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Abstract
Purpose An auditory brainstem implant (ABI) represents an alternative for patients with profound hearing loss who are
constrained from receiving a cochlear implant. The positioning of the ABI electrode influences the patient’s auditory capacity
and, therefore, quality of life and is challenging even with available intraoperative electrophysiological monitoring. This work
aims to provide and assess the feasibility of visual-spatial assistance for ABI positioning.
Methods The pose of the forceps instrument that grasps the electrode was electromagnetically navigated and interactively
projected in the eyepieces of a surgical microscope with respect to a target point. Intraoperative navigation was established
with an experimental technique for automated nasopharyngeal patient registration. Two ABI procedures were completed in
a human specimen head.
Results An intraoperative usability study demonstrated lower localization error when using the proposed visual display
versus standard cross-sectional views. The postoperative evaluations of the preclinical study showed that the center of the
electrode was misplaced to the planned position by 1.58mm and 3.16mm for the left and the right ear procedure, respectively.
Conclusion The results indicate the potential to enhance intraoperative feedback during ABI positioning with the presented
system. Further improvements consider estimating the pose of the electrode itself to allow for better orientation during
placement.

Keywords Auditory brainstem implant · Visual guidance · Electromagnetic tracking · Registration · Neuronavigation
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Introduction

Restoring speech understanding in deaf patients by stimu-
lating the auditory nerve through a cochlear implant (CI) is
a routine procedure [1]; however, inner ear anomalies such
as bilateral damage of the auditory nerve may constraint
receiving a CI. These patients can benefit from an auditory
brainstem implant (ABI) [2]. The auditory brainstem implant
electrode pad (electrode array) bypasses the cochlea and the
hearing nerve to directly stimulate the auditory network on
the cochlear nucleus (CN) in the brainstem. Initially, this
surgery was indicated for adult patients diagnosed with a
neurofibromatosis type 2 (NF2) [3], but nowadays, ABI is
also considered for patients with other cochlear malforma-
tions as small or absent cochleae at pediatric patients [4].
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The placement of the electrode pad onto the curved sur-
face of CN (with an area typically 6mm×7mm [5]) poses a
significant intraoperative challenge for surgeons. The posi-
tioning directly influences the levels of speech recognition
and whether there are non-auditory side effects in patients
while at the same time there is the risk of brainstem injury
[6]. Orientation by anatomical landmarks and intraoperative
measured evoked auditory brainstem responses (EABRs) are
considered gold standard navigation for electrode placement
[7]. Anatomical landmarks in proximity to the target struc-
ture serve for identification of the CN surface that is not
fully visible during surgery; moreover, orientation may be
altered due to previous surgeries around the cerbello-pontine
angle (CPA). To spot the active auditory context on the CN,
EABRs assist in combination with a placement (stimulation)
electrode [7]. In current practice, once detected, the optimal
position is memorized by the surgeon and sometimesmarked
in situ and then targeted with the ABI [8].

Thiswork evaluates a recently proposed visual-spatial dis-
play for surgical targeting aimed to assist, quantify and verify
ABI placement [9,10]. The proposed system coupled with
an innovative nasopharyngeal registration allows reaching
accurately the stored position of the ABI determined with
the placement electrode. A prototype was used by two neu-
rosurgeons to assess the feasibility in a preclinical setting
with a human head specimen.

Methods

Intraoperative tracking

To enable spatial localization within the 3D space of the
patient’s anatomy, a titaniummedical forceps (B. Braun AG,
Melsungen, Germany), typically used for grasping brainstem
electrodes, was navigated using electromagnetic tracking
(EMT). A 6Dmagnetic sensor (0.8mmx 9mm,NDI -North-
ern Digital Inc., ON, Canada) was attached on one tranche
of the forceps; the instrument position was pivot-calibrated
[11] at the tip. Figure 1 illustrates the setup.

Patient-to-image registration

Preoperative radiological imaging needs to be registered
to the intraoperative patient setting to allow intraoperative
navigation. An automated nasopharyngeal point-based reg-
istration that utilizes titanium spherical fiducials combined
with EMT systems serves this purpose. A titanium nasal stent
based on the AlaxoStent (Alaxo GmbH, Germany) normally
used for breathing enhancement in patients [12]—served to
elaborate minimally invasive positioning and stabilization of
four spherical fiducials and isocentrically mounted magnetic
position sensors in the nasopharynx prior to preoperative

Fig. 1 Titanium medical forceps with an in-house mounted 6D mag-
netic sensor

imaging (Fig. 2). An algorithm was developed and verified
to automatically localize fiducials in preoperative imagery
and match these positions with the intraoperative positions
provided by integrated magnetic sensors [13].

Visual display for surgical targeting

The visual display (introduced in [9,10]) indicates the dis-
placements between the current position of the tracked
instrument tip and the designed target point using intuitive,
minimalistic, and semi-transparent visual clues superim-
posed onto the video of the actual surgical site. The three axes
of the instrument were encodedwith respect to the observer’s
viewpoint: the z-axis runs longitudinally along the instru-
ment tip while the x − y axes form a plane perpendicular
to it, Fig. 1. The z-direction represents moving in/out and is
termed as “depth”; movements in the x − y plane left/right
and up/down and are termed as “lateral.”

The lateral and depth vectorial displacements between
instrument-tip and target position were measured and visu-
ally represented in a 2D view (e.g., amicroscopic view) (Fig.,
Supp. 1).

The lateral displacement was visualized with a green blob
2D-translated from a red square, the target (Fig., Supp. 1a-d).
When the lateral distance is zero, the two visual cues overlap
(Fig., Supp. 1d).

The distance in the depth direction is visualized as an
interactive circle with a diameter proportional to the depth
distancewith its origin on the target. In otherwords, the circle
minimizes or maximizes its diameter if the instrument tip is
moving toward or away from the target (Fig., Supp. 1e-h).
When the depth distance is zero, the circle vanishes (Fig.,
Supp. 1h). If the instrument is beyond (or overreached) the
target, the circle behaves similarly but blinks to signalize for
this (Video, Supp. 3, 07:27).

The virtual cues in pixels are scaled to the surgeon’s
preferences to provide an intuitive perception of physical
dimensions, such as revealing and emphasizing small instru-
ment motions.
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Fig. 2 a A prototype of the
registration device consists of a
titanium nasal stent, four
titanium spherical fiducials
(4mm × 8mm, in-house
designed) with isocentrically
mounted 5D magnetic sensors
(0.5 mm× 8mmNDI) acting as
fiducials both in image and in
patient space and one 6D
magnetic sensor
(0.8mm×9mm, NDI) acting as
a dynamic reference frame
(DRF); b a titanium spherical
fiducial sample with an
isocentrically integrated 5D
magnetic sensor; c a positioning
tube with a pusher ready for the
stent assembly deployment
inside the nasopharynx; d
positioning process; e final
positioning

When the instrument is out of the defined target range,
only the visual cues for target and depth are displayed, and the
lateral displacement becomes lateral orientation with a long
arrowpointing toward the target (Fig., Supp. 2). Furthermore,
the diameter of the depth circle is kept constant.

An example of the visual display is shown in Fig. 3.

Positional uncertainty

Navigation is perturbated by random noise and measure-
ment errors [14,15]. Therefore, intraoperative awareness of
the accuracy range (“reliability”) is beneficial and could
help avoid tissue damage and optimize electrode place-
ment by avoiding directions with higher uncertainty when
using the surgical instrument. We modeled these errors as
the distribution of TRE (target registration error) [16] to
quantify the uncertainty of instrument-tip localization at the
surgical target point. The model was implemented using
a general approach for first-order approximation [17] and
was validated across two other similar algorithms [16,18].
The chi-square distribution with 95% confidence regions are
shown as green and red “error” ellipses in the lateral direc-
tions around instrument-tip and target (Fig., Supp. 1a-d).

Preclinical feasibility study

The experiment workflow depicted in Fig. 4 is described
below.

Surgeons

Two neurosurgeons that regularly carry out the brain and
skull-base surgeries with routine use of different neuronavi-
gation systems and experience in ABI surgery were selected
to perform auditory brainstem implantations using the sys-
tem in a preclinical environment.

Specimen

The formalin-embalmed human specimen headwas provided
by Department of Anatomy at the Medical University of
Innsbruck, Innsbruck, Austria. No protected health informa-
tion/ethics committee approval was required for this kind
of study. However, we have followed all required internal
regulations for scientific work with donated human bodies
[19,20].
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Fig. 3 The visual display in the surgical microscope oculars during brainstem electrode placement. The forceps with the electrode is moved from
a the outside of the defined region toward f the target point

Fig. 4 The experiment
workflow. “Optm Targt”: the
first step to optimize an initially
planned target in image and
“ABI”: the second step to place
the implant on the determined
optimal position

Image registration and surgery planning

Prior to preoperative CT imaging (0.6 mm slice thickness,
pixel spacing 0.43×0.43mm2), the nasal-stent assembly
was placed in the nasopharynx and remained there until
the end of whole procedures (Fig. 2c–e). A landmark-based
registration [21] served to pair positions from magnetic sen-
sors with the centroids of the detected spherical fiducials in
images [9,13]. This process was automated and was repeated
multiple times during the intervention.

A preoperative MR scan was also acquired (3T, sequence
rapid gradient-echo T1 weighted sequence, slice thickness
1mm, pixel spacing 0.86× 0.86mm2)without the implanted
stent assembly and fused to the preoperative CT scan
for surgical planning. The two images were co-registered

using customized in-house software [9] that implements an
intensity-based method with mutual information and rigid
transformation [22]. The initial target point was designed in
the foramen of Luschka [23] in fused and blended CT and
MR images.

Predicted TRE

The predicted TRE at the surgical point of interest in the
foramen of Luschka was 1.75 mm and 1.76 mm for the left
and the right ear, respectively. The TRE was modeled using
[17] with the fiducial configuration obtained from the CT
scan; and input FLE (fiducial localization error) [16] resulted
as in a combination of 0.1 mm error in image space [13] and
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Fig. 5 Experimental setup left—estimation of registration quality on
a screw and right—a neurosurgeon performing the intervention. In
1—cross-sectional views screen, 2—surgical probe, 3—field genera-

tor, 4—halo ring system with retractors, 5—surgical site, 6—Mayfield
clamp, 7—Medtronic Drill System for Neurosurgery, 8—an industrial
camera mounted on the microscope

0.7 mm error for EMT in physical space (Aurora V3.1 User
Guide, 2018, NDI).

Measured TRE

To measure TRE, eight screws (2 mm in diameter and 6 mm
in length—Stryker, Kalamazoo, MI, USA) were implanted
into the skull around petrous bone and ear regions prior to
radiological imaging. However, only 6 were still present and
stable at the intervention. Following automated registration,
in addition to visually inspecting accuracy on bony anatomi-
cal landmarks during surgery, each screw was touched three
times with a calibrated pointer (Aurora 6DOF Probe, NDI)
and compared pairwise to its detected automatically equiva-
lent in the image [9].

Surgical navigation

AnAurora EMT system (NDI) was connected to an in-house
implemented image-guided station previously validated on
phantoms [9] (Video, Supp. 3).

Surgical procedures

Two interventions were completed, on the left and the right
ear side of the specimen, in a wet laboratory to closely
approximate the intraoperative setting (Fig. 5). Implanta-
tion was carried out with close resemblance to the routine
implantation in patients. Retrosigmoid craniotomy followed
by arachnoidal dissection was performed.

MED-EL, Innsbruck, Austria provided the electrodes
(Mi1200 SYNCHRONY PIN ABI and ABI Placement
Electrode) [24]. Despite EABRs inaccessibility, target opti-
mization with a placement electrode was followed based
only on extrapolated anatomy from the surgeon’s knowl-

edge to adjust the initially designed target position. The
system stored the optimal anatomical position by keeping
the surgical instrument stable for several seconds at a single
location. The renewed target point was updated in the visual
interface, enabling accurate guidance to the stored posi-
tion. After placement in its final position, the ABI electrode
was fixed with fibrin glue, and postoperative CT scans were
acquired.

Assessment of fiducial marker stability

The registration error can be inflated due to the spatial dislo-
cation of four markers due to the procedures, skull drilling,
specimen positioning, transportation to the storage and imag-
ing room, etc. It is therefore essential to verify how effective
is the nasal stent for marker stabilization. For this purpose,
we compared the variability in fiducial position between pre-
and postoperatively recorded CT images.

Assessment of usability placement

In parallel to the procedures, the surgeons were instructed to
perform dummy electrode positioning on the marked target
using the surgical instrument navigated with three system
combinations: the presented visual interface (VG) and two
other system combinations with cross-sectional views (IGS
as a stand-alone and IGS+VGas amulti-modal combination).
The measured quantities included localization error repre-
sented as the distance between the planned target in the image
and the localized position on the electrode after dummy posi-
tioning; reaction time and trajectory sum between the start
and end time of a localization period.
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Table 1 Experimentally
determined TRE for
skull-implanted screws with
their mean±standard deviation
(μ ± σ ) for the left and the right
ear

Left ear Right ear

T1 T2 T3 T4 μ ± σ T5 T6 T7 T8 μ ± σ

Measured (mm) N A 4.0 2.1 1.6 2.56± 1.27 1.9 3.1 3.6 N A 2.87± 0.87

Predicted (mm) 4.0 4.0 3.1 2.4 3.37± 0.77 3.1 4.1 4.2 N A 3.8± 0.6

Assessment of final placement

After the procedures, the real electrode positionwas assessed
as the center of theABI on the surface of the imaged electrode
closer to the target point. This position was superimposed
and compared to the target position in the primary CT scans.
The 3D-vectorial displacement between these two positions
was measured as the Euclidian distance, lateral target error
and depth target error. The lateral error was calculated as the
2D distance in a plane that lies on the electrode’s surface,
whereas the depth error as the 1D distance orthogonal to this
plane (Fig., Supp. 4).

Results

Evaluation of intrasurgical fiducial variance

The mean deviation in fiducial positions from its base loca-
tions was 0.29 ± 0.20 for the left-side intervention and
1.31 ± 0.30 for the right-side intervention. A more detailed
accuracy inspection for individual fiducials was reported
[25].

Evaluation of image registration

The mean ± standard deviation quantities were measured
for the left and the right side intervention. The FRE (fiducial
registration error) [16] for six repetitions during usabil-
ity (dummy) and final positioning gave 0.53 ± 0.1mm
and 0.44 ± 0.04mm. The TRE measured on screws was
2.56 ± 1.27 mm and 2.87 ± 0.87mm. The numerically
predicted TREs on screws using the process described in
Sect. 2.5.4 obtained higher values compared to the measured
TREs (see Table 1). T2 screw was loosely fixed during eval-
uation. T1 and T8 were lost.

Evaluation of usability placement

Table 2 presents the evaluation performed for dummy elec-
trode positioning. IGS and VG contained 4 collected trials
each while IGS+VG only 2.

Table 2 Experimentally determined mean±standard deviation for
localization error as Euclidian distance, trajectory and completion time

System Euclidean distance Trajectory Completion time
(mm) (cm) (s)

IGS 3.98± 1.25 84± 74 65± 26

VG 2.32± 0.61 114± 54 86± 19

IGS+VG 3.06± 0.88 34± 5 42± 11

Evaluation of final placement

Table 3 gives the errors for final electrode positioning. Fig-
ure 6 visualizes the distance between actual and planned
target positions. With one exception, in the right ear side
intervention, the error was assessed for the position deter-
mined using the instrument after fixation of the implant
(Video, Supp. 3, 08:16) as it was found that the electrode
was displaced from the planned position (Fig. Supp. 5; Table,
Supp. 6). Figure 7 shows a comparison between final place-
ment errors against usability placement errors independently
along each axis calculated in the CT coordinate system (Fig.,
Supp. 7).

Discussion

Clinical significance

An ABI involves complex neurosurgery to the critical areas
of the brainstem and cumbersome anatomical localization of
the CN. In the literature, the reported outcomes vary con-
siderably between patients despite intraoperative assistance
of EABRs [2]. Even slight electrode misplacements, among
other hazards, contribute to poorer outcomes [6]. Enhancing
spatial orientation might help reduce the risk of the latter and
assist when anatomical landmarks are limited due to the sur-
gical approach, surgeon’s experience [6] and, particularly,
anatomical variations that arise from NF2 tumor removal
[23].

In fact, in many other medical procedures, less inva-
siveness, accurate target localization, and reduced risk of
complications were reported by physicians when using neu-
ronavigation (or image-guided surgery) systems [26–28].We
hypothesize that these systems might offer solutions to sur-
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Table 3 Experimentally
determined final positioning
errors

System Side Error [x, y, z] Euclidean Lateral Depth
(mm) (mm) (mm) (mm)

VG Left [1.0, 1.2, 0.2] 1.58 1.18 1.04

VG Right [−3.0, 1.0,−0.2] 3.16 3.15 0.22

The [x, y, z] coordinates corresponding to the CT coordinate system (Fig., Supp. 7). “Lateral” and “Depth”
corresponding to the local coordinate system of the electrode (Fig., Supp. 4)

Fig. 6 Postoperative CT images of the left (upper) and the right (down)
intervention. The cross-sectional planes shown from left to right are
sagittal, coronal and axial. Visualization of the actually reached target

position as the center on the electrode’s surface closer to the target point
(green sphere); and of the target point (red sphere)

geons confronting challenges during the conventional ABI
approach, including more predictable and consistent surgi-
cal and audiological outcomes. However, a review of the
literature reveals no prior use of these systems during ABI
implantation.

We therefore demonstrated a microscope-integrated visu-
ally assisted framework that combines an intuitive and
helpful guidance mode as well as highly accurate and autom-
atized image registration. In particular, we used the same
surgical instruments and electrode pads as in the clinical
scenario. Nonetheless, they are not optimal for navigation
precision, so certain design improvements could lead to still
further improved results. However, it would subsequently
require reiterating product and surgical tool development in
compliance with medico-legal regulations without adding
discomfort to surgeons.

Key findings

The errors in final (1.58/3.16 mm) and usability (2.32±0.61
mm) positioning appear to follow the same trend along single
axes as shown in Fig. 7. It seems that both lateral and depth
deviations meaningfully describe the error in their respective
directions, as potentially both are susceptible to human errors
given that the electrode is placed onto a curved anatomical
surface.

There are no direct comparisons with our experimen-
tal results. In general, they correspond to the reported
accuracy of intracranial electrode placement in stereoelec-
troencephalography where a mean target error of 2.89 mm
(2.34 - 3.44 95% CI) was observed across several frame-
less stereotactic systems [27]. The intracranial and ABI
electrodes are not directly comparable. The deep electrodes
typically have a diameter < 1 mm and follow a predefined
trajectory through the brain.
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Fig. 7 Localization errors (mean and standard deviation error bars)
determined in the usability placement study (light colors) compared
against final placement errors determined in the postoperative image
(dark colors). The errors are shown along single axis per L-left and
R-right side intervention

In linewith our previous phantom study [10], the proposed
visual interface achieves a lower localization error than cross-
sectional views despite condensed information presented.
However, slightly larger completion time and trajectory were
observed. The surgeons, indeed, stated that guidance directly
in the microscope was their preferred interface for the task
at hand. They appreciated the possibility to be able to focus
on the intervention itself while being guided toward the tar-
get with simple, intuitive visual cues that require minimum
distractions and do not pose high cognitive load.

Nasopharyngeal registration

Nasopharyngeal registration was central to establish repro-
ducible and accurate spatial navigation in the vicinity of the
CN.Our code enhances surgical workflow and reduces errors
induced by human interactions. This is of special importance
tomaximize reproducibility due to the so-called silent loss of
accuracy phenomena that occurs during the course of surgical
procedures [29].

An early concept of this scheme was introduced for lat-
eral skull base surgery and yielded submillimetric accuracy
in a phantom setup [30]. We extended this scheme with a
novel device [12]. Contrary to gold standard of invasive skull-

implanted fiducial screws that need to be distributed around
the head to reach optimal TRE, we aimed to bring fiducials in
a minimally invasive way as closely as surgically possible to
the target in order to achieve high registration and targeting
accuracy at the surgical target.

We report a maximum (intrasurgical) dislocation of the
spherical marker, < 1.72 mm, which is in agreement with
a recent endonasal magnetic tracker (< 2 mm) [28]. As
reported in the clinical setting, this is better than a skin
adhesive tracker (< 3 mm) [28]. The mean±standard devi-
ation TRE measured on the implanted screw targets (2.71±
0.99 mm) is higher compared to registration with screws
(< 1.0 mm [29]); approximately equal to adhesive marker
registration (2.49 ± 0.86 mm [31]); and lower than sur-
face matching-based registration (5.35 ± 1.64 mm [31]) as
observed in clinical setup. However, higher TREs are to be
expected in the current setting as the TRE grows propor-
tionally to the distance of the target to the barycenter of the
fiducial configuration [16]. The target points like the surgical
point of interest were closer to the fiducial points, and thus
TRE, as confirmed by numerical simulations (approx. 1.76
mm), can be expected to be lower.

Electromagnetic tracking

Freehand navigation is advantageous in human-operated
interventions, especially in the head-neck part, where the
operating areas are small and cluttered [34]. One source of
errors in our results is in part due to EMT. It yields inferior
accuracy to optical tracking and is prone to ferromagnetic
distortions present in operating theaters that could drastically
degrade the accuracy [33]. Albeit, by prudently positioning
the emitter, low-submillimetric accuracy can be observed in
a laboratory [34] and clinical environment [33].

Generalizability

This study has limitations. First, even though the implant
has a plate geometry, only a single target point at the tool
tip was covered during navigation in the visual display. We
attempted to compensate for these by additional positional
quality assurance checks on the implant surface after posi-
tioning. Second, since it is difficult to measure targets in
the brain accurately, we rely on theoretical approximations
of the TRE [16,17]. There is a fair agreement between the
measured and the predicted TRE within the error bounds
(mean± standard deviation) on the screws. The difference
between the two TREs could be attributable to incorrectly
estimated FLE. Our analysis shows that potentially the FLE
is overestimated. The FLE can be calculated by [35]: <

FRE2 >= (1−2/N ) < FLE2 >, where N is the number of
fiducials and < . > means “expected value of”. Our results
are also limited with only two performed interventions and
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thus precluding detailed statistical analysis. The study does
not compensate for the influence of cerebellar retraction and
brainstem shift during surgery, which can exacerbate errors
in registration and navigation. Further, the outer nose had to
be cut laterally to the cartilaginous septum to allow placing
the Rhinospider stent; conservation of the specimen changed
the elasticity of the tissue so that the device could not be
inserted into the nasopharyngeal space without risking dam-
age. The embalmed specimen brain tissue can be very rigid,
and surgical exposure of the CN without damage could be
cumbersome.

Future research

From this point, we believe that certain improvements would
optimize surgical workflow.Any suitable atlas could be fused
on the brainstem imaging tomark the nuclei more accurately,
as this is routinely done for deep brain electrodes [36]. Fur-
thermore, drawing from a recent study [37], by optimizing
pre-operatively positioning of the entire dimensions of the
electrode pad in the fused CT-MR images and predicting the
categories of auditory performance or side effects resulting
from non-auditory sensations before ABI activation. CT-MR
combination might indeed be utilized for this task [2] as CT
allows high-quality resolution of bony landmarks [37] while
MR could provide better visibility of neural structures in the
brainstem. Finally, bearing inmind that the electrode orienta-
tion contributes to auditory performance or side effects [37],
estimating and presenting an intraoperative pose of the elec-
trode array in the visual display could improve thepositioning
accuracy. However, this may be technically challenging with
the current design of the electrode pad and forceps surgical
instrument.

Conclusion

We reported on the development and feasibility study of a
novel visual guidance system that intraoperatively quanti-
fies and facilitates ABI surgery. Our microscope setup lends
itself into augmented reality visualization and is capable of
informing the surgeon about the 3D distance with respect to
the target without cluttering the surgeon’s view to the surgi-
cal scene. The nasopharyngeal registration technology shows
promising performance for the potential application in neu-
rosurgery.
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