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A B S T R A C T   

(1) Background: In lung cancer, the use of small-molecule inhibitors, chemotherapy and immu-
notherapy has led to unprecedented survival benefits in selected patients. Considering most pa-
tients will experience a relapse within a short period of time due to single drug resistance, 
combination therapy is also particularly important to improve patient prognosis. Therefore, more 
robust biomarkers to predict responses to immunotherapy, targeted therapy, chemotherapy and 
rationally drug combination therapies may be helpful in clinical treatment choices. 
(2) Methods: We defined tumor-specific T cells (TSTs) and their features (TSTGs) by single-cell 
RNA sequencing. We applied LASSO regression to filter out the most survival-relevant TSTGs 
to form the Tumor-specific T cell score (TSTS). Immunological characteristics, enriched pathways, 
and mutation were evaluated in high- and low TSTS groups. 
(3) Results: We identified six clusters of T cells as TSTs in lung cancer, and four most robust genes 
from 9 feature genes expressed only on tumor-specific T cells were screened to construct a tumor- 
specific T cells score (TSTS). TSTS was positively correlated with immune infiltration and 
angiogenesis and negatively correlated with malignant cell proliferation. Moreover, potential 
vascular-immune crosstalk in lung cancer provides the theoretical basis for combined anti- 
angiogenic and immunotherapy. Noticeable, patients in high TSTS had better response to ICB 
and targeted therapy and patients in the low TSTS group often benefit from chemotherapy. 
(4) Conclusion: The proposed TSTS is a promising indicator to predict immunotherapy, targeted 
therapy and chemotherapy responses in lung cancer patients for helping clinical treatment 
choices.  
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1. Introduction 

Lung cancer comprises the majority, around 25% of total cancer deaths worldwide and the 5-years overall survival (OS) has 
achieved very little progress in recent years [1]. Despite advances in our understanding of new pathogenesis and treatment options, 
unfortunately, lung cancer is still one of the highly aggressive and rapidly fatal tumor subtypes [2].New insights into the causal roles in 
lung cancer spurred the latest belief that tumorigenesis is entirely driven not only by cancer-cell-intrinsic genetic aberrations, but also 
is affected by the tumor microenvironment (TME) [3]. Lung cancer develops in complex TMEs consisting of endothelial cells, 
tumor-infiltrating immune cells (TIICs) and fibroblast cells [4]. 

Immune checkpoint inhibitors (ICIs) which enhance immunization and relieve immune suppression and anti-angiogenesis therapy 
which inhibits tumor growth through inhibiting angiogenesis both had a significant effect on lung cancer. In ICI, a number of patients 
do not benefit from the initial therapy (primary resistance) and some responders recur after a period of response (acquired resistance) 
[5]. The suppressive tumor immune microenvironment (TIME) is the main barrier to ICI efficacy [6]. T cells with exhausted or reg-
ulatory phenotype are correlated with failure in anti-cancer immunity [7]. Tumor cell-extrinsic mechanisms that induce ICI resistance 
involve components within the TME, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and other 
inhibitory immune cells [8].In anti-angiogenesis therapy, the majority of agents have shown some evidence of activity, but increased 
toxicities have been observed, including an increased risk of death for some agents, limiting their development [9]. It is important to 
further understand the influence of immune cells in the TME on the proliferation of vascular endothelial cells. Pre-existing tumor--
infiltrating lymphocyte (TIL) is the necessary precondition for potent tumor regression. Based on the status of pre-existing TIL, tumor 
microenvironments are classified into three types, in excluded infiltration type, where abnormal angiogenesis and immunosuppressive 
reactive stroma prevent the infiltration of T cells [10]. Neo-vasculatures upregulate some inhibitory signals for an anti-tumor immune 
response such as PD-L1, indoleamine 2, 3-dioxygenase (IDO), interleukin-6 (IL-6), and interleukin-10 (IL-10) [11]. The interaction 
between immunity and angiogenesis renders tumor immune escape and treatment resistance. Many clinical studies have been con-
ducted to investigate the synergistic effect of ICI plus anti-angiogenesis therapy in patients and have achieved good efficacy [12]. 

Recent advances in single-cell RNA sequencing (scRNA-seq) analysis have shed new light on the heterogeneity of T cell clusters in 
TME at single-cell resolution. Nevertheless, the tumor-specific T cells (TSTs) and how they affect the formation of the immune 
microenvironment, remains however poorly elucidated. How endothelial cells recruit TSTs to communicate is also unknown in lung 
cancer. The microbial abundance between cold and hot tumors has been even less discussed in lung cancer. Furthermore, combination 
strategies were identified in melanoma to overcome immunotherapy resistance [13], thus, further studies are required to identify 
predictive biomarkers for combination approaches in lung cancer. 

In the present study, we aimed to uncover the characterization of the tumor-specific microenvironment by single-cell technology to 
guide the selection of therapeutic strategies. First, we identify TSTs with tumor-specific genes (TSTGs) for the tumor environment in 
lung cancer. Additionally, we applied Least absolute shrinkage and selection operator (LASSO) regression to filter out the most 
survival-relevant TSTGs to form the Tumor-Specific T Cell Score (TSTS). And we also defined these TSTs can receive the inhibitory 
signal from tip cells, a key phenotype in sprouting angiogenesis through specific crosstalk pairs. Finally, the TSTS was confirmed that 
can precisely predict the efficacy of combination strategies, immunotherapy, chemotherapy, and targeted therapy respectively in the 
12 clinical treatment cohorts. 

Thus, these findings suggest that selecting treatment strategies based on the characteristics of the tumor microenvironment is a 
more accurate and reliable approach and that TSTS can as an indicator to measure the choice of clinical treatment in lung cancer. 

2. Results 

2.1. ScRNA-seq identified tumor-specific T cell clusters and tumor-specific T cell features 

To investigate the heterogeneity of tumor-infiltrated immune cells, we obtained scRNA-Seq data from patients diagnosed with lung 
cancer. After normalization and principal component analysis, we applied graph-based clustering (Fig. S1A, Table S1). These clusters 
could be assigned to eight known cell lineages through marker genes (Fig. S1B). The specific multicell group, characterized by high 
expression of MKI67, is a group of proliferating cells with active mitosis (Fig. S1C). We divided T cells into CD4+ and CD8+ T cells by 
CD4, CD8A and CD8B expression (Fig. S1D). Nine clusters of CD4+ T cells and eleven clusters of CD8+ T cells were defined (Fig. 1A–D). 
The expression of signature genes and known functional markers suggested the presence of conventional naïve (CD4_CCR7, CD4_IL7R, 

Fig. 1. ScRNAseq identified tumor-specific T cell clusters and tumor-specific genes in lung cancer (A) UMAP projection of CD4+ T cells. Cells were 
color-coded for distinct clusters. (B) Dotplot exhibited the expression of marker genes (Top three) in nine subclusters of CD4+ T cells. (C) Tissue 
prevalence estimated by Ro/e score in CD4+ T cells. Cells derived from tumor, normal tissue, normal lymph node (NLN), metastases in lymph nodes 
(MLN), brain metastases (MBrain), and peritoneum (PE). (D) UMAP projection of CD8+ T cells. (E) Dotplot exhibited the expression of marker genes 
in eleven subclusters of CD8+ T cells. (F) Tissue prevalence estimated by Ro/e score in CD8+ T cells. (G) UMAP visualization in the trajectory of 
defined CD4 T cell types marked by colors, the dark line denoted cellular evolutionary directions (left). Visualization of single-lineage cells marked 
with inferred pseudotime by Monocle3 (using UMAP). The black curve denotes the inferred lineage (right). (H) UMAP visualization in the trajectory 
of defined CD8 T cell types marked by colors, the dark line denoted cellular evolutionary directions (left). Visualization of single-lineage cells 
marked with inferred pseudotime by Monocle3 (using UMAP). The black curve denotes the inferred lineage (right). (I) Boxplots representing the 
MCP_counter score of each subclusters of CD4 T cells (upper) and CD8 T cells (lower) in tumor versus normal. (J) Dotplot denotes the expression of 
each gene (row) in tumor versus normal. (K) Dotplot indicating the expression of tumor-specific T cell genes in each cluster of T cells. 
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CD8_CCR7), effector (CD4_GZMA, CD4_FGFBP2, CD8_GZMK and CD8_TYROBP), memory (CD4_FOS, CD8_TXNIP, CD8_ZNF683), 
exhausted clusters (CD4_CXCL13, CD8_CXCL13, CD8_TIGIT), CD4+ Tregs (CD4_FOXP3), proliferative clusters (CD4_STMN1, 
CD8_STMN1) (Fig. 1B–E Table S2).To determine tumor-specific T cells, we compared the observed and expected cell numbers of each 
cluster (Ro/e) (Fig. 1C–F) and the density of T cells between tumor and normal (Fig. S1E). Combining the above two conditions, the 
exhausted clusters (CD4_CXCL13 and CD8_CXCL13), ISG gene-related subcluster (CD4_ISG15, CD8_ISG15), regulatory clusters 
(CD4_FOXP3), and pre-exhausted (CD8_ZNF683) enriched in the tumor, which can be defined as tumor-specific T cells (TSTs) which 
highly expressed immune checkpoint inhibitors like PD1, CTLA4 and LAG3 (Fig. S1F). Through pseudotime analysis, we determined 
that CD4+ exhausted T cells were transformed from effector T cells and CD8 + exhausted cells were transformed from effector memory 

Fig. 2. Construction of tumor specific T cell score with survival outcomes (A) The correlation between the expression of TSTGs (CXCL13, ZNF683, 
TOX2, TOX, LAIR2, CXCR6, LAYN, ACP5 and MAGEH1) and the expression of immune checkpoint genes (PDCD1, CTLA4, LAG3, HAVCR2, TIGIT 
and BTLA), the effector T cells associated genes (GZMA, GZMB and PRF1) and the Tregs-related genes (FOXP3 and IL2RA). P-value <0.001, Pearson 
correlation analysis for the datasets that meet the normal distribution, Spearman correlation analysis for those that are not normally distributed 
(detailed statistical information of these dataset is attached to Table S11). (B) The correlation between the expression of TSTGs and ssGSEA score 
which represents the infiltration of immune cells. (C) The p-value and HR of selected genes in univariable Cox regression analysis. (D) The bar plot 
shows the lasso cox coefficient of four optimal genes (LAYN, TOX, MAGEH1, and CXCR6) associated with prognosis. (E) Kaplan-Meier (K–M) curves 
demonstrated low TSTS group (orange) had noticeably poorer over survival than patients in the high TSTS group (blue). (F) Kaplan-Meier curve of 
validation cohorts (GSE68465, GSE14814, GSE30219, GSE31210, GSE37745) showing low TSTS group (orange) had noticeably poorer survival than 
patients in the high TSTS group. P-value was calculated by the log-rank test. 
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T cells (Fig. 1G and H). These T cells often lose their effector function and infiltrate in the microenvironment in tumor in the late stage 
of T cell transformation. We found the percentage of four representative TSTs was positively with pre-exhausted state cells which have 
effector function, which demonstrated that the more cells in the effector state, the more cells will transition to the exhausted state 
(Fig. S1G). Cells in the ISG gene related subcluster (CD4_ISG15, CD8_ISG15) had highly expressed ISG-related genes like ISG15, IFITM1 
and IFITM3, but we found that these genes were expressed not only in T cells, but in myeloid cells can not represent TSTs (Fig. S1H). 
Using MCP_Counter deconvolution analysis with highly expressed genes in each cluster, we determined TSTs clusters-CD4_CXCL13, 
CD8_CXCL13, CD4_FOXP3 and CD8_ZNF683 had higher infiltration in tumor samples from TCGA compared with normal samples 
from GTEX (Fig. 1I; Table S3). Compared to normal tissues, nine representative genes -CXCL13, ZNF683, TOX2, TOX, LAIR2, CXCR6, 
LAYN, ACP5 and MAGEH1 were specially expressed in the tumor tissue in TSTs clusters (Fig. 1J, Fig. S1I) and these genes exclusively 
expressed in the TSTs clusters-CD4_CXCL13, CD4_FOXP3, CD8_CXCL13, CD8_ZNF683-were recognized as tumor-specific T cell genes 
(TSTGs) (Fig. 1K). These genes were expressed only on T cells and not on other cells in the TME (Fig. S1H). It is recognized that LAYN is 
closely related to tumorigenesis, and ZNF683 is chiefly implicated in the differentiation of T cells [14]. Both TOX2 and TOX are 
transcription factors, which correlate with T cell exhaustion and tumor immunosuppressive microenvironment [15]. 

2.2. Construction of tumor-specific T cell gene signatures 

To avoid heterogeneity bias from single-cell data, we validated the correlation between TSTGs and immune-related genes using 
bulk RNA-seq in TCGA. The result demonstrated that the TSTGs (CXCL13, ZNF683, TOX2, TOX, LAIR2, CXCR6, LAYN, ACP5 and 
MAGEH1) and the exhausted T cells associated genes (PDCD1, CTLA4, LAG3, HAVCR2, TIGIT), the effector T cells associated genes 
(GZMA, GZMB), the Tregs-related genes (FOXP3, IL2RA) were positively correlated (Fig. 2A). Subsequently, single-sample Gene Set 
Enrichment Analysis (ssGSEA) was applied in TCGA to infer from bulk-RNA seq to reveal the relative level of immune cell infiltration. 
Positive correlation between gene expression of TSTGs and immune cell infiltration score was proved that TSTGs can reflect the state of 
immune infiltration in bulk RNA-seq (Fig. 2B–Tables S4–5). The immune microenvironment is often related to over survival. The 
expression of these genes was further assessed using univariate Cox regression analysis. The results indicated that 4 of 9 candidate 
genes were significantly correlated with OS of lung cancer patients (Fig. 2C, p < 0.05). In order to identify the optimal prognostic 
biomarker, the least absolute shrinkage and selection operator (LASSO) logistic regression was applied to screen the tumor-specific 
features and recruited to construct a multi-gene prognostic signature (Figs. S2A and B). The four genes including LAYN, TOX, 
MAGEH1 and CXCR6 are considered to be the optimal biomarkers with the best features that build tumor-specific T cell score (TSTS) 
(Fig. 2D). In the TCGA training set, patients were divided into two groups according to the TSTS score. The patients with lower TSTS 
score had a worse overall prognosis compared to the patients with higher TSTS score (Fig. 2E), which was validated in five independent 
validation cohorts (Fig. 2F). Further survival analysis demonstrated that the high TSTS score group showed a decreased disease-free 
survival than the low TSTS score group (Fig. S2C). To test the independence of our scoring system, a multivariate Cox regression 
analysis was then performed. After adjusting by common clinical parameters such as age, gender, stage and smoking status, the TSTS 
score still displayed robust assessment ability (Fig. S2D). In clinical staging, we also noted that the TSTS score represents early-clinical 
stages in TCGA dataset (Fig. S2E). Early-stage lung cancer patients had higher TSTS score, suggesting that there may be higher tumor- 
specific T cells infiltrating in the TME at this time. To further investigate the clinical potentiality of the TSTS score of lung cancer, 
stratified analysis based on these clinical characteristics was implemented. The results indicated that the TSTS score seemed to predict 
OS of lung cancer patients in subgroup of T1, T2, T3, T4, N0, N1, N2, N3, M0 and M1 (Fig. S2F). Patients in low groups had significantly 
poorer clinical outcomes than those in high groups. The prognostic value of the TSTS score for the survival outcome of patients was 
verified in pan-cancer types using TCGA datasets, TSTS may be used as a biomarker of pan-cancer to predict patients’ survival 
(Fig. S3A). 

2.3. Immune infiltration was enhanced in the high TSTS group 

Furthermore, in the lung cancer samples from TCGA, firstly the high and low groups are divided at the median, then it is intriguing 
to investigate that the high TSTS group was featured by high immune infiltration, which enriched genes were immune-related genes 
such as CXCL9, IFNG, IL2, MS4A1, CLEC6A, and KLRC4 (Fig. 3A, Table S6). The elevated gene of the high TSTS group was enriched in 
immunological enhancement pathways, including immunoglobulin production, positive regulation of lymphocyte activation, T cell 

Fig. 3. Enrichment of immune infiltration in high TSTS group (A) Volcano plot demonstrating the DE genes between high TSTS group and low TSTS 
group. (B) Enriched Gene Ontology (GO) pathways of high TSTS group shows immunological enhancement in high TSTS group. Statistical analysis 
was performed using GSEA analysis. The adjust P value labeled to legend. (C) Enriched hallmark pathways of the high TSTS group. Statistical 
analysis was performed using GSEA analysis. The adjust P value labeled to legend. (D) Heatmap shows immune-related genes (chemokine, 
immunostimulator, MHC, chemokine receptors and inhibitory immune checkpoint) and canonical genes of five TIICs (CD8+ T cells, DC, NK cells, 
macrophages, and Th1 cells) were highly expressed in high TSTS group. (E) By deconvolution method TIMER, boxplot demonstrated the six immune 
cells’ score in the high TSTS versus the low TSTS group. (F) By deconvolution method MCP_counter analysis, boxplot demonstrated the ten types of 
cells’ score in the high TSTS versus the low TSTS group. (G) The correlation between the TST scores and tertiary lymphoid structure (TLS) score. TLS 
score was calculated from the average expression of CCL19, CCL21, CXCL13, CCR7, SELL, LAMP3, CXCR4, CD86 and BCL6. Statistical significance 
was determined by Spearman’s rank correlation analysis (p value < 0.001). (H) TCR clone number (left) and TCR clone diversity (right) was 
significantly elevated in high TSTS group. (I) Correlation between TSTS score and expression of known immune checkpoint genes. ns P > 0.05; *P <
0.05; ***P < 0.001; ****P < 0.0001. Statistical significance was determined by Spearman’s rank correlation analysis (p value < 0.001). 
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proliferation, cell killing, and Type I interferon production (Fig. 3B). Similarly, the Hallmarks pathway in the high TSTS group also 
revealed highly significant enrichment in immunological activity including interferon-alpha response, interferon-and gamma 
response, inflammatory response (Fig. 3C–Table S7). Five immunomodulators (chemokine, immunostimulator, MHC, and chemokine 
receptors, inhibitory immune checkpoint) and the infiltration levels of five types of TIICs (CD8+ T cells, DC, NK cells, macrophages, 
and Th1 cells) were enriched in high TSTS (Fig. 3D). MCP counter, XCELL, EPIC, quanTIseq and TIMER algorithms were used to 
calculate an immune score and estimate the abundance of various types of immune cells. We found higher proportion of CD4+ T cells, 

Fig. 4. Angiogenesis and tumor-specific T cell infiltration have synergistic effects (A) Positive correlation between the TSTS and the endothelial 
cells’ score (calculated by MCP-counter). Statistical significance was determined by Spearman’s rank correlation analysis (p value < 0.001). (B) 
Positive correlation between TSTS and the expression of vascular related genes. P-value <0.001, Pearson correlation analysis for the datasets that 
meet the normal distribution, Spearman correlation analysis for those that are not normally distributed (detailed statistical information of these 
dataset is attached to Table S11). (C) Immunostaining of representative genes (TOX, LAYN, and MAGEH1). Orange arrows and dashed boxes 
indicate blood vessels. (D) Utilization of MCP_counter de-convolution algorithm to compare the infiltration of endothelial cells between TSTS low 
and high groups in five independent cohorts. (E) UMAP analysis identified six clusters that named arteries, veins, capillaries and tips of the blood 
vasculature, as well as the lymphatic vessels. (F) Density plot of UMAP representation comparing normal and tumor samples. Solid line highlights 
the different infiltration level between normal and tumor. (G) Dotplot shows the expression of angiogenesis and endothelial cell growth genes in 
Tip_COL4A1 cluster. (H) By MCP_counter analysis, infiltration score of six clusters endothelial cells presents different state in the high and low TSTS 
group. (I) Dotplot showing the statistically significant ligand-receptor interactions between Tip_COL4A1 cells and subclusters of T cells, inferred by 
CellPhoneDB in which cluster of tumor specific T cells highlighted by red. P values are indicated by circle size. ns P > 0.05; *P < 0.05; ***P < 0.001; 
****P < 0.0001. 

Fig. 5. The low TSTS group showed a state of rapid proliferation of malignant cells (A) The correlation analysis between the proportion of Tregs 
cells (CD4_FOXP3), exhausted T cell cells (CD4_CXCL13 and CD8_CXCL13), pre-exhausted cells (CD8_ZNF683) and the proportion of epithelial cells. 
Each dot represents a patient. In one patient, the ratio was calculated as the proportion of the number of cells in the appointed group to the total 
number of cells. Statistical significance was determined by Spearman’s rank correlation analysis (p value < 0.001). (B) Boxplot shows the different 
expression level of proliferation-related genes in high TSTS and TSTS group in five independent cohorts. (C) In the TCGA dataset, the correlation 
between the TSTS and the expression of pyroptosis sensitive genes (left) and ferroptosis resistance or sensitive genes (right). Statistical significance 
was determined by Spearman’s rank correlation analysis (p value < 0.001). 
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CD8+T cells, NK cells and B cells in lung cancer with higher TSTS (Fig. 3E-F, Tables S8–9). Consistent with the above studies, TSTS 
closely related to immunopotentiation validated by multiple deconvolution algorithms (Fig. S4A). Meanwhile, TSTS highly positively 
correlated with cytotoxic lymphocytes (Fig. 3G),. To our surprise, there were a large number of endothelial cells in the high TSTS 
group. (Fig. 3F, Fig. S4A). In addition, the higher number and diversity of T-cell receptors (TCRs) in the high TSTS group than that in 
the low TSTS group (P < 0.01) suggested higher tumor antigen stimulation and TCR expansion occurs in the high TSTS group (Fig. 3H). 
Combined cell compositions and pathway of the high TSTS group, more favorable immune environment consisting of immune cells and 
immune components exist in higher groups. Meanwhile, the most ICI-related genes used as therapy targets were the highly positively 
correlated with TSTS, a direct clue that TSTS may be suitable. for ICI therapy (Fig. 3I). 

2.4. Angiogenesis and tumor-specific T cell infiltration have synergistic effects 

In consideration of the infiltration of endothelial cells in the high TSTS group, we evaluated how endothelial cells are involved in 
the formation of tumor microenvironment in the high TSTS group. We found TSTS score was positively correlated with MCP_counter 
score of endothelial cells (Fig. 4A). We also found TSTS score had positive correlation with migration (NRP1), and vessel formation 
(FLT1, KDR, NRP1, FLT4, NRP2 and ENG), adhesion (CDH5 and PECAM1) related gene expression level (Fig. 4B). By immunohis-
tochemical analysis, we found high expression of TOX, LAYN, and MAGEH1 proteins that make up the TSTS fraction in the perivascular 
area. In contrast, immunohistochemical samples in which no obvious blood vessels could be found often showed negative protein 
staining (Fig. 4C). With the utilization of the MCP_counter de-convolution algorithm, T cells and endothelial cells had higher infil-
tration level in the high TSTS group in five independent validation bulk datasets (Fig. 4D). We used spatial transcriptome from a 
patient with lung cancer to demonstrate that the emergence of TSTS was often accompanied by vascular infiltration (Fig. S5A). In order 
to better understand the relationship between immune infiltration and angiogenesis, we divided all endothelial cells into six clusters 
(Fig. 4E; Table S2). By integrating the function-related gene signatures in previous study [16], we determined the arteries, capillaries, 
tips, and veins of the blood vasculature, as well as the lymphatic vessels (Fig. S5B). Remarkably, cluster Tip_COL4A1, which enriched 
in tumor tissue the key phenotype in sprouting angiogenesis, expressed a signature of genes involved in angiogenesis and endothelial 
cell growth (FLT1, KDR, PGF, PIGF and SPARC), cell adhesion, migration (LAMC1, LAMA4, LAMB1 and SPARC), facilitating their 
navigating role in the process of vessel sprouting (Fig. 4F and G). With the MCP_counter de-convolution algorithm, we found that six 
endothelial cell clusters had high infiltration level in the high TSTS group in TCGA (Fig. 4H). These observations suggested that 
angiogenesis serves as an important characteristic in the high TSTS group, and the tip EC phenotype is likely to be a promising target of 
anti-angiogenic therapy (AAT), especially anti-vascular endothelial growth factor receptor (VEGFR) antibodies in lung cancer. To 
dissect the complex activities of tip cells in TME, we subsequently used CellPhoneDB to investigate the molecular communication 
between T cells and tip cells. In this analysis, we observed widespread interactions between Tip_COL4A1 and TSTs cells, which 
expressed the CD94:NKG2A receptors on surface and received the inhibitory signal HLA-E from Tip_COL4A1 (Fig. 4I–Table S10). As a 
result, CD8+ T cell activation is suppressed, it was proved a mechanism of immune escape in various tumor types such as glioma, 
melanoma, or colorectal cancer [17], it may hint the presence of tip cells may contributed to immune escape in lung cancer. Taken 
together, these observations reflected the therapeutic potential for AAT alone or in combination with ICB in lung cancer. 

2.5. Elevated malignant cell proliferation status in the low TSTS group 

Of note, In single cell analysis, the proportion of epithelial cells was negatively correlated with tumor-specific T cells (TSTs) which 
also found in immune cell deconvolution of TCGA dataset (Fig. S4A), suggesting that more 8epithelial cells were clustered in the low 
TSTS group (Fig. 5A). Moreover, genes involved in proliferation (MK167 and TUBB) and synthesis of important nucleotides necessary 
for cell growth (TYMS, RRM1and ATIC) had high expression in low TSTS groups in five validation cohorts (Fig. 5B). And we found that 
the TSTs score was positively correlated with the expression of pyroptosis and ferroptosis sensitive genes and negatively correlated 
with the expression of ferroptosis resistance genes which suggests that there is an anti-apoptotic mechanism in the low TSTS group 
(Fig. 5C). 

2.6. Associated oncogenic event reveals different TSTS states 

Subsequently, we probed into the deep-seated reasons at the genome level underlying the distinct features between these two 
groups. The comparison of the proportions of tumor mutation burden (TMB) indicated no discernible difference (Fig. S6A, p > 0.05). 

Fig. 6. TSTS identified as a predictor of immunotherapy, chemotherapy and targeted/anti-angiogenic therapy (A) Kaplan-Meier (K–M) curves 
demonstrated low TSTS group (red) had noticeably poorer survival than patients in high TSTS group (green) in immunotherapy treatment cohorts 
(B) The distribution of TSTS between responders (sTable. disease, partial response and complete response) and non-responders (progressive disease) 
in immunotherapy treatment cohorts. (C) Heatmap shows the different expression level of NSCLC-related drug-target genes between low TSTS and 
high TSTS (P < 0.05) (D) The distribution of TSTS between responders (sTable. disease, partial response and complete response) and non-responders 
(progressive disease) in anti-angiogenic treatment cohorts. (E) Kaplan-Meier (K–M) curves demonstrated low TSTS group (red) had noticeably 
poorer survival than patients in high TSTS group (green) in anti-angiogenic treatment cohorts. (F) Targeted-therapeutic sensitivity of six common 
drugs were estimated and compared in TCGA cohort. (G) Chemotherapeutic sensitivity of four common drugs were estimated and compared in 
TCGA cohort. (H) The distribution of TSTS between responders (sTable. disease, partial response and complete response) and non-responders 
(progressive disease) in TCGA chemotherapy treatment cohorts. ns P > 0.05; *P < 0.05; ***P < 0.001; ****P < 0.0001. 
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Nevertheless, the mutant landscape of the top 10 most frequently mutated genes was not significantly different between the two groups 
(Fig. S6B). Strikingly, KEAP1, DGKB, PSG8, and ITPR2, were identified as statistically different in odds ratios for low versus high 
groups (Fig. S6C). The Low TSTS group displayed enriched gene mutation of KEAP1, which accelerate proliferation and oncogenic 
transformation [18]. We found that there were the same or different mutational signatures in the high and low TSTS groups. Tobacco 
signature, APOBEC signature and defective DNA mismatch repair signature can explain most of the mutation signatures. The 
aging-associated signature SBS5 only appeared in the high TSTS group, and SBS40 only appeared in the low TSTS group. This may be 
an important reason for two kinds of microenvironment infiltration in lung cancer (Figs. S6D–E). What’s more, we do further analysis 
to investigate whether mutation and TSTs can provide a more effective prediction of tumor progression. The results indicate that 
among the common mutations (TP53, KRAS, EGFR and ALK) in lung adenocarcinoma, the survival outcomes predicted by environ-
mental factors represented by TSTs and mutations are fairly consistent, with no statistically significant differences (Fig. S6F). We found 
that when patients with STK11 mutation and lower TSTS score, the patient had a worse prognosis, indicating that STK11 mutations 
could make this indicator more clinically meaningful. 

2.7. TSTS was identified as predictor of immunotherapy and targeted therapy 

Taken together, high TSTS represents high immune environment with more exhausted T cells infiltration combining abundant 
tertiary lymphoid structure and angiogenesis while low TSTS exhibited state of high malignant cell proliferation, (Fig. S5B). Further in 
the clinical treatment cohort, in the NSCLC immunotherapy cohort, the high TSTS group was significantly associated with better 
survival outcome, suggesting that TSTS can predict immunotherapy efficacy, and this ability was also validated in the immunotherapy 
cohort of the CCRCC, BLCA and SKCM (Fig. 6A). The prognosis of the high TSTS group was better due to higher ICB response rates 
(Fig. 6B). Furthermore, we examined a single-cell dataset (GSE207422) of individuals undergoing anti-PD-1 therapy and assessed the 
levels of TSTS gene expression across groups with different treatment outcomes. The results revealed that TSTS genes were notably 
enriched in the CD4_CXCL13, CD4_FOXP3, and CD8_CXCL13 cell subclusters (Figs. S7A–B). Importantly, the degree of enrichment 
within these three cell subgroups was significantly higher in the partial response (PR) group compared to the stable disease (SD) group. 
This provides compelling evidence that TSTS is indeed a relevant indicator associated with the efficacy of immunotherapy (Fig. S7C). 

Notably, comparing TSTS score to other well-recognized immunotherapy predictive signature [19,20] in the NSCLC immuno-
therapy cohort, Cytotoxic T cells (CTL), IFNG, T cell inflamed GEP score were statistically significant in predicting the efficacy of 
immunotherapy, furthermore, the Hazard Rates (HR) of TSTS was the smallest of all indicators (TSTS HR = 0.20, CTL HR = 0.45, IFNG 
HR = 0.36, T cell inflamed GEP = 0.37, CD8 HR = 0.40), implying that TSTS was the strongest protective factor for immunotherapy 
(Fig. S8A). 

Patients with DGKB, PSG8, and ITPR2 mutations correlated with better survival than those with no mutation (Fig. S8B). Never-
theless, the patients carrying KEAP1 mutation had a poor survival outcome (Fig. S8C). Thus, the gene mutations mentioned above may 
serve as potential biomarkers and predictors of therapeutic efficacy in lung cancer patients. 

Additionally, we searched the Drugbank database for therapeutic drugs and drug targets that have currently been approved in 
non–small-cell lung cancer (NSCLC). Genes that are the targets of chemotherapy drugs (vinorelbine, Gemcitabine and Pemetrexed) 
were highly expressed in the low TSTS group. Genes that are the targets of targeted therapy drugs (ALK inhibitor, EGFR inhibitor and 
antiangiogenic inhibitor) were highly expressed in the high TSTS group (Fig. 6C). Strikingly, the result of the NSCLC cohort provided 
unique insights into the better synergistic effect of Erlotinib (EGFR-TKI) combined with Bevacizumab (an antiangiogenic drug) in high 
TSTS group (p < 0.05). By analysis Two antiangiogenic therapy (Bevacizumab) cohorts, we also found patients with better responses 
had higher TSTS (Fig. 6D). Obviously, in antiangiogenic therapy cohorts, patients with high TSTS may have a better prognosis outcome 
than those with low TSTS (Fig. 6E). The estimated IC50 values of targeted therapy drugs were significantly elevated in TSTS-low 
samples of TCGA cohort (Fig. 6F); however, the estimated IC50 values of chemotherapy drugs were significantly elevated in TSTS- 
high samples (Fig. 6G). And in the chemotherapy cohort from the TCGA database, the low TSTS group had a better response effi-
cacy (Fig. 6H). 

Taken together, patients of advanced lung cancer with low TSTS were preferable for chemotherapy, whereas patients of early lung 
cancer with high TSTS fit targeted therapy (antiangiogenic inhibitor and small molecule inhibitors) and/or in combination with 
immunotherapy. 

3. Discussion 

TILs especially T lymphocytes, which are the main anti-tumor cells. There is ample evidence to demonstrate that the presence of 
TILs is associated with enhanced host response to the tumor and therefore is associated with improved patient outcomes [21]. 

Previous studies revealed that TILs consist of not only those T cells specific for TSAs, but also the ones that recognize epitopes 
unrelated to the tumor, such as virus-specific antigens, known as bystander T cells [22]. In contrast to bystander T cells, although 
exhibiting a dysfunctional phenotype, tumor-specific T cells possess significant capabilities of tumor-specific killing [23]. Therefore, 
we tried to find and use tumor-specific T cells related index to measure the level of immune infiltration and to precisely predict the 
response to ICB. Meanwhile, the strategy of combining ICB with ramucirumab demonstrated favorable effects in clinical trials [24–26]. 
Indicators urgently needed to guide combination therapy offer hope for the treatment of advanced lung cancer. 
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Through the single-cell sequencing technology, we first identified unique TSTs. Intriguingly, our findings with the gene expression 
profiles in TSTs further identified the tumor-specific T cell features, consisting of CXCL13, ZNF683, TOX2, TOX, LAIR2, CXCR6, LAYN, 
ACP5 and MAGEH1. LASSO Cox regression model was successively used to filter out the most robust markers and tumor-specific T cell- 
related prognostic score (TSTS) was established. Therefore, a TSTS model consisting of LAYN, TOX, MAGEH1 and CXCR6, classifies 
NSCLC patients into high TSTS group with better prognosis and low TSTS group with poor prognosis. Strikingly, TOX was reported as a 
critical regulator of tumor-specific T cell differentiation, and highly expressed in dysfunctional TST cells from tumors [27]. 
Remarkably, LAYN has been corroborated to suppress CD8+ T cells, and high expression of LAYN, MAGEH1 in Treg cells correlated 
with poor prognosis of NSCLC and colorectal cancer (CRC) [28]. Also, we found that chemokine receptor CXCR6 was enriched in CD4+

Treg and CD8+ exhausted T cell clusters. Knockdown of CXCR6 inhibited cell proliferation migration and invasion of hepatocellular 
carcinoma (HCC) cells, followed by the deregulated expression of vascular endothelial growth factor (VEGF) [29]. CXCR6 is vital for 
effector-like activate cytotoxic lymphocytes (CTLs) in the TME to maximize their antitumor efficacy before progressing to irreversible 
dysfunction [30]. 

Higher tumor antigen stimulation and TCR expansion occurs in the high TSTS group than that in the low TSTS group suggested 
higher ability to recognize tumor-specific antigen that ultimatly kill tumor cells. Meanwhile the exhaustion of effector cells indicates 
that the more effector T cells become toxic before moved towards terminal differentiation. By using bulk RNA sequencing, we 
identified that immune-related pathways and cellular adhesion pathways were significantly elevated in the high TSTS group, immune- 
related genes, such as PD1, TIGIT and CTLA4 were highly expressed in the high TSTS group. The Low TSTS group exhibits low immune 
infiltration and high proliferative properties. Therefore, converse to the immunologically hot (T cells inflamed) TME in high TSTS 
group, cold (non-T cells inflamed) TME have been related with low TSTS, indicating that TSTS defines hot or cold TME. Ultimately, this 
study validated the ability of TSTS as a predictor of immunotherapy efficacy in pan-cancer in the SKCM, BTCC, CCRCC and NSCLC 
immunotherapy datasets and found strong predictive power in NSCLC, SKCM, CCRCC, and BTCC. We believe that this can be explained 
by that T cell subgroups are relatively stable. and do not tend to be heterogeneous across cancer types, resulting in the presence of 
tumor-specific T cells that are likely to be shared across cancer types. This phenomenon is also consistent with that reported by Zheng, 
L. et al. [31]. 

Strikingly, a strong positive correlation between TSTS and angiogenesis was identified in our present work. Sustained angiogenesis 
is considered to be an important hallmark of NSCLC [32]. Angiogenesis contributes to NSCLC development by providing oxygen and 
nutrients and facilitating tumor growth and metastasis [33]. We found that the tumor angiogenesis was predominantly featured by tip 
cell infiltration-the main cells at the tips of vascular sprouts integrating multiple activities during angiogenesis [34,35]. The sprouting 
angiogenesis promotes the creation of emerging blood vessels from pre-existing vessels, along with the tip endothelial cells, which may 
significantly affect immunity. Our research confirmed angiogenesis high enriched in high TSTS group. Subsequently, we further 
identified the comprehensive intercellular communication between tip cells and tumor-specific T cells. Notably, 
HLA-E/β2m-CD94/NKG2A, a new druggable inhibitory immune checkpoint, was found to be a highly communicative ligand pair 
between tip cells and CD8+ exhausted T cells, which contributes to the functional exhaustion of cytotoxic NK cells and CD8 T cells [36, 
37]. In addition to inhibiting the induction of local hypoxia, promoting the aggregation of MDSCs, Treg and leading to a suppressive 
tumor immune microenvironment, inhibition of neovascularization can reduce the expression of immunosuppressive check pairs and 
provide new evidence for synergistic effects of immunotherapy and anti-angiogenesis therapy. High TSTS group, enriched in tip cells, 
were proved better response in Bevacizumab (AAT)-therapy cohort. Thus, it is plausible to make recommendations on the combination 
of anti-angiogenic and immunotherapy for patients with high TSTS. 

Overall, low TSTS patients had cold TME, characterized by decreased immune infiltration, decreased cells apoptosis and increased 
cells proliferation. These patients represent a phenotype of “immune desert”, which has been associated with the poor outcome to ICB 
[38,39]. Surprisingly, not only were epithelial cells enriched in the low TSTS group but also the TSTS score is negatively correlated 
with the proliferative genes and Ferroptosis resistance genes and is positively correlated with pyroptosis sensitive genes ferroptosis 
sensitive genes, implying that proliferation and growth of cells in the low TSTS group would be more sensitive, meaning that patients in 
the low TSTS group tended to have a better response to chemotherapy. This is one of the unexpected findings of this study. 

Meanwhile, also, we found that TMB as an immunotherapy-guided biomarker did not seem to differ between high and low TSTS 
groups. This may explain why previous research has reported that TMB has a limited predictive effect on non-small cell lung cancer 
[40]. It should be noted that TSTs, as an indicator of immune inflammation, is higher in patients with early-stage lung cancer, while 
patients with advanced lung cancer tend to be low TSTS with “immune desert”. This is in line with one previous clinical trial that 
earlier use of immunotherapy will bring more significant benefits to NSCLC patients [41]. 

The treatment of advanced NSCLC is mostly based on a combination of chemotherapy or targeted therapy. In recent years, 
immunotherapy targeting programmed cell death protein 1 (PD-1) and its ligand (PD-L1) or cytotoxic T-lymphocyte-associated an-
tigen 4 (CTLA-4) has made significant progress in the treatment of NSCLC. Anti-CTLA-4 inhibitor has achieved breakthroughs in the 
treatment of NSCLC, demonstrating significant clinical efficacy, prolonging patient survival and dramatically changing the treatment 
landscape of NSCLC. Thus, such a biomarker, which can evaluate the efficacy of chemotherapy, targeted therapy and immunotherapy, 
brings a new breakthrough in the stratification of patients for comprehensive drug use. 

The limitation of our approach should also be taken into consideration. Although RNA sequencing, whole exon sequencing, and 
single-cell RNA sequencing were used and validated in as many independent cohorts as possible, all conclusions were based on bio-
informatics analysis. Our results warrant further validation in a large number of real-world cohorts. 
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4. Methods and materials 

4.1. Data acquisition 

Single-cell RNA-sequencing (ScRNA-seq) data (accession number: GSE131907, GSE207422) of lung adenocarcinoma samples from 
the initial publication was downloaded and reanalyzed for this manuscript. Spatial transcriptomic data for one patient with NSCLC 
were downloaded from 10X (https://www.10xgenomics.com/resources/datasets/human-lung-cancer-11-mm-capture-area-ffpe-2- 
standard).The Cancer Genome Atlas (TCGA) data: For comparison within a single TCGA-LUAD cohort, lung adenocarcinoma 
(LUAD) RNA Sequencing data (TPM), somatic mutation data and survival information were downloaded from the UCSC Xena data 
portal (https://xenabrowser.net/datapages/). Raw RNA-seq was annotated by Gencode V23 and quantificated by RSEM (v1.3.3), tpm 
values are extracted, log2 (tpm+0.001) transformed, and combined all sample. Gene Expression Omnibus (GEO): RNA sequencing data 
(number: GSE68465, GSE14814, GSE30219, GSE31210 and GSE37745) of lung cancer with detailed survival data were downloaded as 
validation queues. RNA sequencing of immunotherapy cohort of non -small-cell lung cancer (GSE135222, GSE207422) and melanoma 
(GSE78220 and PRJEB23709) were downloaded from GEO. RNA sequencing of the immunotherapy cohort of clear cell renal cell 
carcinoma (PMID32895571 and PMID29301960) was downloaded from supplementary materials. POPLAR immunotherapy cohort of 
non -small-cell lung cancer was applied from European Genome-Phenome Archive (https://ega-archive.org/studies/ 
EGAS00001004343). RNA sequencing of the immunotherapy cohort of bladder cancer was downloaded from R package Mvi-
gor210CoreBiologies [42]. MSK-IMPACT assay of immunotherapy cohort was downloaded from cbioportal (http://www.cbioportal. 
org/). RNA sequencing of patients with antiangiogenic treatment in non-small-cell lung cancer (GSE61676), –triple-negative breast 
cancer (GSE103668), colorectal cancer (GSE60331 and GSE53127) was downloaded from GEO. All public datasets are downloads of 
the processed datasets, so background correction, normalization and expression value calculation follow the original authors’ 
processing. 

4.2. Tumor mutational burden (TMB) estimates 

TMB was defined as the number of somatic non-synonymous single nucleotide variants. For the TCGA-LUAD dataset, somatic 
mutation data were retrieved from the UCSC Xena multi-omics database platform (https://xenabrowser.net/datapages/? 
dataset=TCGA.LUAD.sampleMap%2Fmutation_broad&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F% 
2Fxena.treehouse.gi.ucsc.edu%3A443) and preprocessed at the Broad Institute Genome Sequencing Center [43]. WES data were 
generated on the Illumina platform. Mutation calls were calculated using the MuTect method [44], and only calls with variant allele 
frequency (VAF) > 4.0% were included. The R package “maftools” [45] was then used to calculate the total number of somatic 
non-synonymous point mutations within each sample. The high and low TMB groups are cut off by the median. The copy number 
variation data were calculated by GISTIC2 [46]. 

4.3. Immunohistochemical staining 

Six samples of IHC was available from the Human Protein Atlas (HPA, https://www.proteinatlas.org/). This database contains the 
immunohistochemical (IHC) staining profiles of numerous proteins in a variety of cancerous and non-cancerous tissues based on more 
than 8800 antibodies. All samples detailed information was attached in Table S12. 

4.4. Single-cell transcriptome sequencing and data preprocessing 

Seurat (v3.1.3) R toolkit was used to analyze the single-cell transcriptome sequencing data [47]. Firstly, cells with low quality were 
filtered out [48]. Briefly, the dead or dying cells with more than 10% mitochondrial RNA content were removed, and the cells with a 
too low number (less than 200) were also removed. Cell doublets were predicted using DoubletFinder with default parameters. Then, 
the filtered gene expression matrix for each sample was normalized using the “NormalizeData” function in Seurat with default pa-
rameters which employs a global-scaling normalization method “LogNormalize” then multiplies by a scale factor (10,000 by default) 
and log-transforms. Only highly variable genes remained using the “FindVariableFeatures” function in Seurat. Next, “Runharmony” 
functions in harmony were used to integrate the gene expression matrices of all samples, where batch effects between different samples 
have been adjusted [49]. Next, the “RunPCA” function was used to perform the principal component analysis (PCA) and the “Find-
Neighbors” function was used to construct a K-nearest-neighbor graph. Next, the most representative principal components (PCs) 
selected based on PCA were used for clustering analysis with the “FindCluster” function to determine different cell types. Lastly, UMAP 
was used to visualize the different cell types. 

We annotated the cell types using the following rules: Based on the most ten differentially expressed genes that were derived using 
the “wilcoxauc” function in presto, genes such as CD3D, CD3G were used as T cell markers, SDC1, TNFRSF17 were used as plasma cell 
markers, CD68, CD14 were used as myeloid cell markers, MS4A2, CPA3 were used as mast cell markers, ACTA2, COL6A1 were used as 
fibroblast/smc cell markers, KRT18, EPCAM were used as epithelial cell markers, VWF, PECAM1 were used as endothelial cell markers, 
CD19, MS4A1 were used as B cell markers. CD4 and CD8 gene expression were used to differentiate CD4+ and CD8+ T cells. Sub-cluster 
of CD4+ T cells, CD8+T cells and endothelial were named by the first marker gene. 
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4.5. Pathway analysis of single-cell 

The pathway analysis was performed using the Correlation Adjusted MEan RAnk gene set test (CAMERA)that has been imple-
mented in the SingleSeqGset (version 0.1.2) R package. Lists of metabolic genes and pathways were obtained from the KEGG database 
(http://www.kegg.jp) were used for the CAMERA analysis [48]. 

4.6. Tissue distribution of clusters 

We used to observe and expected cells in each cluster Ro/e = observed/expected, and expected cell numbers for each combination 
of cell clusters and tissues are obtained from the chi-square test. We defined R o/e > 1 as specific tissue cluster [50]. 

4.7. Trajectory analysis 

Monocle 3 was used to infer the cell differentiation trajectories [51]. These algorithms place the cells along with a trajectory 
corresponding to a biological process by taking advantage of an individual cell’s asynchronous progression under an unsupervised 
framework. 

4.8. Cell-cell communication analysis 

To investigate the potential cell-cell communications between T cells and endothelial cells from the tumor, we performed ligand- 
receptor analyses using CellPhoneDB [52] (version 2.0.6). CellPhoneDB applies an algorithm that considers only receptors and ligands 
with broad expression among the tested cell types, followed by calculating the likelihood of cell-type specificity of a given 
receptor-ligand complex with a sufficient number of permutations. 

4.9. Selection of candidate genes and establishment of tumor-specific T cell signatures 

Tumor-specific T cell clusters can be defined by Roe. Genes expressed in these clusters and did not express in any other clusters were 
involved in the establishment of the TSTS score. We chose these genes for more functional investigation and developed a possible risk 
score using the lasso cox regression algorithm [53].Finally, minimum criteria defined six genes and their constants, choosing the 
perfect penalty parameter λ related to the min 20fold-cross validation inside the training set. The EIC score was calculated: 

∑n

i=1
(Coefi ∗ xi)

Coefi is the coefficient and xi is the value of chosen genes. 

4.10. Functional and pathway enrichment analysis of bulk RNA-Seq 

Limma R package was used to identify the signaling pathways that were differentially 473 activated between the low TSTS score 
and high TSTS score groups [54]. Signal pathways specific to the tumor microenvironment (TME) phenotype between the high TSTS 
and low TSTS groups were explored by GSEA, Gene Set Enrichment Analysis (GSEA) was used with adjusted p < 0.05 using the 
clusterfiler R package [55]. 

4.11. Immunological characteristics of the TME in lung cancer 

Evaluation of Immune Cell Infiltration The proportions of immune cell types (i.e., TICs) in each sample (with immune infiltration 
scores) were calculated using the Timer [56]and MCP_counter algorithm [57],EPIC, Xcell, quanTIseq. Dividing between the high and 
low groups for comparing the proportions of immune cell types in the text are thresholded at the median. 

4.12. Deciphering mutational signature operative in the genome 

We used R packages Maftools to extract mutational signatures from the aggregated WES genomic data of NSCLC cohorts [58]. The 
ExtractSignatures function from Maftools factorized the mutation portrait matrix into two nonnegative matrices, “signatures” and 
“contributions,” where “signatures” represented mutational processes and “contributions” represented the corresponding mutational 
activities. Mutational signatures were annotated by calculating cosine similarity against 30 validated mutational signatures in COS-
MIC, Version 2 [59]. 
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4.13. Spatial transcriptome analysis 

To infer the spatial organization of certain cell subtypes, we used Seurat R package to integrate spatial and single-cell data. Raw 
UMI counts were normalized by “SCTransform” function. Dimensionality reduction and clustering were performed as before. Cell 
subtypes distributions were visualized in spatial context over H&E images. 

4.14. Statistical analysis 

Dividing between the high and low groups for all survival curves in the text are thresholded at the median and the sample sizes 
between high and low groups are indicated in the pictures. The Kaplan-Meier method was used to estimate OS or FPS, the log-rank test 
was used to compare the Kaplan-Meier curves. A two-sided P value of less than 0.05 was considered significant. All sample sizes were 
large enough to ensure proper statistical analysis. Pearson correlation analysis for the datasets that meet the normal distribution, 
Spearman correlation analysis for those that are not normally distributed (detailed statistical information of these dataset is attached to 
Table S11). Statistical analyses were performed using GraphPad Prism (GraphPad Software, Inc.). P values < 0.05 were considered 
statistically significant. All t-test analyses were one-tailed t-tests (paired or unpaired depending on the experiments). 

5. Conclusions 

In summary, we applied single-cell RNA sequencing to lung cancer patients and identified tumor-specific T cells and their features. 
The model constructed by LAYN, TOX, MAGEH1 and CXCR6 exclusively expressed in the tumor-specific T cells, which score repre-
sented how extend of the immune-inflammatory state and angiogenesis state, dividing lung cancer patients into two types. Patients 
with high TSTS are sensitive to immunotherapy and targeted therapy, while patients with low TSTS are sensitive to chemotherapy. 
Collectively, this article provides a basic explanation of the environmental context in which TSTS is used as a treatment decision- 
making strategy. And the limitation of our approach should also be taken into consideration. Although RNA sequencing, whole 
exon sequencing, and single-cell RNA sequencing were used and validated in as many independent cohorts as possible, all conclusions 
were based on bioinformatics analysis. Our results warrant further validation in a large number of real-world cohorts. The underlying 
mechanism should be further investigated. 
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available in the UCSC Xena data portal (https://xenabrowser.net/datapages/). The processed RNA sequencing of the immunotherapy 
cohort of clear cell renal cell carcinoma (PMID32895571 and PMID29301960) are available in the original authors’ supplementary 
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