA assay. It seems pos- 
sible that CDR peptides showing the greatest inhibition ac- 
tually represented portions of the antigenic sites of II-481 
bearing the greatest avidity for the particular RF being tested. 
These data emphasized that the major peaks of RF reactivity 
within the three CDRs of mAb II-481 synthesized as linear 
overlapping heptamers on the pins were real phenomena and 
could be confirmed by inhibition of KF reactivity using prein- 
cubation of single CDK peptides with IgM KFs in free solu- 
tion. Moreover, increases in KF inhibition to 100%, noted 
when several combinations of II-481 CDR peptides were em- 
ployed together, further support the significance of their in- 
dividual contributions to RF antigen-binding sites. Since the 
use of single or combinations of CDR peptides could never 
exactly approximate the three-dimensional conformation of 
the mAb II-481 combining site, it often required much higher 
micromolar concentrations of CDK peptide than Fc of IgG 
or mAb II-481 for complete inhibition. This was to be ex- 
pected since the affinity between RF and single or several 
peptides could never exactly reproduce that with the whole 
antibody Fv portion. A complete replication of the three- 
dimensional configuration of mAb 11-481 CDKs cannot, of 
course, be hoped for with the single linear peptides tested, 
however, the results with peptide inhibition demonstrated 
that this approach could provide remarkably detailed infor- 
mation concerning RF-reactive epitopes. 

Finally, the three-dimensional shape or conformation of 
the Fv portion of mAb 11-481 was modeled using computer 
graphics and coordinates established for several template mAbs 
previously studied. It must be emphasized that our three- 
dimensional model of mAb 11-481 is still theoretical and will 
require confirmation when gE and Fab II-481 have been crys- 
tallized and studied for their exact three-dimensional struc- 
ture. However, when the spacial distribution and shape of 

the Fv portion of mAb II-481 was estimated using approxi- 
mation of the areas of the individual atoms involved, a som- 
brero conformation was found. This particular shape bore 
a striking resemblance to a previously identified CH3 epi- 
tope showing strong RF reactivity (36). This latter epitope 
was based on established three-dimensional CH3 structure 
according to Diesenhoffer et al. (41, 42). Of interest was the 
fact that the CH3 epitope visualized in its three-dimensional 
conformation showed such a striking homology of shape with 
the theoretical model of the Fv region of mAb II-481 con- 
structed using our modeling procedure. This region contained 
the two histidines at positions 433 and 435 and the tyrosine 
at 436, which had previously been identified as important 
epitopes for RF reactivity (43). Although an exact homolo- 
gous sequence to the EGLHNHY at this region (residues 
430-436 in CH3) was not present in the Fv region of mAb 
II-481, it was clear that the two regions shared many similar- 
ities in conformation. Thus a number of separate lines of evi- 
dence presented in the present report provide intimate in- 
sight into precise residues within the Fv ofmAb II-481 idiotype 
reacting with RFs in an idiotype-anti-Id reaction. The pri- 
mary reactivity of the polyclonal and monoclonal RF with 
the CDR-1, -2, and -3 regions confirmed that such RFs react 
with regions contributing to the antigen binding sites of mAb 
II-481 directed against the Fcy-binding protein of HSV-1. 
Data presented here also provide a detailed structural basis 
for the idiotypic-anti-idiotypic reactivity of human KFs with 
the Fab fragment of mAb II-481. 

Additional support for a structural resemblance between 
some KFs and the HSV-Fcy-binding protein lies in the 
striking similarities shown in their IgG binding specificities. 
Polyclonal KFs derived from patients with R.A generally 
possess a similar human IgG subclass specificity to that of 
HSV-1 Fcy-binding protein in that they preferentially bind 
to IgG-1, -2 and -4 but not or only weakly to IgG-3 (43, 
44). Like the HSV Fc3~-binding proteins, most polyclonal 
RFs bind to the CH3 and CH2 interface region of IgG (43, 
45-47). Studies using chemical modification of amino acids 
of IgG revealed that Tyr and His residues on IgG seemed 
to be critical for the binding with KFs (38, 40, 45, 48) and 
also for binding to the HSV Fc3,-binding protein (47). 

As an alternative to the idiotype-anti-idiotype model, it 
is conceivable that the viral herpes Fcy-binding protein gE 
may present the IgG molecule to the host (patients with RA) 
in such a way that the interface regions between the IgG CH2 
and CH3 domains become immunogenic (40). KF-positive 
patients with RA have been demonstrated to show an as- 
sociation with the class II HLA antigen DR4 (49, 50). It 
is possible that HLA DK4 could somehow influence the im- 
mune response against Fc3,-binding proteins such as gE or 
to autologous anti-Fc3,-binding protein antibodies and that 
RFs in RA might in turn, therefore, be related somehow 
to immune responses of genetically predisposed individuals 
to herpesviruses or to other viral agents possessing IgG Fc'y- 
binding proteins. Presently, there is no evidence that HLA 
DR4 functions as a restriction element for HSV-1 immune 
responsiveness. 

Production of KF cannot be ascribed to idiotype-anti- 
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idiotypic responses alone since there is now a large body of 
experimental and clinical evidence which indicates that im- 
munization with globular proteins, certain carbohydrates, or 
bacterial antigens may also result in KF induction. 

The information provided here concerning the reaction be- 
tween polyclonal or monoclonal IgM human P, Fs and the 
Fv portions of mAb II-481 can be compared with the precise 
three-dimensional definition of an idiotope-anti-idiotope com- 
plex determined from the crystal structure of a complex be- 
tween the monoclonal antil~rsozyme Fab D1.3 and the anti- 
idiotopic Fab E225 at 2.5 A resolution (51). In this latter 

instance, the private idiotope consisted of 13 amino acid 
residues mainly from the CDKs of D1.3.7 of the 13 residues 
made contacts with the original antigen which indicated a 
significant overlap between idiotype and antigen-combining 
site. In the case of mAb II-481 studied here, we do not yet 
have final definition of actual gE antigen binding residues 
within the mAb II-481 VH or VL CDKs. When this infor- 
mation becomes available with a crystal structure for the 
gE-mAb II-481 complex, a more selective or precise estimate 
of idiotope and antigen combining site may become available. 
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