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Abstract  

Metformin is a first-line antihyperglycemic agent commonly prescribed in type 2 diabetes mellitus (T2DM), but 

whose pharmacogenomics are not clearly understood. Further, due to accumulating evidence highlighting the 

potential for metformin in cancer prevention and treatment efforts it is imperative to understand molecular 

mechanisms of metformin. In this electronic health record(EHR)-based study we explore the potential association of 

the flavin-containing monooxygenase(FMO)-5 gene, a biologically plausible biotransformer of metformin, and 

modifying glycemic response to metformin treatment. Using a cohort of 258 T2DM patients who had new metformin 

exposure, existing genetic data, and longitudinal electronic health records, we compared genetic variation within 

FMO5 to change in glycemic response. Gene-level and SNP-level analysis identified marginally significant 

associations for FMO5 variation, representing an EHR-driven pharmacogenetics hypothesis for a potential novel 

mechanism for metformin biotransformation. However, functional validation of this EHR-based hypothesis is 

necessary to ascertain its clinical and biological significance.  

Introduction 

Metformin is a first-line antihyperglycemic agent commonly prescribed for type 2 diabetes mellitus (T2DM) 

patients
1
, whose pharmacogenomics are not clearly understood

2
, but are thought to be absent of biotransformation

3
. 

Further, glycemic response to metformin is variable
3
 and serious adverse reactions to metformin have been known to 

occur
4
. Due to increasing evidence highlighting the potential for metformin in cancer prevention and treatment, it is 

imperative to understand molecular mechanisms of metformin further. 

Background 

Metformin is primarily utilized to regain glycemic control in diabetic or pre-diabetic patients. Metformin is a 

relatively safe antidiabetic therapy
5
. However, serious adverse reactions can occur

4
 and there is considerable 

variation in glycemic response to metformin, with ~30% of patients unable to achieve glycemic control with 

metformin
3
. While genetic factors may partially explain clinical glycemic response to metformin due to 

pharmacokinetic(PK) determinants
3
, the transportation throughout the body variation, the identification and impact 

of metformin pharmacodynamic(PD) determinants, the physiological and biochemical impact of metformin in the 

body, remains uncertain
2
. Regarding PKs, Metformin is thought to not be metabolized

3
, with absorption of 

metformin known to occur in the small and large intestines
5
. Uptake of metformin from the blood is known to occur 

in the kidneys and liver
2
, but can be reasonably assumed to occur in any tissue with abundance of organic cation 

transporters (OCT). Eventually metformin is excreted unchanged in the urine
5
. Regarding PDs, metformin works 

primarily by inhibiting hepatic glucose production by reducing gluconeogenesis in the liver
6
 and is also known to 

reduce intestinal glucose absorption
7
. Further, metformin appears to improve glucose uptake and utilization 

systemically
3
.  

Metformin is a nitrogen-rich biguanide. Flavin-containing monooxygenases(FMO)-5 has demonstrated narrow 

substrate specificity, but has been known to catalyze oxygenation of nitrogen-containing drugs
8
. FMO5 is expressed 

in the kidneys and liver
8
. The FMO5 gene exists near PRKAB2, a known PD regulator of metformin response, away 

from the single gene cluster for the remaining FMOs in chromosome 1q23-q25 region. Metformin is excreted 

unchanged in the urine
5
, hinting that metformin does not undergo biotransformation. However, studies such as these 

do not produce 100% yield, hinting at room for deviation from this paradigm. While metformin is thought to be 

absent of biotransformation
3
, it is biologically plausible that FMO5 might carry out N-oxygenation of metformin. 

FMOs show overlapping substrate specificity among family members
8
; a signal corresponding to FMO5 might also 

correspond to an additional FMO gene. All FMOs contain eight coding exons that share 50 to 80% sequence 

identity, with mutant FMOs are known to react to alternative chemical sites
9
. FMOs are localized in the endoplasmic 

26



 

reticulum of the cell whose expression is tissue-specific
8
. The extent of which reactions are catalyzed by FMOs in 

vivo cannot be determined by measuring end products excreted in bile or urine
10

.  

The primary purpose of this study was to add clarity to metformin pharmacogenomics by understanding the impact 

of common variants in the FMO5 gene on altered glycemic response in a clinical population derived from an EHR-

linked biorepository. Due to some shared functional similarity among genes in the FMO gene family, we selected 

the remaining FMO genes (FMO1 – FMO4) as exploratory gene candidates as our secondary hypothesis. 

Methods 

In this EHR-linked genetic study, both the approaches for obtaining clinical phenotypes and genotypes had 

important considerations for both study design and study interpretation. Our primary hypothesis of interest holds 

that genetic variation within FMO5 has potential to modify glycemic response to metformin monotherapy. 

Secondary to the primary hypothesis is an exploratory hypothesis that posits similar potential associations for FMO1 

– FMO4 due to functional similarity
8
. However, their function is not identical.  Further, due to the close proximity of 

the FMO1 – FMO4 to each other and their relative distance from FMO5 on chromosome 1q21 our secondary 

hypothesis is considerably weaker than our primary hypothesis for FMO5.  In this study, we utilized the longitudinal 

EHR at Mayo Clinic and genome-wide association study (GWAS) data from the subjects enrolled in the Mayo 

Genome Consortia
11

.    

Clinical Phenotypes 

The application of EHR-based phenotypes dramatically impacts study design and interpretability of findings. In this 

study we had 4 key phenotype aspects to consider: 1) T2DM phenotype, 2) metformin exposure phenotype, and 3) 

change in A1c. First, attribution of a T2DM phenotype was performed using a modified methodology developed by 

eMERGE
12

. A key point of differentiation is that our T2DM phenotype relied on diagnosis codes and did not 

initially consider laboratory values or medication. However, our second and third considerations relied on lab values 

and medication exposure events that were more specific than the criteria for the eMERGE T2DM phenotype 

algorithm. Second, our metformin exposure period was designated as a new prescription of metformin that extended 

≥6 months to ensure adequate primary care visits, multiple A1c measures, and maintenance dose achievement. Since 

our study aimed to understand genomic variation in relation to patients who respond or do not respond to metformin, 

maintenance dose was not a consideration. To accurately populate this metformin exposure phenotype our study 

design required longitudinal data access from primary care patients. Specifically, study inclusion criteria required ≥1 

year of patient history and ≥2 primary care visits to ensure accurate capture of the first date of metformin exposure, 

which aimed to exclude patients that were false positives for a new recorded exposure to metformin due to 

medication reconciliation that occurred at transfer of primary care. Metformin exposure events were ascertained 

using a combination of validated structured and semi-structured EHR data collection methodologies that leveraged 

our prior work
13,14

 where a total of 1 generic name 

(metformin) and 4 brand name medications 

(Fortamet
®

, Glucophage
®

, Glumetza
®

, and Riomet
®

) 

were queried. Patients with <6 months of metformin 

exposure or on combination drugs that included 

metformin or other prescribed antidiabetic drugs 

during the ≥6 month exposure period were excluded 

from the study. Third, to compare the association of 

genetic modification to glycemic response to 

metformin, measures of A1c were compared prior to 

metformin exposure and during the period of 

metformin exposure following a 6-month period of 

delay to allow for the achievement of maintenance 

dosage. A1c measures were required ≤6 months prior 

to metformin exposure and ≥6 months after metformin 

exposure. A1c measures were averaged across 

sections that occurred before and up to the date of 

metformin exposure. A1c measures were averaged 

across the period occurring ≥6 months after initial 

metformin exposure and until either metformin 

exposure ceased or anti-diabetic combination therapy Figure 1: Study Cohort Development Process 
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was initiated. This approach minimizes the impact of any one A1c measure and biases change in A1c measures 

towards the null.   

Genotyping and Quality Control  

 The MayoGC stores existing GWAS data generated from multiple studies. These data were harmonized to the 

forward strand mapped to become on the same strand as the 1000 genome cosmopolitan reference population. 

Genotypes for unmappable or ambiguous SNPs were excluded.  We selected SNPs 20 kb upstream and downstream 

of each gene using 1000 genomes project variants and NCBI build 37 as the reference genome. By this mapping 

rule, a total of 1,381 SNPs were mapped to the 5 genes, but only 205 SNPs were available in the genotype data. 

Further, due to their proximity the FMO1, FMO2, FMO3, and FMO4 genes some SNPs belong to multiple genes. 

For the remaining SNPs, two main quality control filters were applied:(i) SNPs with unacceptable high rates of 

missing genotype calls (>10%); and (ii) monomorphic SNPs were excluded. The quality control of the genotype 

data was performed by PLINK v1.07
15

. A detailed diagram of cohort development is found in Figure 1. 

Analysis  

The SNP-level and gene-level analyses were performed on the final 

analysis cohort where 258 Caucasian subjects had metformin exposure, 

complete EHR data, and 90 SNPs after quality control. In the analysis, we 

adjusted for age, gender, and morbid obesity (BMI ≥35), a known modifier 

of T2DM state
1
 as fixed covariates in our model. Age and BMI measures 

were calculated at first recorded exposure to metformin. The endpoint of 

change in A1c was transformed using Van der Waerden rank, otherwise 

known as rank based inverse Gaussian, to normalize and accommodate 

linear regression modeling. Batch adjustment did not change the results of 

GWAS data (data not shown) and was not adjusted in the displayed 

results. SNP-level and gene-level results were described, but not 

displayed, after application of Bonferroni correction.    

SNP-Level Analysis  

SNP-level analyses were performed on each SNP in FMO genes pertaining to both our primary and secondary 

hypothesis to identify top SNPs and determine directionality of their associations.  Using Van der Waerden rank 

transformation on change in A1c, linear regression models were applied adjusting for age, gender and morbid 

obesity. Coefficient estimates were calculated per minor allele, that is, with each minor allele, the A1c level changes 

by ‘beta’. SNP-level results are displayed as unadjusted for multiple testing. Finally, conditional analysis was 

performed to identify potentially independent SNPs in each gene.  Locus Zoom plots were also created for better 

visualization using the LD in the 1000 Genomes European reference population from March 2012 release.  

Gene-Level Analysis  

Gene-level tests were performed using principal component analysis (PCA)
16

. For each gene, principal components 

(PC) were created using linear combinations of ordinally scaled SNPs (i.e., 0, 1, 2 copies of minor allele) and the 

smallest set of resulting principal components that explained at least 90% of the SNP variance within the gene was 

included in linear regression models. Instead of including the entire set of SNPs for each gene, the PC approach 

reduces the degrees of freedom, avoids model fitting issues due to multi-collinearity of the SNPs from linkage 

disequilibrium (LD) and potentially improves the statistical power. Finally, we computed the likelihood ratio test 

(LRT) to assess overall significance of a gene by comparing the null model containing only the covariates with the 

full model containing covariates and the set of resulting principal components. The statistical package R 2.15.0 was 

utilized for the gene-level analysis. Plots of LD displaying r
2
 for FMO5 gene was created using Haploview v 4.2.  

Results 

Our EHR-based phenotyping algorithm identified 1,793 T2DM subjects (Figure 1). Among those, 258 subjects had 

90 SNP data that passed quality control criteria. Cohort demographics can be found in Table 1. The estimates for 

male (Coefficient=0.0435, P-value=0.737), age (Coefficient=-0.0009, P-value=0.881), morbid obesity 

(Coefficient=0.2214, P-value=0.083) were not significantly associated with change in A1c at alpha=0.05 

significance level in the univariate analysis. Further, none of the covariates were associated with change in A1c at 

alpha=0.05 significance level in a multivariate model. 

Table 1: Demographics (n=258) 

Variable n   (%) 

Female, N(%) 89    (34.5)!

Male, N (%) 169  (64.5)!

BMI <30, N (%) 64    (24.8)!

BMI(≥30 to <35 

kg/m
2
) 100  (38.8) 

BMI ≥35 (kg/m
2
) 93    (36.1)!

Median A1c >7.0 

(DCCT %), N (%) 101  (39.1)!

Change in A1c 

(DCCT %), median 

(range) 

0.07!

(-6.45, 3.51)!

Age (years),  

median (range) 

64!

(30, 84) 
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SNP-Level Results 

Of the 5 candidate genes, only FMO5 had SNPs that demonstrated 

a potentially significant association (Table 2). After adjusting for 

multiple testing rs7541245, the top SNP in FMO5, was marginally 

significant, but since this signal is very close to passing correction 

(0.00188-observed vs. 0.00161-Bonferonni threshold) it was 

deemed appropriate for consideration.  None of the SNPs in FMO1-

FMO4 gene cluster were found to be significant. Among 31 

genotyped SNPs within FMO5 gene (Figure 2), 4 SNPs had p-

values less than 0.05 for the association with a decrease in 

glycemic response during metformin exposure, with rs7541245 

having the most significant signal. The FMO5 linkage 

disequilibrium (LD) plot (not shown due to space constraints) 

contained 4 LD blocks and appeared to show 9 independent SNPs. 

The conditional analysis that adjusted for the top most significant SNP 

in each gene and clinical covariates was performed. FMO5 rs7541245 

was the main signal on FMO5 gene as no SNPs reached p-values less 

than 0.05 which pointed to the remaining SNPs within FMO5 being in high LD with rs7541245 and hence, not 

independent.   

 

 

 

 

 

 

Gene-Level Results 

Our primary hypothesis for the FMO5 gene, represented by 5 PCs and 

31 genotyped SNPs, was marginally significantly associated (p=0.0185) 

with glycemic response (Table 3) after controlling for age, gender and 

morbid obesity. No significant associations were identified for our 

secondary hypothesis tests of the remaining FMO genes.  

Discussion 

In this study, we leverage EHR-linked biorepository data and EHR-based phenotyping methods to study common 

variants within FMO5, our gene of primary interest. While the FMO5 gene appeared to be of marginal significance 

in relation to glycemic response to metformin, our secondary hypothesis for the remaining FMO genes demonstrated 

no significance. Given the study design and execution of phenotypes, results of this study can be interpreted most 

accurately as pharmacogenetics hypothesis generating. However, this hypothesis could represent a novel mechanism 

for the biotransformation of metformin or other potential mechanism of metformin action that has been previously 

unidentified. Additional studies are needed; functional studies are potentially warranted. 

In our study not all SNPs within candidate genes were available for analysis due to GWAS genotyping being 

originally performed for other studies. No effect difference was observed between cohort batches which hint that our 

findings were not biased due to original patient selection criteria or genotyping criteria, however potential for 

heterogeneity remains. Having all patients with T2DM and metformin allowed for us to identify genetic variation as 

the consideration of interest. However, the limited sample size paired with a relatively weak clinical outcome had 

potential to bias associations towards the null. While utilizing a clinical endpoint enabled us to engage in 

exploratory research, our signal strength was limited by modest cohort size (n=258) and the study criteria design. 

Specifically, by removing patients with <6 months of metformin exposure during metformin exposure we 

potentially removed patients who were complete non-responders to metformin or who experienced an adverse 

Table 2: SNP-Level Analysis
+ 

Gene 

Name 

Genotyped 

SNPs (n) 
Top SNP 

Minor 

Allele 

Major 

Allele 
MAF BETA 95% CIs P-value 

FMO5 31 rs7541245 A C 0.0311 -0.7885 (-1.28;-0.297) 0.00188* 

FMO4 15 rs2076322 G A 0.1395 0.2061 (-0.055;0.467) 0.12270 

FMO3 19 rs1920145 C T 0.3346 -0.1076 (-0.296;0.081) 0.26530 

FMO2 14 rs12752688 T C 0.1434 0.2256 (-0.025;0.476) 0.07885 

FMO1 12 rs13376631 G A 0.1376 0.1997 (-0.062;0.461) 0.13560 

MAF = minor allele frequency, * marginally significant after correction for multiple testing 
+
Only top SNPs displayed due to manuscript space constraints 

Table 3: Principal Component Analysis 

Gene  
Genotyped 

SNPs (n) 
nPCs P-value 

FMO5 31 5 0.0185 

FMO4 12 4 0.5623 

FMO3 14 5 0.5464 

FMO2 19 4 0.3581 

FMO1 15 6 0.5479 

Figure 2: Locus Zoom Plot for FMO5 

association with glycemic response to 
metformin 
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reactions to metformin. By study design these would not have been able to attain glycemic control with metformin, 

biasing our outcome phenotype towards positive glycemic response (i.e. decreased A1c) to metformin. 

Alterations in FMO genes are known to induce differential biotransformation of nitrogen-rich compounds, such as 

metformin
10

. In this study, it appeared that the utility of metformin (i.e. glycemic response) is impaired by 

alterations in the FMO5 gene, hinting that potential biotransformation of metformin might be occurring in the 

normal FMO5 gene product. Our finding hints that metformin conjugates resulting from metformin 

biotransformation via FMO5 might be responsible for the anti-diabetic effects of metformin. Should these findings 

be confirmed by functional studies, this hypothesis could represent a novel mechanism for the biotransformation of 

metformin and mechanism of metformin action that has been previously unidentified.  

Conclusion 

FMO5 appears to be marginally significantly associated with decreases in glycemic response after exposure to 

metformin, representing an EHR-driven pharmacogenetics hypothesis that could represent a novel mechanism for 

the biotransformation of metformin that has been previously unidentified. Functional validation of this hypothesis is 

warranted to ascertain its clinical and biological significance.  
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