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Improving the computation efficiency of polygenic risk
score modeling: faster in Julia
Annika Faucon1,*, Julian Samaroo2,*, Tian Ge3, Lea K Davis1,4 , Nancy J Cox1,4 , Ran Tao1,5, Megan M Shuey1,4

To enable large-scale application of polygenic risk scores (PRSs)
in a computationally efficient manner, we translate a widely used
PRS construction method, PRS–continuous shrinkage, to the Julia
programming language, PRS.jl. On nine different traits with
varying genetic architectures, we demonstrate that PRS.jl
maintains accuracy of prediction while decreasing the average
runtime by 5.5×. Additional programmatic modifications improve
usability and robustness. This freely available software sub-
stantially improves work flow and democratizes usage of PRSs by
lowering the computational burden of the PRS–continuous
shrinkage method.

DOI 10.26508/lsa.202201382 | Received 21 January 2022 | Revised 5 July
2022 | Accepted 6 July 2022 | Published online 18 July 2022

Introduction

The conceptual framework known as the “liability-thresholdmodel”
asserts that complex diseases have many contributing variants of
small effect, which collectively contribute to a continuous distri-
bution of genetic liability in a population. Thus, when a large-
enough collection of risk alleles is aggregated in an individual
together with environmental risk factors such that they pass a
critical threshold, the complex disease will manifest (Falconer,
1965). The additive genetic portion of this liability attributable to
common variants can be estimated with a polygenic risk score
(PRS). A PRS is generally calculated as a weighted sum of risk alleles
present in an individual genome, where the weights are defined by
the effects estimated in genome-wide association studies (GWASs)
(Chatterjee et al, 2016).

Since the advent of PRS methods, various studies have proven
their potential to improve health by informing therapeutic inter-
vention (Tikkanen et al, 2013; Mega et al, 2015), disease screening
(Hsu et al, 2015), and lifestyle choices for a multitude of polygenic
conditions. In fact, polygenic risk scoring has long been at the
center of genetic research (MultiBLUP [Speed & Balding, 2014],
PLINK [Purcell et al, 2007], PRSice [Choi & O’Reilly, 2019], LDpred

[Vilhjalmsson et al, 2015]). In simulation and real data analyses,
PRS–continuous shrinkage (CS) was demonstrated as a top-
performing method (Ge et al, 2019; Pain et al, 2021). Despite their
popularity and importance, PRS methods need development,
particularly related to computational expense. As large datasets
become publicly available and computation moves to the cloud
(Langmead & Nellore, 2018), research demands the use of com-
putational programs that can scale and cost-effectively use re-
sources. Because the Julia programming language has consistently
demonstrated increased efficiency of computation over other
programming languages, along with other advantages (Bezanson
et al, 2018), we created a Julia translation of the commonly used
Python based PRS-CS program, PRS.jl.

Below, we introduce the PRS.jl program and benchmark it against
PRS-CS, tracking model accuracy and computational improvements
across nine well-characterized polygenic phenotypes including
both continuous and binary outcomes.

Results

PRS.jl performance overview

PRS.jl is a direct translation of the PRS-CS Python program into
the Julia language. This translation improves the computa-
tional efficiency of PRS estimation across a variety of polygenic
traits.

Using the auto global shrinkage calculation with 10,000 MCMC
iterations on a single Haswell node, eight CPUs available total, and
a maximum memory allocation of 80 GB, we observed an average
5.5× improvement in computational speeds when using PRS.jl
compared with PRS-CS across nine phenotypes. The improvements
in speed ranged from 3.8× to 6.4× (Table 1). For the quantitative
phenotypes – body mass index, high-density lipid cholesterol,
low-density lipid cholesterol, total cholesterol, triglycerides, and
estimated glomerular filtration rate – the average improvement
was 5.6×. For the binary traits – asthma, coronary artery disease,
and type 2 diabetes mellitus – the improvement was 5.1×. These
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reported computational times represent the total amount of
runtime when chromosomes are sequentially analyzed; processing
the chromosomes in parallel can substantially reduce time to
results.

We next demonstrate that these improvements in speed did not
come at the expense of PRS accuracy (Fig 1).

Next, we show the retained accuracy of PRS.jl estimate for given
phenotypes by demonstrating the consistency of posterior SNP
weights and the resulting PRSs compared with PRS-CS. Specifically,
to assess the consistency of SNP weights, we calculate the squared
error for each SNP between the PRS.jl and PRS-CS output (Table 2).
The median squared error between the two algorithms ranged from
2.00 × 10−11 to 6.83 × 10−11 across phenotypes, with a median of 3.00 ×
10−11. This is similar to the median squared errors within the same
program on different runs (Table S1). A t test comparing the pos-
terior SNP effect sizes estimated by PRS.jl and PRS-CS found no
statistically significant difference (all P > 0.85).

We examined accuracy of the PRSs relative to the traits mea-
sured in BioVU. For the quantitative traits, we compared prediction
accuracy by R2 between the observed and predicted phenotypes in
the BioVU testing set (Table 3). For the binary traits, we compared
prediction accuracy by area under the curve (AUC), the Nagelkerke
R2, and the odds ratio of the top 10% versus the remaining 90%
(Table 4). PRS-CS and PRS.jl had nearly identical accuracies across
all tested traits.

Lastly, because performance can vary based on sample size, we
also provide an estimate of performance for the most common
binary, asthma, and continuous phenotype, triglycerides, for three
different sample sizes (Table S2). As expected, these runs took
longer and had lower R2 than the previous runs that used the
largest number of samples. Regardless of sample size, however,
the PRS-CS and PRS.jl programs had nearly identical accuracies for

the traits with similar sample sizes and consistent runtime im-
provements with PRS.jl.

Discussion

PRSs are hailed for their potential to revolutionize clinical and
precision medicine (Torkamani et al, 2018; Reay et al, 2020). Despite
early successes there remain considerable concerns relating to the
broader applicability of PRSs to genetically diverse populations and
the computational power required to use these approaches at
scale. With the growing availability of large-scale biobanks including
All of Us (All of Us Research Program Investigators et al, 2019),
Biobank Japan (Nagai et al, 2017), FinnGen (Kurki et al, 2022 Preprint),
and UK Biobank (Bycroft et al, 2018), the need for improved genomic
analysis tools that have the potential to handle these larger sample
sets in a faster, less computationally intensive manner without
sacrificing efficacy is paramount. The Julia programming language
has many features that allow for these improvements including an
efficient type-system and multiple dispatch, a variety of optimized
matrix routines, and a straightforward application programming
interface for accessing single instruction, multiple data (SIMD), and
multi-threading. Specifically, the efficient type-system together
with multiple dispatches means that the right version of functions
can be called on in a computational manner that does not require
checking types at runtime. Optimized matrix routines can also
prevent excess memory usage, for instance, in the linkage dis-
equilibrium calculation where a symmetric matrix type can be used.
We utilize Julia’s multi-threading capabilities to provide speedups
beyonds those available from using multithreading in basic linear
algebra subprograms (BLAS), particularly in the MCMC imple-
mentation. Indeed, computation efficiency profiling, where we

Table 1. Individual and average runtimes for polygenic risk score–continuous shrinkage (PRS-CS) and PRS.jl by phenotype.

PRS-CS PRS.jl Average

Run 1 Run 2 Run 3 Mean (SD) Run 1 Run 2 Run 3 Mean (SD) Improvementa

Quantitative phenotypes

Body mass index 62:21:25 65:12:16 59:41:13 62:24:58 (1:28:32) 12:01:15 12:20:31 11:19:32 11:53:46 (0:31:10) 5.3

Cholesterol 56:51:43 55:36:35 59:12:59 57:13:46 (1:49:52) 12:07:50 8:15:23 12:34:38 10:59:17 (2:22:34) 5.2

eGFR 65:52:20 69:43:40 77:57:50 71:11:17 (6:10:36) 13:54:28 15:57:40 14:01:35 14:37:54 (1:09:10) 4.9

High-density
lipoprotein 59:58:13 56:39:56 59:19:08 58:39:06 (1:45:02) 8:21:45 8:16:13 10:58:48 9:12:15 (1:32:19) 6.4

Low-density lipoprotein 63:38:06 56:17:24 56:47:47 58:54:26 (4:06:08) 8:26:04 8:18:47 12:54:02 9:52:58 (2:36:51) 6.0

Triglycerides 58:00:52 56:04:48 60:45:49 58:17:10 (2:21:13) 8:18:01 8:09:24 11:48:25 9:25:17 (2:04:02) 6.2

Binary phenotypes

Asthma 41:58:26 40:15:14 41:29:02 41:14:14 (0:53:10) 5:26:44 6:25:06 7:27:54 6:26:35 (1:00:36) 6.4

Coronary artery disease 66:59:45 66:00:16 64:05:35 65:41:52 (1:28:32) 10:43:53 15:05:15 13:04:09 12:57:46 (2:10:48) 5.1

Type 2 diabetes mellitus 68:35:38 69:10:26 68:08:43 68:38:16 (0:30:57) 17:03:18 20:13:24 16:38:33 17:58:25 (1:57:33) 3.8

All phenotypes combined

544:16:28 535:00:35 547:28:06 542:15:03 (6:28:16) 96:23:18 103:01:43 110:47:36 103:24:12 (7:12:35) 5.5

All runtimes are presented as hour:minutes:seconds.
aAverage improvement is estimated as the mean PRS-CS/mean PRS.jl.

PRS-CS ported to Julia improves compute speed Faucon et al. https://doi.org/10.26508/lsa.202201382 vol 5 | no 12 | e202201382 2 of 8

https://doi.org/10.26508/lsa.202201382


estimate the memory and CPU usage in individual runs for both the
original (Python) implementation and the proposed (Julia) variant,
demonstrates that these multi-threading capabilities have the
capacity to drive the large speedups.

On the asthma benchmark, Julia uses a maximum of ~8 GB of
memory, whereas Python used a maximum of ~6 GB of memory. For
triglycerides, Julia and Python use approximate maximums of 5 and
2.5 GB, respectively. This difference may also be due in part to how
memory is managed in each language. Julia uses a garbage col-
lector (GC) to manage and collect user-allocated data, whereas
Python uses a mix of reference counting (Refcounting) and garbage

collection. Refcounting is a deterministic mechanism, allowing data
to be freed almost exactly as soon as it can be proven to be no
longer used; GC, on the other hand, more lazily (and generally
stochastically) frees data, because of tradeoffs inherent to GC
design. However, GC trades higher overall memory usage for
generally better performance of user code. As such, the Julia code
which allocates the same amount of memory as the Python code
has the potential to execute more efficiently. Thus, even though
Julia uses more memory for the same numerical computations, it is
expected that Julia’s performance advantage over python is par-
tially because of the usage of a GC instead of Refcounting. In

Figure 1. Plots comparing polygenic risk score–continuous shrinkage (PRS-CS) and PRS.jl PRS estimates for each trait.
(A, B, C, D, E, F, G, H, I) Plots of the PRSs calculated by the python implementation of PRS-CS (PRS-CS.py) on the y-axis compared with the scores calculated by PRS.jl on
the x-axis for each trait: (A) asthma, (B) coronary artery disease, (C) type 2 diabetes mellitus, (D) body mass index, (E) cholesterol, (F) estimated glomerular filtration rate,
(G) high-density lipoprotein, (H) low-density lipoprotein, and (I) triglycerides. The correlation R2 are presented in the corner of each plot.
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additional, Julia’s GC uses heuristics based on total available
system memory to determine when to pause execution and initiate
expensive GC scans; therefore, maximum memory usage mea-
surements are not reliable predictors of memory requirements and
will vary based on the amount of memory available on the system
being used.

On the benchmark for average CPU usage, of the theoretical
800% usage possible with eight cores, Julia averages ~700%,
whereas Python averages only about 300%. Both PRS.jl and PRS-CS
use the same multi-threaded BLAS (openBLAS) to efficiently exe-
cute BLAS operations. Without additional speedups, PRS.jl would
likely achieve only similar performance. However, PRS.jl uses

additional multi-threaded mechanisms to achieve further
speedups. Part of those speedups come from CSV reading
(implemented in the CSV.jl package), although those improvements
are limited to the relatively short CSV parsing phase. Most of the
speedup is expected to come from multi-threading of the MCMC
algorithm, which has many parallelizable regions of calculations.
Specifically, updates of many model parameters are all executed
with multi-threading, minimizing the span of non-scaling single-
threaded regions of the execution.

Here, we demonstrate how a basic port of the commonly used
PRS-CS package to the Julia language, PRS.jl, can improve the
program’s speedwithout sacrificing PRS accuracy across a variety of

Table 2. Median squared error and P-value from the t test comparing SNP weights between python and Julia implementations for a single run.

SNP count

Median square error P-value GWAS Polygenic risk score

Asthma 2.07 × 10−11 0.89 8,270,130 494,889

Body mass index 6.55 × 10−11 1.00 2,529,253 719,311

Coronary artery disease 6.83 × 10−11 0.91 8,440,435 782,510

eGFR 3.22 × 10−11 0.93 17,393,472 774,105

HDL 3.29 × 10−11 0.95 2,433,797 696,196

LDL 3.19 × 10−11 0.97 2,424,334 695,115

Total cholesterol 3.25 × 10−11 0.87 2,433,332 696,147

Triglycerides 3.17 × 10−11 0.86 2,425,960 695,255

Type 2 diabetes mellitus 2.00 × 10−11 0.85 35,369,247 780,627

eGFR, estimated glomerular filtration rate; GWAS, genome-wide association study; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SNP, single
nucleotide polymorphism.

Table 3. Comparison of polygenic risk score–continuous shrinkage (PRS-CS) and PRS.jl performance for quantitative traits using, as covariates, age, sex,
and PCs 1–10.

R2

PRS-CS PRS.jl Number of subjects

Body mass index 0.1141(<0.0001) 0.1141 (<0.0001) 60,584

Cholesterol 0.1089 (0.0002) 0.1088 (0.0002) 34,347

eGFR 0.4921 (<0.0001) 0.4922 (<0.0001) 34,797

High-density lipoprotein 0.2326 (<0.0001) 0.2326 (<0.0001) 33,338

Low-density lipoprotein 0.0835 (<0.0001) 0.0835 (0.0001) 32,061

Triglycerides 0.0657 (<0.0001) 0.0657 (<0.0001) 34,531

All data is presented as mean (SD).

Table 4. Comparison of polygenic risk score–continuous shrinkage (PRS-CS) and PRS.jl performance for binary traits.

Nagelkerke R2 Area under the curve 10% odds ratio Number of
subjects

PRS-CS PRS.jl PRS-CS PRS.jl PRS-CS PRS.jl Cases Controls

Asthma 0.0176 (<0.0001) 0.0176 (<0.0001) 0.560 (<0.0001) 0.560 (0.0002) 1.54 (0.02) 1.54 (0.02) 8,210 64,618

Coronary artery disease 0.3212 (0.0001) 0.3214 (0.0001) 0.552 (0.0004) 0.552 (0.0005) 1.71 (0.02) 1.73 (0.01) 16,807 56,021

Type 2 diabetes mellitus 0.1715 (<0.0001) 0.1716 (<0.0001) 0.626 (0.0001) 0.626 (0.0001) 2.75 (0.017) 2.77 (0.008) 13,688 59,140

All data is presented as mean (SD).
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traits. PRS.jl is freely available for download through GitHub
(github.com/fauconab/PolygenicRiskScores.jl) and is a drop-in
replacement for PRS-CS. Small usability improvements were
made that allow the user to supply summary statistics with columns
in any order and allows the user to specify supplied column names.
No major changes to the algorithm code were made. Thus, the
improvements reflect advantages of the Julia programming lan-
guage over Python.

The available README text instructs even novice Julia pro-
gramming language users how to execute this software with ease.
Because of the usability and performance improvements, we be-
lieve PRS.jl will allow for broader and more efficient use of PRSs in
genomic medicine.

Furthermore, the development of tools for genomic analyses
that are both fast and computationally efficient, such as PRS.jl, have
the potential to democratize genomic research. To date, human
genomics research is overrepresented by high-income countries,
which tend to have more powerful computational resources and
greater funding for the sciences. The lack of population diversity
and global representation is driven bymany factors; however, a lack
of resources, financial and human, are consistently noted as key
limitations that prevent middle- and low-income countries from
fully using and contributing to genomic research (Marques-de-
Faria et al, 2004; Hardy et al, 2008; Seguin et al, 2008; Kaur et al,
2019). Because of this disparity, these countries could benefit the
most from advances in genomic medicine.

Knowing the impact, utility, and potential of PRSs to drive
personalized medicine while acknowledging the immense bias in
data availability and usage, the National Institutes of Health
funded a large initiative to fund PRS research in diverse pop-
ulations. By reducing the computational needs of key algorithms,
low resourced research groups can use these algorithms to
benefit their scientific endeavors and provide potential benefit for
their populations. The current versions of PRS-CS and PRS.jl are
limited in their utility in ancestrally diverse populations (Duncan
et al, 2019), a limitation that has been addressed by PRS-CSx (Ruan
et al, 2022). Future work to extend Julia improvements to the PRS-
CSx framework for faster trans-ancestry PRS calculations has
been planned.

The PRSs in this set of work are derived using standard inputs
and publicly available summary statistics. Different discovery
GWASs for the same traits can provide different polygenic risk
estimates at the individual level (Schultz et al, 2022); therefore,
association of scores to clinical values in this paper may be dif-
ferent than other papers using similar clinical traits because of
differences in the discovery summary statistics. As such, the PRSs
generated in this paper do not represent the most optimized PRS
for any particular trait. Despite this limitation in study design, our
work clearly demonstrates that the accuracy for both the Python
and Julia versions of PRS-CS are nearly identical. Because the base
datasets and testing populations are identical, our design allows
for a head-to-head comparison of PRS-CS versus PRS.jl. Additional
study limitations include the usage of a direct translation of the
PRS-CS package. Although this approach allows us to directly
compare the accuracy performance across the Python and Julia
implementations, it does not fully use the various computational
improvements that Julia affords. For example, future work aims to

use Julia’s multi-threading and GPU compute capabilities and are
effective methods for computational acceleration of programs
which heavily use matrix operations. These additional compute
capabilities would allow PRS.jl to better use the hardware that
users have available and make processing of even larger datasets
feasible.

Materials and Methods

PRS.jl development

PRS-CS was cloned from https://github.com/getian107/PRScs. This
implementation was translated to the Julia programming language.
Development of PRS.jl was carried out in the open, with all con-
tributions being publicly posted to the PRS.jl GitHub repository.

Training dataset and example phenotypes

We used the Vanderbilt University Medical Center Synthetic De-
rivative (VUMC SD), a deidentified copy of the electronic health
record (EHR), for the identification of the nine test phenotypes.
VUMC is a tertiary care center that provides inpatient and outpa-
tient care in Nashville, TN. The SD includes more than 2.8 million
patient records that contain International Classification of Dis-
eases, 9th and 10th editions (ICD-9 and ICD-10), codes; Current
Procedural Terminology codes; laboratory values; medication us-
age; and clinical documentation (Roden et al, 2008). From the SD, a
subset of patients are part of VUMC BioVU, a biobank that links the
deidentified EHRs of patients to discarded blood samples for the
extraction of genetic materials (Roden et al, 2008). The VUMC In-
stitutional Review Board oversees BioVU and approved these
projects.

Genotyping and quality control

We obtained genome-wide data from 94,474 BioVU individuals
genotyped on the Illumina MEGAEX array. We used PLINK v1.9 to filter
genotypes with low SNP (<0.95) call rate and individuals with low
call rate (<0.98), sex discrepancies, and excessive heterozygosity
(|Fhet|>0.2). Principal component analysis on the genotyped BioVU
cohort together with CEU (Utah residents with Northern and
Western European ancestry from the CEPH collection), YRI (Yoruba
in Ibadan, Nigeria), and CHB (Han Chinese in Beijing, China) indi-
viduals from the 1000 Genomes Project Consortium et al (2015) from
the CEU (Utah residents with Northern and Western European
ancestry from the CEPH collection), YRI (Yoruba in Ibadan, Nigeria),
and CHB (Han Chinese in Beijing, China) populations were used to
create the CEU-YRI and CEU-CHB axes in FlashPCA2. Simple
thresholding was used (0.3 and greater on the CEU-YRI axis and 0.4
and greater on the CEU-CHB axis) to select individuals of recent
European ancestry as shown in Fig S1.

We confirmed the absence of genotyping batch effects through
logistic regression with “batch” as the phenotype. We used the
Michigan Imputation Server (Das et al, 2016) with the reference
panel from the Haplotype Reference Consortium to impute

PRS-CS ported to Julia improves compute speed Faucon et al. https://doi.org/10.26508/lsa.202201382 vol 5 | no 12 | e202201382 5 of 8

https://github.com/fauconab/PolygenicRiskScores.jl
https://github.com/getian107/PRScs
https://doi.org/10.26508/lsa.202201382


genotypes. SNPs were filtered for imputation quality (R2 > 0.3 or
INFO > 0.95) and converted to hard calls. We restricted PRS cal-
culations to autosomal SNPs with minor allele frequency above
0.01. We removed SNPs that differed by more than 10% in minor
allele frequency from the 1000 Genomes Project phase 3 CEU (1000
Genomes Project Consortium et al, 2015) set and those with a
Hardy–Weinberg equilibrium P < 10−10. The resulting data set
contained hard-called SNP information for 9,386,383 SNPs in 72,828
individuals of European ancestry.

PRS calculations

We calculate PRSs for individuals using PRS-CS (Ge et al, 2019) and
our translation of the package to the Julia programming language,
PRS.jl. PRS-CS/PRS.jl uses Bayesian regression with a CS before
model polygenic effects on the phenotype and updates the weight
of each SNP within each LD block in posterior inference. The
program can use an assigned global shrinkage parameter or au-
tomatically learn the parameter from the data.

Model performance in BioVU

Summary statistics were downloaded for six quantitative traits:
body mass index, high-density lipid cholesterol, low-density lipid
cholesterol, total cholesterol, triglycerides, and estimated glo-
merular filtration rate (Willer et al, 2013; Hellwege et al, 2019; Pulit et
al, 2019) and three binary traits: asthma, coronary artery disease,
and type 2 diabetes mellitus (T2DM) (Preuss et al, 2010; Zhu et al,
2019; Vujkovic et al, 2020). These traits were chosen because of their
high prevalence or phenotypic validation in the VUMC EHR and
usage in the original PRS-CS manuscript.

Summary statistics were processed to get these input files in a
format that the original PRS-CS method can accept (columns
reordered and renamed using R). PRSs were calculated in triplicate
using a single-CPU architecture. Furthermore, to demonstrate the
task-dependent performance improvements based on sample size,
we also estimated the PRS performance for three sample sizes,
72,828 for the total population and two random subsets of the
totally sized 36,000 and 18,000 individuals. Because the final
sample size used in the estimate is based on the number of patients
in the set with the particular outcome, we chose the most prevalent
binary and continuous outcomes for this step.

The scripts used to call both programs are available at https://
juliahub.com/ui/Packages/PolygenicRiskScores/zm2vm/0.1.0.

Computational performance comparison

All computations were performed using the Vanderbilt University’s
Advanced Computing Center for Research and Education (ACCRE,
www.accre.vanderbilt.edu). Each PRS run was restricted to a single
Haswell nodewith an allocation of eight CPUs and 80 GB ofmemory.
To minimize runtime variabilities related to cluster usage, we ini-
tiated the PRS-CS and PRS.jl runs for each phenotype simulta-
neously. Subsequent benchmarking runs were initiated over a 3-mo
time course. The processing time for each PRS run was recorded.
The mean and SD of the three runs per phenotype were calculated.

PRS.jl and PRS.py performance comparison

The PRS-CS method uses a global shrinkage parameter to account for
varying trait polygenicity. If a trait is highly polygenic, the global
shrinkage parameter tends to be larger, whereas if the trait is less
polygenic, the global shrinkage parameter will be smaller. PRS.jl and
PRS-CS have two options, one of which allows the global shrinkage
parameter to be automatically learned from the data rather than
supplied, auto (phi). Sensitivity analyses demonstrated similar output
for the twomethodswhen using a fixed global shrinkage parameter or
the auto algorithm. Thus, in each case, we used the auto version,
allowing for the estimation of the global shrinkage parameter from
the data. Once the posterior β values were calculated, PLINK v1.9 was
used to score each individual. PRSs for each phenotypewere scaled to
have mean zero and unit SD using the built-in R scale() function.
Prediction accuracy was assessed using real phenotypic values in
BioVU and covariate adjustment (sex, age, and PCs 1–10).

Verification of quantitative trait performance in BioVU

Accuracy of PRSs calculated from quantitative trait summary sta-
tistics was assessed using ordinary least squares R2 between the
scaled PRSs, and median values by person from BioVU data pro-
cessed by a previously published quality control pipeline called
Quality Lab (Dennis et al, 2021).

Verification of binary trait performance in BioVU

Because R2 cannot be used for binary logistic regression, accuracy of
PRSs trained from binary trait summary statistics was assessed using
three measures commonly used in the PRS literature: the AUC, the
Nagelkerke Pseudo R2, and the odds ratio of the top 10% compared
against the bottom 90% between the scaled PRSs and the binary
presence of clinical codes that are representative of the clinical
disease. The AUC, or area under the receiver operating characteristic
curve, provides an aggregate measure that is valuable because it
measures howwell predictions are ranked irrespective of classification
threshold. The Nagelkerke Pseudo R2 is an analog of the ordinary least
squares R2 for logistic regression and is a commonly used to describe
howwell the PRS explains a binary trait (Choi et al, 2020; Maj et al, 2022).
The odds ratio of the top 10% compared against the bottom 90% is a
common metric used to describe how well a PRS captures the risk of
developing the disease and has been used to demonstrate the validity
and clinical relevance of PRSs (Khera et al, 2018). The specific codes
used for asthma and coronary artery disease are available in Table S3.
These codes include ICD-9 and -10 codes that mirror the clinical
disease. For type 2 diabetes mellitus, however, the presence of the
condition was determined using an updated version of a previously
published phenotyping algorithm which is effective at distinguishing
type 1 and type 2 diabetes (Pacheco & Thompson, 2012).

Data Availability

GWAS summary statistics were downloaded from publicly available
resources. BioVU summary statistics are made available upon
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reasonable request to authors. PRS-CS/PRS.jl is available for download
from GitHub (https://github.com/fauconab/PolygenicRiskScores.jl).

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202201382.
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