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Abstract

Anterior segment eye diseases account for a significant proportion of presentations to eye clinics worldwide,
including diseases associated with corneal pathologies, anterior chamber abnormalities (e.g. blood or inflam-
mation), and lens diseases. The construction of an automatic tool for segmentation of anterior segment eye
lesions would greatly improve the efficiency of clinical care. With research on artificial intelligence progressing
in recent years, deep learning models have shown their superiority in image classification and segmentation.
The training and evaluation of deep learning models should be based on a large amount of data annotated with
expertise; however, such data are relatively scarce in the domain of medicine. Herein, the authors developed a
new medical image annotation system, called EyeHealer. It is a large-scale anterior eye segment dataset with
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both eye structures and lesions annotated at the pixel level. Comprehensive experiments were conducted to
verify its performance in disease classification and eye lesion segmentation. The results showed that semantic
segmentation models outperformed medical segmentation models. This paper describes the establishment of
the system for automated classification and segmentation tasks. The dataset will be made publicly available to
encourage future research in this area.
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Introduction

As a vital means of making an initial diagnosis, the
slit-lamp provides a convenient way of examining the
front part of the eye. Through the diffused light of the
microscope, the exposed eye structures can be directly
seen, including the eyelid, conjunctiva, cornea, iris, and
lens, etc. However, small variances in the normal struc-
tures can accumulate to marked differences in the pho-
tos. For example, even normal eyes are different from
each other as there will be differences in the color or
morphology of the iris, or the size of the cornea or the
pupil, not to mention eyes that may have various dis-
orders that might occur either alone or concurrently. A
series of blinding disorders may develop at the front part
of the eye, such as corneal opacity, hyphema, endoph-
thalmitis, and cataract. Compared to fundus images1 or
optical coherence tomography (OCT),2 which has been
a popular choice in artificial intelligence (AI) research3

in the recent decade, the less uniform modality of slit-
lamp images limits its application in AI models to a cer-
tain extent, even though this is more common and cost-
efficient. To overcome this issue, some researchers chose
to make diagnoses within specific diseases that mostly
only involve one single structure, such as infectious
keratitis,4–6 pterygium,7,8 congenital,9 or senile nuclear
cataract.10 However, the requirement of a large-scale
dataset for each disease hampers the establishment of
deep learning models that cover a variety of ocular dis-
eases. Furthermore, the number of images needed will
scale up if there are concurrent disorders or unusual
forms of different diseases, both of which are commonly
seen during slit-lamp examination.

As the main track in computer vision research,
semantic segmentation, that is, the classification of each
pixel in an image,11–13 has always been the focus of
researchers. For example, in the field of automatic driv-
ing, semantic segmentation would be segmentation of
common road traffic signs or pedestrians.14 Highly inno-
vative segmentation models, such as DeepLabv3,15 have
been proposed. Thus, a medical model falling under the
category of semantic segmentation would indicate the
segmentation in medical images.

Precise segmentation of the lesion area could be an
effective approach to develop an AI model for ante-
rior segment diseases based on imaging. However, man-
ual segmentation is labor-intensive and tedious, and
can only be performed by experienced ophthalmologists.
With the rapid development of AI, computer-assisted
diagnosis (CAD) has drawn great attention over the past

few years, with the construction of numerous deep learn-
ing models that aim to tackle the lesion segmentation
task.16–19 However, sufficient data are essential for the
training and validation of these models. Therefore, there
is an urgent need for eye lesion datasets that are (1) large,
(2) cover a wide range of diseases, (3) open-source, and (4)
reliably annotated.

In the current research, EyeHealer was established as
a large-scale dataset for anterior eye lesion segmenta-
tion, with both eye structures and lesions annotated at
the pixel level. To fully evaluate the established dataset,
comprehensive experiments were performed to examine
its effectiveness in disease classification and eye lesion
segmentation. The dataset will be made publicly avail-
able to encourage future research in this area.

Methods
Images from human subjects

Anterior eye segment photographs from a slit-lamp cam-
era were retrospectively collected from the Zhongshan
Ophthalmic Center, Sun Yat-sen University, and West
China Hospital, from January 2019 to March 2020. The
dataset consisted of 2192 anterior eye segment pho-
tographs. All imaging was performed as part of patients’
routine clinical care. No exclusion criteria were based on
race, age, or gender. Images from various brands of slit-
lamps (BX-900, Haag-Streit; LS-6 and LS-7, Chongqing
SunKingdom) and cameras (Canon 800D, 600D, 80D, and
7D) were collected. Anterior eye segment images were
downloaded with a standard JPEG compression format.
Ethical reviews were conducted by the Zhongshan Oph-
thalmic Centre of Sun Yat-sen University and West China
Hospital Ethics Review Committee, and approval was
obtained.

Image labeling and annotation

Before training, each image went through a tiered label-
ing system consisting of multiple layers of ophthalmol-
ogists of increasing expertise for verification and cor-
rection of image labels. Six ophthalmologists with at
least five years of experience in ophthalmology, two of
whom had more than eight years of experience, were
invited to annotate the photographs. Initial quality con-
trol was conducted, in which duplicated, incorrect mag-
nification images, and photographs with a lack of clar-
ity were excluded. Only diffused bright light images with
the three specific eye structures, interpalpebral zone,
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Figure 1. Visual illustration of the constructed dataset, including the original photograph, eye structure annotations, and eye lesion annotations.

cornea, and pupil, were kept. After the quality con-
trol process, the images were separated into six groups
and six ophthalmologists independently labeled each
group of images. Two types of experiments, classification
and segmentation, were conducted. To secure unifor-
mity among different images, the annotation focused on
only three eye structures, the eyelid, cornea, and pupil.
A total of 23 types of ocular diseases were included in
the dataset, with each type corresponding to a certain
lesion form. The eye structures and lesions were labeled
at the pixel level, where polygons exist and may result in
subtle differences from the ground truth. A visual exam-
ple of the constructed dataset is shown in Fig. 1. The six
groups of images with labels were then separated and
examined by the two senior ophthalmologists indepen-
dently. Each of them made sure that no duplicate folders
were seen. Images with problematical labels were dis-
cussed until the two specialists agreed on the grading.
Finally, a retinal specialist with over 20 years of experi-
ence was invited to verify the true labels for divergent
images.

Classification experiment

The classification experiment was conducted on the top
10 most common diseases (based on the sample size) in
the dataset. Three classic pre-trained models in the field
of image classification, ResNet-50,20 InceptionV3,21 and
DenseNet-121,22 were employed to get a comprehensive
evaluation of our dataset. We briefly introduce the fea-
tures of each model here. ResNet features its strength
in handling extremely deep network structures. The key
component of ResNet is the residual connection block,
which enables the gradient flow to propagate to each
layer smoothly. InceptionV3 utilizes a multi-scale filter
kernel to extract semantic features at different levels.
To reduce computation cost, ’factorization into small
convolutions’ is applied. DenseNet is based on ResNet. In
ResNet, one layer can only get information from the pre-
vious layer. However, in DenseNet, with the dense con-
nection design, one layer can get information from an
arbitrary layer at the front. For each model, we initialized

with weights pre-trained from the ImageNet dataset,21

and we trained all parameters in the model simultane-
ously.

The data were randomly divided into the training set,
validation set, and test set by a ratio of 0.7:0.1:0.2. The
size of the hold-out method for testing was 20% of the
images for each of the 10 top diseases, resulting in 234,
84, 55, 45, 44, 53, 46, 26, 28, and 20 images. The model-
ing results were reported only on the held-out test set.
An early stopping mechanism was applied, that is, the
training of the model would be terminated when the loss
of the model on the validation set is significantly higher
than the loss on the training set. In this experiment, the
terminations were concentrated in the 5th epoch. In such
a multi-label classification task, the activation function
at the last layer was replaced with the sigmoid func-
tion and the weighted binary cross-entropy serving as
the loss function for optimization. Each photograph was
resized to 299 × 299 and normalized according to the
mean and standard deviation of ImageNet. Adam Opti-
mizer with an initial learning rate at 0.001 was applied
and decayed by a factor of 0.8 for every 10 epochs, with a
batch size of 8 and a dropout rate of 0.5.

Segmentation workflow

In this part, segmentation experiments were performed
on all images. First, the ophthalmologists labeled the
three eye structures, the interpalpebral zone, cornea, and
pupil, using polygons serving as location marks. Then,
eye lesions were segmented. Two medical image segmen-
tation models, DRUNet23 and SegNet,24 and two state-
of-the-art semantic segmentation models, PspNet25 and
DeepLabv3,15 were applied. The final convolutional map
was activated by a sigmoid function, with weighted
binary cross-entropy as the loss function. Again, the
data were randomly classified into the training set,
validation set, and test set by the same ratio mentioned
above.

Only one type of lesion was segmented at a time. Each
photograph was resized to 256 × 256 and rescaled to [0,1]
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Table 1. Statistical overview of the proposed dataset sorted by the number of samples.

Disease name Sample number Avg size ratio Disease name
Sample
number Avg size ratio

Cataract 1160 8.49% Corneal edema 80 34.18%
Pterygium 482 13.62% Subconjunctival

hemorrhage
58 23.87%

Cornea arcus senillis 320 32.82% Nevus of iris 58 1.53%
Pinguecula 238 4.64% Corneal degeneration 43 11.13%
Conjunctival hyperemia 221 4.46% Synechia 43 3.47%
Corneal neovascularization 214 12.35% Hyphema 42 9.70%
Corneal opacity 209 11.55% Hypopyon 27 4.25%
Corneal leucoma 130 10.92% Iris astrophy 27 7.25%
Corneal ulcer 112 8.83% Eyelid tumor 25 4.80%
Discoria 108 10.14% Pigment adhesion to

lens capsule
25 5.01%

Ciliary congestion 85 69.43% Lens dislocation 24 20.53%
Conjunctival nevus 82 10.78%

Sorted by sample number.

Avg size ratio, average size ratio = (lesion area)/(total image area) × 100%.

through the dividing procedure by 255. Also, an SGD opti-
mizer with an initial learning rate of 0.01 and momentum
of 0.9 was employed. The data were classified as men-
tioned above.

Evaluation metrics

To evaluate the performance and stability of the model,
the two experiments adopted different quantitative met-
rics. In the classification model, precision (PRE), recall
(REC) and F1 Score were calculated, as follows.

Precision = TruePositive/ (TruePositive + FalsePositive)
Recall = TruePositive/ (TruePositive + FalseNegative)
F1 = (2 × Precision × Recall)/ (Precision + Recall)

Precision and recall are the common evaluation indi-
cators for classification. F1 Score measures the balance
of the positive and negative samples at the same time.26

In the segmentation model, Intersection over Union
(IoU), Dice coefficient (Dice), and Pixel Accuracy (PA) were
applied to measure the performance.

IoU = (AreaofOverlap) / (AreaofUnion)

Dice = F1 Score = (2 × AreaofOverlap)/

(Totalpixelscombined)

PA = (Correctlyclassifiedpixels) / (Totalpixels)

The IoU and Dice are the most commonly used met-
rics for segmentation experiments, while PA is consid-
ered to be the simplest indicator.

Results
Fundamental concept of EyeHealer

Anterior segment images serve as a routine and stan-
dard of care in the ophthalmic clinic. These can be eas-
ily acquired and give clinicians a thorough impression
of the eye at first sight. The initial diagnosis is made,
then decisions on whether to perform further exami-
nations or start treatments. Unfortunately, even though
this appears to be a simple procedure of taking pho-
tographs, some lesions could be ambiguous, making it
hard to make correct diagnoses. Misdiagnosis can hap-
pen, which might lead to irreversible loss of vision and
decreased quality of life. Hence, the EyeHealer system
was established and trained on a professional level with
annotated anterior segment photos to provide patients
with accurate diagnoses.

EyeHealer divides ocular images into basic anatomi-
cal structures and provides annotations of the lesions.
The system is highly formalized to ensure the accuracy
and precision of the annotation. Specifically, three ocular
structures will be strictly segmented first: the interpalpe-
bral zone, cornea, and pupil. Subsequently, the patho-
logical area will be marked out based on the training
datasets. Hence, the system provides both ocular disease
diagnosis and accurate lesion labeling. With the help of
the system, visual and reliable ocular disease diagnoses
can be made for patients, and shared with clinicians
from other departments.

Imaging datasets

A total of 3813 slit-lamp images that met the criteria for
inclusion during the quality control process were anno-
tated by six experienced ophthalmologists. A statistical
overview of the constructed dataset is shown in Table 1.
In total, 23 types of diseases were included, sorted by the
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Table 2. Experimental results of classification over the top 10 most common diseases.

Disease name ResNet InceptionV3 DenseNet

Pre Rec F1 Pre Rec F1 Pre Rec F1

Cataract 0.858 0.862 0.860 0.821 0.909 0.863 0.827 0.931 0.876
Pterygium 0.716 0.578 0.640 0.784 0.746 0.765 0.903 0.903 0.903
Cornea arcus senillis 0.422 0.545 0.476 0.387 0.654 0.486 0.391 0.69 0.499
Pinguecula 0.273 0.511 0.356 0.232 0.577 0.331 0.382 0.577 0.460
Conjunctival hyperemia 0.370 0.522 0.433 0.394 0.636 0.487 0.491 0.509 0.499
Corneal neovascularization 0.431 0.716 0.538 0.439 0.754 0.555 0.631 0.679 0.654
Corneal opacity 0.329 0.673 0.442 0.433 0.5 0.464 0.56 0.608 0.583
Corneal leucoma 0.288 0.576 0.384 0.25 0.807 0.382 0.472 0.653 0.548
Corneal ulcer 0.514 0.642 0.571 0.375 0.75 0.500 0.5 0.607 0.548
Discoria 0.281 0.45 0.346 0.23 0.45 0.304 0.5 0.35 0.412

Pre, precision; Rec, recall.

Table 3. Experimental results of eye lesion segmentation with DRUNet and SegNet.

Disease name DRUNet SegNet

IoU Dice PA IoU Dice PA

Cataract 0.735 0.837 0.91 0.728 0.832 0.883
Pterygium 0.608 0.732 0.743 0.595 0.723 0.759
Cornea arcus senillis 0.312 0.421 0.599 0.261 0.381 0.583
Pinguecula 0.289 0.397 0.497 0.207 0.315 0.598
Conjunctival hyperemia 0.237 0.326 0.607 0.213 0.306 0.444
Corneal neovascularization 0.199 0.301 0.534 0.108 0.169 0.303
Corneal opacity 0.195 0.281 0.368 0.168 0.253 0.493
Corneal leucoma 0.29 0.393 0.504 0.252 0.367 0.622
Corneal ulcer 0.302 0.402 0.663 0.232 0.347 0.716
Discoria 0.252 0.357 0.638 0.206 0.313 0.742

IoU, intersection over union; Dice, dice coefficient; PA, pixel accuracy.

numbers of samples. The top 10 most common diseases,
with sample sizes >100 cases, were used for the classi-
fication labeling. The remaining diseases were excluded
to ensure the model’s performance and accuracy rate. As
a result, a total of 3194 images were included.

Anterior ocular disease classification with three
pre-trained models

The results of the classification experiment are shown
in Table 2. Precision, recall, and F1 Score were used to
evaluate the performance of models in each of the 10
diseases. Comparison of the model classification perfor-
mance over different diseases revealed the best results
in cataract because of the ample amount of images. Both
the precision rate and recall rate were >80%. The F1
Score is used to indicate the balance between the two
indices and was >85% in all three pre-trained models.
For pterygium, the precision and recall of DenseNet were
>90%, with a percentage of >70 on InceptionV3 and 50 on
ResNet. However, when we compare cataract and ptery-
gium with other diseases, the performance is relatively
low. The reason for this could be the large differences
in numbers of sample images across different diseases.

The problem persisted even after adjustment of label
weights.

Lesion segmentation performance of the four
models

As above, the top 10 most common diseases were
included, and the area of each lesion was outlined using
polygons as segmentation labels. Attempts to segment
10 different lesions at the same time in one model
brought no satisfying results. Consequently, only one
type of lesion was segmented at a time. The segmen-
tation performance was evaluated with three evalua-
tion metrics: IoU, Dice, and PA. The results are separated
into Table 3 and Table 4, respectively. Comparison of the
two medical image segmentation models, DRUNet and
SegNet, revealed similar performance, so did compari-
son of the semantic segmentation models, PspNet and
DeepLabv3. The models performed significantly well in
cataract and pterygium, the two most common blinding
anterior ocular diseases. Moreover, semantic segmenta-
tion models were found to outperform medical segmen-
tation models. PA for cataract in medical image segmen-
tation models and semantic segmentation models were
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Table 4. Experimental results of eye lesion segmentation with PspNet and DeepLabv3.

Disease name PspNet DeepLabv3

IoU Dice PA IoU Dice PA

Cataract 0.784 0.869 0.905 0.777 0.87 0.895
Pterygium 0.684 0.797 0.858 0.699 0.81 0.854
Cornea arcus senillis 0.36 0.46 0.6 0.355 0.456 0.595
Pinguecula 0.312 0.44 0.65 0.277 0.395 0.631
Conjunctival hyperemia 0.236 0.322 0.421 0.267 0.353 0.542
Corneal neovascularization 0.202 0.297 0.489 0.223 0.32 0.386
Corneal opacity 0.21 0.309 0.553 0.205 0.299 0.497
Corneal leucoma 0.333 0.457 0.61 0.289 0.396 0.514
Corneal ulcer 0.263 0.353 0.487 0.299 0.402 0.538
Discoria 0.332 0.429 0.55 0.307 0.377 0.437

all around 0.90, but for pterygium, medical image seg-
mentation models were around 0.75, and for semantic
segmentation models around 0.85.

Discussion

This study describes establishment of an AI system
called EyeHealer with the potential of diagnosing and
annotating visible ocular lesions. This technique was
combined with deep learning, and at the current stage,
applied to several common anterior segment ocular dis-
eases. Even with the help of modern machine learn-
ing algorithms, such as transfer learning, deep learning
classifiers require tens of thousands of images of every
disease category to acquire convincing accuracy. More-
over, it is difficult to obtain such large numbers of med-
ical images, as even for the commonly seen diseases,
different features might present in different patients.
Therefore, the current system adopted clear images with
highly accurate annotations by ophthalmic experts using
polygons, sharply reducing the number of images in the
training dataset to hundreds of images per class to obtain
a relatively precise diagnosis.

Three main approaches were applied to standardize
the training datasets. First, in contrast to other ante-
rior segmentation systems, the current system focuses
on only three eye structures to eliminate unnecessary
and misleading information, with these three structures
serving as location labels. The interpalpebral zone, with
the eyeball area inside and the eyelid with eyelashes out-
side the boundaries, functions as the outermost part of
the eye; the cornea, as the intermediate area, covers the
middle part of the eye; and the pupil represents the cen-
ter of the entire eye. Therefore, in the initial quality con-
trol step, it is vital to make sure that all three structures
are visualized in one single image. This method of local-
ization can help establish unity out of the difference,
which greatly improves the performance of the system.

Only bright light images were used to avoid redun-
dant and inaccurate labeling from blue light or slit-light
images. The slit-lamp is a multi-function examination
that helps with the diagnoses of different diseases. Blue
light focuses on the integrity of the cornea and is also

used to diagnose tear film related disease. With the dif-
ference in the image color, even a small spot of fluores-
cein staining could constitute confusing information for
the machine. As for the slit-light examination, even in
one eye of a patient, difference in the width or angles of
the light can lead to differences in images, thereby caus-
ing deviation in the process of machine learning. In the
future, it will be necessary to add photos taken with dif-
ferent means of examination and generalize the system
for its use in a wider disease spectrum.

In addition, unlike other systems that use quadrate
to label, the current system applies irregular polygons to
segment the normal eye structure as well as the lesion
area. The quadrate is simpler and has been widely used
in a diversity of image labeling systems. By comparison,
polygon segmentations require more calculations in the
training process but can achieve a more precise diagno-
sis, especially with medical images.

During the training of the system, different pre-
trained models were compared to apply the model with
the best performance. DenseNet demonstrated the best
results among the three models. In the segmentation
exam, different commonly used models were also com-
pared. Semantic segmentation models were found to
outperform medical segmentation models. DeepLabv3
and PspNet exhibited similar performance. The semantic
segmentation network obtained smooth and clear lesion
segmentation boundaries, achieving a high accuracy in
common anterior diseases.

This paper describes the preliminary establishment of
the system. More work needs to be done to improve the
system performance. The large differences in the num-
bers of sample cases across different diseases and lim-
ited numbers of images led to relatively low classification
performance. Corneal opacity could obscure the view of
the anterior chamber or even lens abnormalities, which
could affect the accuracy of AI-based diagnoses of dis-
eases of the posterior structures. In future studies, we
will apply our system to more images of corneal opac-
ity, especially with posterior abnormalities. More clearly
annotated images need to be applied. Moreover, people
from more diverse ethnic groups should be included for
the generalization of the system. Further progression in
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the field of neural networks could also improve the per-
formance of the current approach.

Furthermore, few-shot or low-shot learning could be
applied when images of less common diseases are rela-
tively limited. Other than bright-field images, the current
system has the potential to be applied to a wide range of
slit-lamp images, including the ones mentioned above,
namely blue light or slit-light photos. With the additional
information of different types of images, the diagnostic
results could be more convincing. Anterior images are
simple to acquire and even handheld devices like mobile
phones could be used to obtain images, so in future it
might be possible to develop a mobile application based
on the current system, which could be used for diagnosis
or provide referral or treatment suggestions.

Conclusions

This paper describes EyeHealer, a large-scale anterior
eye segment dataset with eye structure and lesion anno-
tated. To our knowledge, this publicly available dataset
is by far the largest and most extensive in this field.
Experiments on this dataset demonstrated that currently
both disease classification and lesion segmentation are
challenging in model design. The EyeHealer dataset still
requires great improvements in future research.
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