
Heliyon 10 (2024) e29402

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Review article

Jitter solution in parameter identification based on cross-time 

scale fusion algorithm of lithium-ion batteries

Xianzheng Su a, Yanjun Ge a,∗, Xin Qiao b

a School of Mechanical Engineering, Dalian Jiaotong University, 116028, Dalian, China
b School of Rail Transportation, Shandong Jiaotong University, 250357, Jinan, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Cross-time scale fusion algorithm

Parameter identification

SOC accuracy

Jitter

Accurate state-of-charge (SOC) estimation is the core index of battery management system (BMS). 
When the battery equivalent circuit model (ECM) identifies the parameters under complex 
operating conditions, there is more jitter or even divergence, which will affect the estimation 
accuracy of battery SOC. To solve this problem, this paper proposes a new algorithm, namely the 
cross time scale fusion (CTSF) algorithm. Firstly, the cross-time scales Δ𝑡1 and Δ𝑡2 are determined, 
the number of cross-time cycles is calculated according to the total amount of complex operating 
condition data 𝑁 . Then the ECM parameters are identified in Δ𝑡1 by using forgetting factor 
recursive least square (FFRLS), and the battery SOC is estimated in Δ𝑡2 based on the identified 
parameters, finally the battery parameters are identified and the SOC is estimated by cycling in 
the cross-time. The experimental results show that, no matter at the same temperature in different 
conditions or at different temperatures in the same condition, The proposed algorithm not only 
effectively solves the ECM parameter identification jitter problem, but also improves the accuracy 
of SOC estimation, the Mean Absolute Error (MAE) minimum of SOC result is 1.42% for different 
operating conditions at the same temperature and 0.25% for different temperatures at the same 
operating conditions, respectively.

1. Introduction

Electric vehicles (EVs) are increasingly recognized as an effective solution for reducing greenhouse gas emissions and improving 
energy efficiency [1,2]. Lithium-ion batteries are a preferred energy source due to their high energy density, capacity, service life, 
low loss, and self-discharge rate [3]. However, lithium-ion batteries have certain limitations, such as aging in use and sensitivity to 
high temperatures [4]. Therefore, an advanced BMS plays a critical role in monitoring temperature changes and predicting aging 
effects [5].

In addition, accurate battery modeling is essential for SOC estimation, regular models including electrochemical models, data 
models, data-driven models, ECM, etc. [6–8]. While electrochemical models require prior acquisition of electrochemical dynamic 
parameters, these parameters are commonly used to understand internal battery reaction processes, facilitate battery design, and 
optimize production [9]. Data-driven models also have limitations. In particular, they lack interpretability and are sensitive to data 
quality [10]. However, ECM has been widely adopted for SOC estimation due to its advantages of fast execution speed, simplicity, 
and relatively high accuracy [11]. Researchers have explored various methods in the literature for SOC estimation based on the ECM 
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Table 1

Comparison of the SOC errors.

Review article Type of model Metric

[24] Equivalent Circuit Model MAE<2%

[25] Equivalent Circuit Model Maximum Error<2.5%

[26] Data-driven models RMSE<1.78%

[27] Data-driven models MAE<1.5%

[28] Data-driven models MAE<1.5%

[29] Equivalent Circuit Model MAE<1.3%

[12]. An adaptive unscented Kalman filter (AUKF) based on an accurate ECM is proposed in [13] to improve the SOC estimation. 
The accuracy advantage of the n-RC model is proved, the accuracy of the extended Kalman filte(EKF) and AUKF algorithms were 
compared, experimental results showed that the AUKF algorithm achieved higher accuracy. In [14], the combination of Decoupled 
Recursive Least Squares (RLS) technique and Time-Domain Parameter Extraction enables both ECM parameter estimation, In addi-

tion, a compensation term for DC resistance is proposed, which greatly improves the accuracy of SOC estimation. In [15], a novel 
Adaptive Extended Kalman Filter (AEKF) combined with a parameter identification algorithm RLS is introduced as another SOC 
estimation method, the tests demonstrate the accurate estimation of battery SOC and the robustness.

Currently, there have been several advances in battery SOC estimation. Chen [16] proposed an improved machine learning (ML) 
model-based method for SOC estimation. The method uses an AhI-based constraint strategy to smooth the network output SOC. Fazel 
[17]proposed a mathematical model for SOC of a Li-ion battery using the improved Coulomb counting (iCC) algorithm and decadal 
uncertainty assessment. The maximum estimation error using the proposed method is 0.3%. Wang [18] proposed an improved gated 
recurrent unit (GRU)-based transfer learning method for estimating SoC with small target sample sets. The method includes an 
improved GRU hidden unit structure and integration with transfer learning. Ren [19] proposes a long short-term memory neural 
network based on particle swarm optimization (PSO-LSTM). The experiments demonstrate that the proposed method has an error 
rate of only 0.5%. Feng [20] proposed the Clockwork Recurrent Neural Network (CWRNN) structure, which performs computations 
in a defined number of clock cycles, reducing training and computation costs. Experiments show an root mean square error (RMSE) 
of less than 1.29%.

Parameter estimation in lithium battery ECMs under filtering algorithms is challenging due to the large number of parameters to 
be estimated while the observed signals are typically limited to voltage and current. It is important to develop a method that can solve 
this problem, especially under complex operating conditions. Several studies have been conducted on this topic. For instance, Ge et 
al. proposed an improved joint algorithm for the forgetting factor recursive least squares extended Kalman filter, which eliminates 
jitter, even negative values, during online identification of battery model parameters [21]. Chen et al. proposed a new parameter 
identification method with a parameter backtracking strategy that significantly reduces parameter jitter during the Open Circuit 
Voltage (OCV) identification procedure [22]. Wang et al. analyzed the parameter identification methods for ECM and found that the 
Forgetting Factor Recursive Least Square (FFRLS) method is unable to track parameter changes, resulting in abnormal parameter 
fluctuations. To address this issue, they proposed an alternative method called Generalized Least Squares with Forgetting Factor (FF-

AGLS) [23]. The identification of ECM parameters often faces the challenge of jitter or even divergence. Therefore, finding suitable 
algorithms to eliminate the jitter is essential.

To address the previously mentioned issue, we propose a new method to eliminate parameter identification jitter and improve 
battery SOC estimation accuracy. The main contributions of this article are:

(1) The article analyzes the ECM and open circuit voltage models of lithium batteries. Ultimately, the second-order equivalent 
circuit model is chosen to ensure accurate parameter identification.

(2) The cross-time scale fusion algorithm proposes a new method for identifying Li-ion battery parameters and SOC. The algorithm 
determines the interval of parameter identification time scale Δ𝑡1, and SOC estimation time scale Δ𝑡2. By cross-estimating the 
battery parameters and SOC within complex battery conditions, the algorithm reduces parameter jitter and improves SOC estimation 
accuracy.

(3) The experiment analyzes the accuracy of parameter identification and SOC estimation under different operating conditions 
at the same temperature and different temperatures at the same operating condition. The results demonstrate the superiority of the 
proposed algorithm.

The rest of the paper is organized as follows: Section 2 establishes the lithium battery model, including the ECM and OCV model. 
Section 3 analyzes the novel proposed algorithm, presents the CTSF algorithm and determines the value of cross-time scale. Section 4
presents experimental validation followed by discussion of the results and comparison of the evaluated methods. Finally, conclusions 
are drawn in section 5.

2. Related work

Estimation of SOC for lithium batteries has been studied many years ago, Table 1 gives a comparison of the SOC errors in recent 
2

years.
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Fig. 1. Description of ECM.

2.1. ECM for lithium-ion battery

The accurate estimation of battery SOC relies heavily on the establishment of a high-precision battery model [30]. In addition, 
the computational complexity of the ECM increases with the number of parameters used [31]. So, considering the computational 
complexity and accuracy requirements, widely used ECMs include the Thevenin model and the second-order RC model, as shown in 
Fig. 1

From Fig. 1, 𝑈𝑜𝑐(𝑆𝑂𝐶) is the open circuit voltage, 𝑈𝑡 is the terminal voltage, 𝑅0 is the ohmic internal resistance, 𝑅1, 𝑅2 is the 
polarization internal resistance, and 𝐶1, 𝐶2 is the polarization capacitance, 𝑈1, 𝑈2 is the polarization voltage. Based on Kirchhoff’s 
circuit laws, the electrical relationship of the Thevenin model can be derived as follows:

⎧⎪⎨⎪⎩
𝐼(𝑡) = 𝐶1

𝑑𝑈1(𝑡)
𝑑𝑡

+
𝑈1(𝑡)
𝑅1

𝑈𝑂𝐶 (𝑆𝑂𝐶(𝑡)) =𝑈𝑡(𝑡) + 𝐼(𝑡)𝑅0 +𝑈1(𝑡)
(1)

Similarly, two-order model can be derived as follows:

⎧⎪⎪⎨⎪⎪⎩

𝐼(𝑡) = 𝐶1
𝑑𝑈1(𝑡)
𝑑𝑡

+
𝑈1(𝑡)
𝑅1

𝐼(𝑡) = 𝐶2
𝑑𝑈2(𝑡)
𝑑𝑡

+
𝑈2(𝑡)
𝑅2

𝑈𝑂𝐶 (𝑆𝑂𝐶(𝑡)) = 𝐼(𝑡)𝑅0 +𝑈1(𝑡) +𝑈2(𝑡) +𝑈𝑡(𝑡)

(2)

The models mentioned above accurately represent the dynamic and static characteristics of lithium batteries while balancing 
complexity and practicality, making them suitable for engineering applications. However, the second-order ECM provides higher 
accuracy. Therefore, considering the need for accurate parameter identification of the ECM under complex operating conditions, the 
second-order model was selected for this study.

2.2. OCV model

The SOC-OCV curve is generally defined as the voltage difference between the positive electrode (PE) and the negative electrode 
(NE) of a battery [32]. This measurement is made at different SOC points when the battery system is in a state of equilibrium 
without any current flow [33]. Within the battery ECM, the SOC-OCV curve holds significant importance as a key parameter that 
significantly affects the accuracy of SOC estimation. Therefore, obtaining an accurate SOC-OCV function is critical to achieving 
accurate SOC estimation. This serves as the fundamental basis for ensuring high accuracy in SOC estimation.

Furthermore, in the quest for accurate SOC estimation, researchers have developed various methods to obtain the SOC-OCV 
curve. Among these methods, galvanostatic intermittent titration (GITT) and pseudo-OCV are commonly used. GITT involves specific 
charge-discharge steps and carefully timed rest periods that are essential to achieve equilibrium. During the quiescent period, no 
current flows through the battery, allowing sufficient time for the system to stabilize. To improve the accuracy of the SOC-OCV 
curve, it is imperative to use finer charge-discharge steps and longer rest periods. On the other hand, pseudo-OCV uses small charge 
or discharge currents, such as C/25, C/40 or even lower, to record the SOC-OCV curve. Each method has its own unique requirements 
and considerations to ensure accurate SOC estimation, and to better describe the true OCV curve, researchers have proposed a number 
of models, ranging from simple linear approximations to polynomial and exponential models, among others. Table 2 provides an 
overview of some typical OCV curve models [34]. The primary goal of these models is to provide a more accurate representation of 
the real OCV curve.

Fig. 2 displays the SOC-OCV fitting curves obtained using the pseudo-OCV method for the A123 lithium-ion battery data set 
from the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland at a temperature of 25 °C [35]. The 
figure indicates that the 6th order polynomial model has lower fitting accuracy compared to the 9th and 12th order polynomial 
models. Conversely, the 12th order polynomial model exhibits signs of overfitting. Therefore, based on the comparison, the 9th order 
3

polynomial model is selected to fit the SOC-OCV curve, and the fitting formula is:
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Table 2

Overview of OCV model.

OCV curve fitting formula RMSE Complexity

𝑂𝐶𝑉 (𝑥) =𝐾0 +𝐾1 ln(𝑥) +𝐾2 ln(1 − 𝑥) 0.0433 110

𝑂𝐶𝑉 (𝑥) =𝐾0 +
𝐾1
𝑥
+𝐾2𝑥+𝐾3 ln(𝑥) +𝐾4 ln(1 − 𝑥) 0.0268 130

𝑂𝐶𝑉 (𝑥) =𝐾0 +
𝐾1
𝑥
+ ...+ 𝐾4

𝑥4
+𝐾5𝑥+𝐾6 ln(𝑥) +𝐾7 ln(1 − 𝑥) 0.0108 160

OCV(x) =K0 +𝐾1𝑥+ ...+𝐾𝑚𝑥
𝑚 0.0202 60

𝑂𝐶𝑉 (𝑥) =𝐾0 +𝐾1𝑒
𝑥 +𝐾2𝑒

𝑥2 + ...+𝐾𝑚𝑒
𝑥𝑚

0.0160 260

Fig. 2. SOC-OCV fitting curves under different orders.

Table 3

Framework of proposed algorithm.

Algorithm 1 proposed algorithm

01: input: 𝜃 = 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑥 = 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑃 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝜆 = 𝜆𝑖𝑛𝑖𝑡𝑖𝑎𝑙

02: Identification of battery parameters within the time

interval scale Δ𝑡1
03: Estimate battery SOC within time scales interval Δ𝑡2
04:for m=0 to 𝑧𝑠-1 do

05: for t=1+m* 𝑧𝑠 to Δ𝑡2 + m* 𝑧𝑠 do

06: Calculate the ECM parameters 𝑅0 ∼ 𝐶2
07: end for

08: for k=1+m* 𝑧𝑠 to Δ𝑡1 + m* 𝑧𝑠 do

09: Estimate SOC of the battery

10: end for

11: m=m+1

12: if (m <𝑧𝑠 -1)

13: Repeat steps 4 to 14

14: end for

15: else

16: Output parameter identification and SOC results

17:end for

𝑂𝐶𝑉 = 2820𝑆𝑂𝐶9−1.37e4𝑆𝑂𝐶8 + 2.863e4𝑆𝑂𝐶7

−3.366e6𝑆𝑂𝐶6+2.442e4𝑆𝑂𝐶5−1.125e4𝑆𝑂𝐶4

+3259𝑆𝑂𝐶3−565.7𝑆𝑂𝐶2+52.88𝑆𝑂𝐶 + 1.2
(3)

3. Proposed method

This section presents a new algorithm for identifying battery parameters and estimating SOC. It first outlines the algorithm’s 
framework and then describes the specific computational process of the CTSF algorithm.

3.1. Framework of the proposed algorithmic

The process for identifying parameters and estimating SOC using the CTSF algorithm is outlined in Fig. 3. A more detailed 
explanation of the algorithm can be found in Table 3.

3.2. Detailed procedure of the proposed algorithm

In step 1 of Fig. 3, it is first necessary to determine the values of the two cross-time scales Δ𝑡1 and Δ𝑡2, identify the equivalent 
4

circuit model parameters in Δ𝑡1, feed the identification results to Δ𝑡2, and estimate the battery SOC in Δ𝑡2.
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Fig. 3. Framework of proposed algorithm.

In step 2, we need to calculate the cycle identification number 𝑍𝑠 according to the total battery charge/discharge data volume 
N and the cross time scale Δ𝑡1, Δ𝑡2, which lays the foundation for the subsequent realization of the identification in the cross-time 
scale.

In step 3, the battery ECM parameters need to be identified using FFRLS within the time scale interval Δ𝑡1, which is calculated 
as follows:

According to the Fig. 1, the electrical relationship of ECM is expressed in s domain:

𝐺(𝑠) =
𝑈𝑡(𝑠) −𝑈𝑜𝑐(𝑠)

𝐼(𝑠)
= −(𝑅0 +

𝑅1
1 + 𝜏1𝑠

+
𝑅2

1 + 𝜏2𝑠
) (4)

In Equ. (4), s is the Laplacian in s domain, time constant 𝜏1 = 𝑅1𝐶1 and 𝜏2 = 𝑅2𝐶2. By simplifying the Equ. (4), we can get the 
values of the parameters 𝑅0, 𝑅1, 𝑅2, 𝐶1 and 𝐶2.

⎧⎪⎪⎪⎪⎨⎪⎪⎪

𝑅0 = 𝑎

𝑅1 =
𝜏1(𝑑 − 𝑎) + 𝑎𝑐 − 𝑓

𝜏1 − 𝜏2
𝑅2 = 𝑑 − 𝑎−𝑅1

𝐶1 =
𝜏1
𝑅1

𝐶 =
𝜏2

(5)
5

⎪⎩ 2 𝑅2
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In step 4, the battery SOC is estimated using EKF within the time scale interval Δ𝑡2 as follows:

For a nonlinear discrete system, the equations of state and observation are as follows:{
𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘) +𝑤𝑘

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘
(6)

In Equ. (6), 𝑥𝑘 is the state variable of the system at moment 𝑘, 𝑢𝑘 is the input variable of the system at moment 𝑘, 𝑦𝑘 denotes 
the output of the system at the moment of 𝑘, 𝑤𝑘 and 𝑣𝑘 denote the process noise and observation noise of the system, respectively, 
which are Gaussian white noises independent of each other, and their process and observation noise covariances are 𝑄, 𝑅.

The nonlinear system equations 𝑓 (𝑥𝑘, 𝑢𝑘), 𝑔(𝑥𝑘, 𝑢𝑘) of Eq. (6) are expanded in Taylor series, removing the higher terms and 
retaining the primary terms to obtain an approximate linear system. The linear equation of state is as follows:

For nonlinear functions 𝑓 (𝑥𝑘, 𝑢𝑘) and 𝑔(𝑥𝑘, 𝑢𝑘), the Taylor series expansion is employed to approximate them by retaining the 
first-order derivative terms and constant terms. This enables the transformation of the nonlinear functions into linear functions.

𝑥𝑘+1 =𝐴𝑘𝑥𝑘 +𝐵𝑘𝑢𝑘 +𝑤𝑘 (7)

where the matrix of each parameter is defined as:

⎧⎪⎪⎨⎪⎪⎩

𝐴𝑘 =
𝜕𝑓 (𝑥𝑘,𝑢𝑘)

𝜕𝑥𝑘
|(𝑥𝑘, 𝑢𝑘)

𝐵𝑘 =
𝜕𝑓 (𝑥𝑘,𝑢𝑘)

𝜕𝑢𝑘
|(𝑥𝑘, 𝑢𝑘)

𝐶𝑘 =
𝜕𝑔(𝑥𝑘,𝑢𝑘)

𝜕𝑥𝑘
|(𝑥𝑘, 𝑢𝑘)

𝐷𝑘 =
𝜕𝑔(𝑥𝑘,𝑢𝑘)

𝜕𝑢𝑘
|(𝑥𝑘, 𝑢𝑘)

(8)

Combining the equivalent circuit model of the battery and the state equations of the algorithm, the EKF algorithm is implemented 
as follows:

(1) Initialization state variable 𝑥0 and state error covariance matrix 𝑃0:{
𝑥0 =𝐸(𝑥0)
𝑃0 =𝐸((𝑥− 𝑥0)(𝑥− 𝑥0)𝑇 )

(9)

(2) Update the state variable equation

𝑥−
𝑘
= 𝑓 (𝑥𝑘−1, 𝑢𝑘−1) (10)

(3) Update the state error covariance matrix

𝑃−
𝑘
=𝐴𝑘−1𝑃

+
𝑘−1𝐴

𝑇
𝑘−1 +𝑄𝑘 (11)

(4) Calculation of the Kalman gain

𝐾𝑘 =
𝑃𝑘𝐶

𝑇
𝑘

𝐶𝑘𝑃𝑘𝐶
𝑇
𝑘
+𝑅𝑘

(12)

(5) Update of the state estimate in the EKF{
𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘)
𝑥𝑘 = 𝑥−

𝑘−1 +𝐾𝑘(𝑦𝑘 − 𝑦𝑘)
(13)

(6) Updated error covariance matrix

𝑃𝑘 = (𝐼 −𝐾𝑘𝐶𝑘)𝑃−
𝑘

(14)

In step 5, the sum of the cross time scales Δ𝑡1 and Δ𝑡2 is a cycle to determine whether the total cycle corresponding to the entire 
battery charge/discharge data has been achieved.

In summary, first of all, it is necessary to determine a small time scale Δ𝑡1, because Δ𝑡1 is too large to lead to more steps in the 
identification of parameters under complex working conditions, resulting in the proposed algorithm is severely reduced effective. 
Then the size of time scale Δ𝑡2 is determined for SOC estimation, in general, Δ𝑡1 < Δ𝑡2. Finally, the cell parameters are cross 
recognized and the cell SOC is estimated during the total time of complex conditions such as DST and FUDS.

4. Experimental validation and discussion

4.1. Dataset description

The method proposed in this paper is validated by using the A123 lithium-ion battery dataset from the Center for Advanced Life 
Cycle Engineering (CALCE) at University of Maryland [35]. As summarized in Table 4. In the dataset, the battery was operated under 
6

full charge and discharge, the sampling time T of current, voltage was 1 s.
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Table 4

Details of battery test experiments.

Type Nominal capacity Nominal voltage Voltage ranges

LiFePO4 1100 mAh 3.3 V 3.6 V/2.0 V

Fig. 4. Voltage and current profiles of DST.

For model parameter identification and SOC estimation, the dynamic stress test (DST) and the Federal Urban Driving Schedule 
(FUDS) was run from -10 ◦C to 50 ◦C. DST and FUDS are employed to investigate the dynamic electric behavior of the battery, It is 
designed by US Advanced Battery Consortium (USABC) to simulate a variable-power discharge regime that represents the expected 
demands of an EV battery [36]. In this paper, the battery dataset with different operating conditions at the same temperature (DST, 
FUDS) and the battery dataset with different temperatures at the same operating conditions (-10 °C, 0 °C, 20 °C) are selected as the 
validation dataset of the proposed algorithm.

4.2. Experimental validation and discussion under different operating conditions at the same temperature

In this section, the experimental validation and discussion of the proposed algorithm are presented under different operating 
conditions such as DST and FUDS at the same temperature of 25 °C. Fig. 4 displays the voltage and current profiles of DST, while 
Fig. 5 illustrates voltage and current profiles of FUDS.

From Fig. 4 and Fig. 5, it can be seen that the charging and discharging process exists simultaneously within the DST, FUDS 
condition, which is more complex compared to the laboratory experiment with only charging or discharging condition. When the 
traditional FFRLS+EKF algorithm identifies the battery ECM parameters, since the input signals are only voltage and current and the 
output identifies more parameters, it is bound to bring about jitter or even diffusion of the parameter identification results. Further, 
the parameter identification results are closely related to the battery SOC estimation accuracy, and when the parameters have jitter, 
the corresponding SOC estimation accuracy will be affected, which in turn affects the overall SOC estimation accuracy.

Based on the analysis of the aforementioned jitter problem, the proposed algorithm can competently address the jitter problem 
during the identification of the battery ECM parameters, which ultimately improves the accuracy of the SOC estimation.

In general, MAE and RMSE are both commonly used to assess the model’s goodness of fit. The equations for these indicators are 
as follows.

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

||𝑦𝑖 − 𝑦𝑖
|| (15)

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

(16)

where 𝑁 is the number of battery charge/discharge data, 𝑦𝑖 and 𝑦𝑖 are respectively the estimated and true value. The Mean Absolute 
7

Error (MAE) quantifies the proximity of forecasts to the corresponding outcomes regardless of the direction. Conversely, the Root 
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Fig. 5. Voltage and current profiles of FUDS.

Fig. 6. The terminal voltage response of DST at 25 ◦C.

Fig. 7. The terminal voltage response of FUDS at 25 ◦C.

Mean Square (RMS) Error is highly responsive to substantial errors compared to the Root Mean Square Error (RMSE). It effectively 
characterizes the level of variation in errors [36].

At the same time, using the input dataset of voltage and current at a constant temperature of 25 °C under both DST and FUDS 
conditions, the terminal voltage (𝑈𝑡) is calculated, the ECM parameters of the battery are determined, the SOC is estimated using 
both the traditional and the proposed algorithms. Fig. 6 shows the terminal voltage results of the proposed and traditional algorithms 
of DST. Fig. 7 shows the terminal voltage results of the proposed and traditional algorithms of FUDS.

From Fig. 6 and Fig. 7, it can be seen that the terminal voltages obtained by both the proposed algorithm and the conventional 
algorithm are well fitted to the actual output voltage and the results are given in Table 5 and Table 6. The MAE and RMSE between 
8

the estimated and actual terminal voltage values decrease under both DST and FUDS conditions.
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Table 5

Terminal voltage results for DST.

Traditional algorithm Proposed algorithm

MAE(%) 3.82 2.28

RMSE(%) 2.79 2.07

Table 6

Terminal voltage results for FUDS.

Traditional algorithm Proposed algorithm

MAE(%) 5.55 4.51

RMSE(%) 3.55 2.58

Fig. 8. Comparison of the parameter identification for two algorithms under DST.
9

Fig. 9. Comparison of the estimated SOC for three conditions under DST.
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Fig. 10. Comparison of the SOC error for two algorithms under DST.

Table 7

SOC error results of the two algorithms for DST.

Traditional algorithm Proposed algorithm

MAE(%) 2.42 1.42

RMSE(%) 2.41 1.42

Table 8

SOC error results of the two algorithms for FUDS.

Traditional algorithm Proposed algorithm

MAE(%) 2.17 1.54

RMSE(%) 2.13 1.46

From Fig. 8, it is evident that the traditional algorithm exhibits anomalous jitter in parameter identification during DST conditions. 
Specifically, parameters 𝐶1 and 𝐶2 reveal extra sources of jitter, while other parameters such as 𝑅1,𝑅2 display varying degrees of 
jitter too. However, the proposed algorithm results in a remarkable decrease in the amount of jitters, with only a minor amount of 
jitters at specific locations.

Fig. 9 illustrates the true SOC values alongside the estimated values obtained from both the traditional algorithm and the proposed 
algorithm. By analyzing Fig. 9, it is observed that both algorithms have better SOC following characteristics.

Fig. 10 is a comparison of the SOC estimation errors between two algorithms. The MAE and RMSE of the proposed algorithm 
are reduced by a maximum of 41.3% and 41% compared to the conventional algorithm. The detailed error distribution is shown in 
Table 7.

Fig. 11 shows the results of parameter identification of the two algorithms under FUDS conditions, for 𝑅0 𝑅2, the proposed 
algorithm almost removes the jitters present in the traditional algorithm. For 𝐶1 and 𝐶2, the proposed algorithm also removes most 
of the jitters, but undeniably, there still exists a small amount of jitters, which is related to the choice of the two time-scale.

Fig. 12 illustrates a comparison between the estimated SOC values obtained from the traditional algorithm and the proposed 
algorithm. The graph clearly demonstrates that both algorithms converge rapidly and accurately to the approximate true SOC value.

Fig. 13 illustrates the comparison between the proposed algorithm and the traditional algorithm in terms of SOC estimation error. 
s. The MAE and RMSE of the proposed algorithm are reduced by 29% and 31.4% compared to the conventional algorithm... The 
detailed error distribution is shown in Table 8.

4.3. Experimental validation and discussion of different temperatures for the same operating condition

In this section, the parameter identification and SOC estimation of the two algorithms at different temperatures (-10 °C, 0 °C, and 
25 °C) for the DST condition will be presented.

Fig. 14, Fig. 15 and Fig. 6 compare the results of the terminal voltage for real value, traditional algorithm, proposed algorithm. 
Fig. 14 shows the estimated results when a dynamic DST test was run at -10 ◦C, Fig. 15 shows the estimated results when a dynamic 
DST test was run at 0 ◦C, Fig. 6 shows the estimated results when a dynamic DST test was run at 25◦C. Comparing the fitting of 
terminal voltages at different temperatures, both the traditional and proposed algorithms can track the curve of the real value of 
the terminal voltage very well, but there are differences in the error results, Table 9, Table 10 and Table 7 show the results of the 
terminal errors at -10 ◦C, 0 ◦C and 25 ◦C, respectively.

It can be seen that the MAE and RMSE of the proposed algorithm are reduced to different degrees compared with the traditional 
algorithm for the DST condition at different temperatures, the MAE is reduced by a maximum of 40.15%, the RMSE is reduced by a 
maximum of 29.45%. So it shows that the proposed algorithm has good performance in tracking the terminal voltage profile.

Fig. 16, Fig. 17 and Fig. 8 represent the results of identifying the parameters of the battery ECM for the two algorithms at -10 ◦C, 
0 ◦C and 25 ◦C, respectively, for the DST condition. In Fig. 16, 𝑅0 ∼ 𝑅2 in the traditional algorithm parameter identification process, 
there is a large jitter at the starting position, and some smaller jitters at other positions, while the proposed algorithm eliminates 
10

the jitters of 𝑅0 ∼ 𝑅2 very well. Similarly, the proposed algorithm basically eliminates the more jitters present in the traditional 
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Fig. 11. Comparison of the parameter identification for two algorithms under FUDS.

Fig. 12. Comparison of the estimated SOC for three conditions under FUDS.
11

Fig. 13. Comparison of the SOC error for two algorithms under FUDS.
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Fig. 14. The terminal voltage response of DST at -10 ◦C.

Fig. 15. The terminal voltage response of DST at 0 ◦C.
12

Fig. 16. Comparison of the parameter identification for two algorithms at -10 ◦C.
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Table 9

Terminal voltage results for DST at -10 ◦C.

Traditional algorithm Proposed algorithm

MAE(%) 1.7 1.34

RMSE(%) 1.29 0.91

Table 10

Terminal voltage results for DST at 0 ◦C.

Traditional algorithm Proposed algorithm

MAE(%) 2.29 1.58

RMSE(%) 1.25 0.97

Fig. 17. Comparison of the parameter identification for two algorithms at 0 ◦C.

algorithm for identifying 𝐶1, 𝐶2, but the proposed algorithm also has less jitters, which is related to the choice of the cross-time 
scale. In addition, Fig. 17 and Fig. 8 also have better performance in eliminating the jitters.

Fig. 18, Fig. 19, Fig. 9 show the SOC estimation results of the two algorithms for the same DST condition at different temperatures 
(-10 ◦C, 0 ◦C, and 25 ◦C), respectively. As can be seen from the figures, both algorithms track the true SOC values better, at the same 
time, the SOC estimation errors are shown in Fig. 20, Fig. 21, Fig. 10, and their MAE, RMSE are listed in Table 11, Table 13, Table 5. 
Both errors of the proposed algorithm are smaller than the traditional algorithm, which reflects the further improvement in SOC 
estimation accuracy of the proposed algorithm (Table 12).

In summary, the proposed cross-time-scale algorithm can significantly reduce the jitter of the traditional algorithm for parameter 
identification at different temperatures and under the same operating conditions, especially for the parameters 𝑅0, 𝑅1, and 𝑅2, which 
are more effective. The proposed algorithm has only a small amount of jitter at individual locations for only 𝐶1 and 𝐶2 parameters. 
Additionally, as shown in the Table 13, we summarize the SOC estimation error results of the proposed algorithm for the above 
working conditions. When the battery model is an equivalent circuit model, comparing Fig. 1 and Fig. 13, the proposed algorithm in 
this paper has a minimum MAE of 0.22% and a minimum RMSE of 0.3%, which reduces the jitters in the parameter identification 
13

and improves the accuracy of SOC estimation at the same time.
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Fig. 18. Comparison of the estimated SOC for two algorithms at -10 ◦C.

Fig. 19. Comparison of the estimated SOC for two algorithms at 0 ◦C.

Fig. 20. Comparison of the d SOC error for two algorithms at -10 ◦C.

Fig. 21. Comparison of the d SOC error for two algorithms at 0 ◦C.

Table 11

SOC error results of the two algorithms at -10 ◦C.

Traditional algorithm Proposed algorithm

MAE(%) 0.88 0.25

RMSE(%) 0.78 0.22

Table 12

SOC error results of the two algorithms at 0 ◦C.

Traditional algorithm Proposed algorithm

MAE(%) 0.94 0.66

RMSE(%) 0.92 0.3
14
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Table 13

SOC error results of proposed algorithm.

MAE(%) RMSE(%)

DST for 25 ◦C 1.42 1.42

FUDS for 25 ◦C 1.54 1.46

DST for 0 ◦C 0.66 0.3

DST for -10 ◦C 0.25 0.22

5. Conclusion

Battery parameter identification and SOC estimation are crucial for the proper functioning of batteries. This paper proposes a new 
method for battery parameter identification and SOC estimation called the cross-time scale fusion algorithm. The main conclusions 
of this article are as follows.

(1) A cross-time scale fusion algorithm is proposed. The algorithm first determines the cross-times scales Δ𝑡1 and Δ𝑡2, identifies 
the parameters of the electrical ECM in Δ𝑡1, feeds the results back to Δ𝑡2, and estimates the battery SOC in Δ𝑡2. The parameter 
identification and SOC estimation are then crossed sequentially.

(2) The algorithm proposed is effective in eliminating the jitter problem, particularly for parameters 𝑅0, 𝑅1, and 𝑅2. However, 
some jitter still exists during the identification process of parameters 𝐶1 and 𝐶2, which is related to the choice of cross-time scale.

(3) Compared to the traditional FFRLS+EKF algorithm, the proposed algorithm reduces the MAE and RMSE of terminal volt-

age and SOC to varying degrees under different temperatures for the same operating condition. This demonstrates the proposed 
algorithm’s strong performance across different temperatures.
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