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Abstract: Modulation between sleep and wake states is controlled by a number of heterogeneous
neuron populations. Due to the topological proximity and genetic co-localization of the neurons
underlying sleep-wake state modulation optogenetic methods offer a significant improvement in
the ability to benefit from both the precision of genetic targeting and millisecond temporal control.
Beginning with an overview of the neuron populations mediating arousal, this review outlines
the progress that has been made in the investigation of arousal circuits since the incorporation of
optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin
neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress
that can be made by incorporating more recent technological developments into the research of
neural circuits.
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1. Introduction

Before the development of optogenetic tools researchers used methods such as
electrophysiological stimulation and recording of neural activity, pharmacological stimulation or
inhibition of targeted neuron populations, or the manipulation of gene expression through use of
knockout animals to investigate the function and activation patterns of different neural populations.
While these methods have undoubtedly produced an immense body of literature and insight into
neural functions, structures, and mechanisms across multiple areas of neuroscience research, as new
technologies have developed, the weaknesses of these techniques have naturally become highlighted.
While electrophysiology allows the temporal precision that is lacking in pharmacological and genetic
manipulation, it lacks the ability to target specific neuron populations using their gene expression.
Pharmacological and genetic manipulations allow this neuron targeting specificity but lack the
temporal flexibility of electrophysiological recordings, either requiring time for the pharmacological
agent to peak or washout, or, in genetically manipulated mice, lacking the ability to observe the effect
of the gene knockout during specific development periods, or even during specific behaviors.

The development of optogenetic tools has provided researchers with a method to genetically
target specific neuron populations with millisecond precision, either for recording (fiber-photometry)
or stimulation (optogenetic activation) of neural activity. The advances provided by this technique
have allowed researchers to combine the gene-targeting specificity of pharmacological and genetic
manipulations with the temporal flexibility of electrophysiological recordings. While the use of
electrophysiological recording and stimulation methods is still very useful for applications where
the genetic profile of the target neurons are not yet known or are not uniform, research areas in
which it is known which neurotransmitters and cell types are involved can benefit greatly from this
specificity. One area of research that has benefited greatly from this precision and flexibility is the
investigation of neural circuits underlying arousal and transitions between sleeping and waking states.
This review will focus on the neural correlates of sleep-wake state modulation, giving an overview
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of the neural populations involved, and presenting the progress that has been made following the
incorporation of optogenetic technologies into the investigation of individual neuron populations, as
well as circuit integration.

2. The Importance of Sleep

Considering the ubiquity of sleep across the animal kingdom, the precise function and purpose
of sleep remains relatively elusive; however, it is apparent that effectively regulating arousal is
crucial for survival. As well as maintaining an appropriate sleep/wake cycle we must also be able to
respond appropriately to unexpected stimuli, whether they be an unanticipated reward or the sudden
presentation of a stressor. The ability to focus and react can mean the difference between life and death.
In states of disordered arousal we may exhibit hyper-arousal—the inability to drop out of a state of
heightened vigilance resulting in anxiety disorders, insomnia, etc. or if we are unable to successfully
maintain stable sleep-wake states this can lead to either an inability to maintain prolonged sleep or
prolonged wakefulness. In order to understand what is going wrong in sleep disorders, researchers
first had to understand what normal, healthy sleep-wake states look like.

Defining Different Sleep-Wake States

The first step away from a binary “sleep” versus “wake” definition of sleep-wake states came with
the observation of what is now called Rapid Eye Movement (REM) sleep, in which a sleeping subject
elicits eye movements and electroencephalogram (EEG) activity that is similar to those elicited from
an awake subject. REM sleep was first observed by Aserinsky and Kleitman [1], and this observation
lead to the categorization of sleep into two states: REM and non-REM (NREM). In order to study the
neurocircuitry underlying different these sleep-wake states it is first important to be able to characterize
them. For this purpose sleep-wake states have been broadly categorized into four different states:
active/motivated wakefulness, quiet wakefulness, NREM sleep, and REM sleep. In the laboratory,
researchers use EEG and electromyogram (EMG) recordings to distinguish between these different
sleep-wake states [2]. Broadly, sleep/wake states are categorized as:

• Active/motivated wakefulness—θ (5–9 Hz) [3,4] and γ (40–200 Hz) [5] EEG oscillations paired
with muscle activity shown in the EMG signal;

• Quiet wakefulness—slower EEG frequencies such as α (8–14 Hz) and β (15–24 Hz) [6] and muscle
activity observed in the EMG signal;

• NREM—high amplitude, low frequency ∆ oscillations (0.5–4 Hz) [7–11] and spindles (bursts of
7–15 Hz oscillations) [12–14], and decreased muscle activity;

• REM—dominated by θ oscillations and strong suppression of muscular tone [15–18].

Alongside these sleep-wake states, further categorizations are possible to perform more
fine-grained analysis of different sleep states, for example in humans NREM sleep can be further
categorized into four different stages (I–VI) of increasing depth of sleep [2]. However for the sake of
this review a broader categorization of REM, NREM, waking, and occasional specifications of active
waking and hyper-arousal states will be used to discuss the neural mechanisms linked to these states.

3. Neural Correlates of Sleep-Wake Modulation

Researchers studying sleep to wake transitions have used many different methods to uncover
the numerous neuron populations that are involved in modulating wakefulness and sleep states.
Following the influenza epidemic of 1918, Economo [19] performed post-mortem examinations of the
brain tissue of patients who had suffered excessive sleepiness after contracting the influenza virus.
It was observed that this sleepiness was correlated to brain lesions in the posterior hypothalamus.
As well as specific brain areas, human responses to medications and disease states have also implicated
specific neuropeptides in the modulation of sleep and wake states. Post-mortem examinations have
shown a substantial loss of hypothalamic hypocretin (also known as orexin) neurons in the brains of
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patients with narcolepsy [20,21], a sleep disorder characterized by excessive sleepiness. Whereas a
role for dopamine in modulation of arousal states has been implicated following an observation that
patients with Parkinson’s disease, which results in the degeneration of dopaminergic neurons in the
substantia nigra (among other neurological changes), experience sleep disturbances such as excessive
sleepiness during the day and difficulty sleeping through the night [22].

Pharmaceuticals have also highlighted potential candidate systems; particularly the development
of first-generation antihistamines (histamine H1 receptor antagonists) and their sedative side effects
implicated histamine as a wake-promoting neuropeptide [23,24]. In order to further investigate these
neuropeptides and neural structures under more strictly controlled conditions researchers shifted
into animals models to observe the mechanisms underlying sleep-wake state modulation on a more
fine-grained, cellular level. Although there are some notable differences between humans and other
animals when it comes to sleeping patterns, animal models of sleep have proved to be useful for further
unraveling the neural circuits involved in modulating sleep and waking states. The use of animal
models, particularly rodent models have resulted in the identification of multiple neuropeptides and
structures that can be targeted to modulate sleep to wake states. These findings are reviewed below, with
an overview of activity patterns of these candidate neurons across sleep-wake states shown in Figure 1.
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[39,40], locus coeruleus noradrenergic [41–44], tuberomammillary nucleus histaminergic [45–47], 
lateral hypothalamic hypocretin [48–56], lateral hypothalamic area melanin-concentrating hormone 
[57–60], VTA and basal forebrain γ amino butyric acidergic (GABAergic) [26,61], and ventral 
medulla GABAergic neurons [62]. 1 s = 1 second. 

Figure 1. A visual representation of neural activity profiles of sleep/wake-active neurons populations.
Showing high (solid line), moderate (thick broken line), low (thin broken line), and quiet (no line)
activity profiles during active waking, quiet waking, non-rapid eye movement sleep (NREM), and
rapid eye movement sleep (REM) states in basal forebrain [25–30] and brainstem [31–35] cholinergic,
dorsal raphe nuclei serotonergic [36–38], ventral tegmental area (VTA) dopaminergic [39,40], locus
coeruleus noradrenergic [41–44], tuberomammillary nucleus histaminergic [45–47], lateral hypothalamic
hypocretin [48–56], lateral hypothalamic area melanin-concentrating hormone [57–60], VTA and basal
forebrain γ amino butyric acidergic (GABAergic) [26,61], and ventral medulla GABAergic neurons [62].
1 s = 1 second.
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3.1. Cholinergic Neurons: Active during Waking and REM Sleep

Cholinergic neurons have been shown to modulate arousal, in particular the basal forebrain
and the mesopontine tegmentum of the brainstem contain neurons that release acetylcholine and
modulate sleep-wake states [63,64]. Cholinergic neurons in the basal forebrain are most active during
wakefulness and REM sleep [25,26,30], with a high correlation between their firing rate and cortical
activation [25,65,66]. This pattern of wake-active and REM-active cholinergic neurons has also been
observed in populations of cholinergic neurons found in the mesopontine tegmentum [31–35] and
is supported by evidence of higher levels of acetylcholine in cortical and thalamic areas during
wakefulness and REM sleep [27–29]. Recordings of cholinergic neurons have also shown that they fire
in response to cortical activity occurring following tail-pinch in urethane-anaesthetized animals [67].
While these results suggest a role for cholinergic neurons in processes underlying wakefulness and
REM sleep, lesion studies have returned mixed results. Some studies using selective lesions of
cholinergic neurons in the basal forebrain only produced minor changes to the wakefulness of the
animals [68–70], which would suggest that these neurons are not necessary to maintain wakefulness.
However, more extensive lesions of cholinergic neurons in the basal forebrain resulted in a reduction of
high-frequency EEG power, with a particularly noticeable reduction in γ-activity [71,72], which occurs
during active-waking. These more extensive lesions also reduced the normal homeostatic responses to
increased sleep-drive following sleep deprivation [73–75]. A pharmacological study which infused
cholinomimetics into the pontine reticular formation, showed that increasing cholinergic activity in the
reticular formation resulted in increased REM sleep [76], which would suggest a REM-sleep promoting
role for brainstem cholinergic neurons. The heterogeneity of the basal forebrain and brainstem areas
where these cholinergic neurons are found make these populations ideal candidates for genetically
targeted optogenetic investigation to further explore these divergent functions of sleep-promoting
basal forebrain cholinergic neurons, and REM-promoting brainstem cholinergic neurons.

3.2. Serotonergic Neurons: Promoting Wakefulness

Serotonergic interactions with sleep came into the spotlight due to the changes of sleep
architecture seen in depressed patients undergoing pharmaceutical treatments affecting the serotonin
system, such as a significant decrease in REM sleep duration in patients undergoing treatment
with tricyclic antidepressant amitriptyline [77]. In line with this finding, systemic administration
of serotonin receptor agonists produces a reduction in NREM and REM sleep and promote waking [78].
Additionally, while normal mice usually exhibit a boost in REM following immobilization stress,
this REM rebound is not observed in 5-HT1A knockout mice [79]. Electrophysiological recordings
have shown that serotonin is most active during waking, less active during NREM, and quiet
during REM [80,81], these findings have also been supported by studies measuring the release of
serotonin [37,38]. Serotonin neurons are activated by stressful stimuli [82], however they are most
active during feeding and quiet waking, and are less active during active-waking [36], suggesting a
possible role for serotonin in promoting a state of quiet-waking.

3.3. Noradrenergic Neurons: Promoting Wakefulness

The LC is the origin of the majority of noradrenergic projections of the forebrain, others arise
from small clusters of norepinephrine (NE) neurons throughout the brainstem [83]. Administration
of norepinephrine into the forebrain ventricles results in increased wakefulness [84,85]. LC neurons
are most active during waking, particularly when the animal is exposed to stressful stimuli [41],
they are less active during NREM sleep, and quiet during REM sleep [42–44]. Despite this clear
link between LC/NE activity and wake states, lesion studies have produced minimal effects on total
waking time in LC lesioned animals [86] and increases in REM sleep [87] and reduced expression of
wake-related gene transcripts [88–90] following norepinephrine depletion. Discrepancies between
the pharmacological studies, electrophysiological recordings, and lesion studies could suggest that
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while norepinephrine activation in the LC is sufficient to induce wakefulness, these neurons are not
necessary to maintain wake-states.

3.4. Dopaminergic Neurons: Promoting Wakefulness

The role of dopamine in modulating wakefulness came into the spotlight due to the side effect
of increased alertness following the consumption of certain drugs of abuse that are categorized as
stimulants. Stimulants such as amphetamine and modafinil interact with other neuromodulatory
systems, as well as dopaminergic neurons they also enhance the release of other wake-promoting
neuropeptides serotonin and norepinephrine. In order to determine the main mechanism inducing
increased alertness Wisor, et al. [91] used a dopamine transporter knockout mouse to show that animals
lacking dopamine transporter do not exhibit the stimulant effects of modafinil or amphetamine,
suggesting that transportation of dopamine is necessary for these stimulant effects. Interestingly,
knockout studies have produced mixed results, with knockouts of the D2 receptor exhibiting bouts
of waking, overall decreased waking amounts, and increased sleep duration [92], whereas dopamine
transporter knockout mice exhibit reduced NREM sleep and increased wakefulness consolidation [91].
This suggests that dopamine may exhibit more nuanced modulation of sleep-wake states.

Dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the ventral
periaqueductal gray matter (vPAG) have been investigated to observe their activity patterns across
different sleep/wake states. Fos studies have shown that DA neurons in the vPAG are active during
waking but not sleep states [93], however DA neurons in the VTA and the substantia nigra have
a relatively consistent firing rate across all sleep-wake states [94]. An observation of burst-activity
revealed that, despite the consistency of firing rates in the VTA, there were a higher number of DA
neurons firing bursts in waking and REM sleep as opposed to NREM sleep, which caused increased
levels of DA in the prefrontal cortex, nucleus accumbens, and other targets of VTADA neurons [39].
Additionally, Steinfels, et al. [95] showed that increased in DA bursting correlated strongly with salient
stimuli that were either aversive or rewarding, suggesting that VTADA neurons may play a role in the
directing of attention. The case for DA modulation of arousal is also supported by lesion studies in the
vPAG, which showed a ~20% reduction in waking duration [93]. The variations in activity profiles
suggest that these wake-active vPAGDA neurons are performing separate functions to the consistently
active VTADA neurons that elicit increased burst activity during waking and REM states.

3.5. Neuropeptide S: Promoting Wakefulness

Neuropeptide S (NPS) precursor mRNA (messenger ribonucleic acid) is most strongly expressed
around the locus coeruleus (LC), in the the principal sensory 5 nucleus, and in the the lateral
parabrachial nucleus, and its receptor mRNA has highest expression levels in the cortex, thalamus,
hypothalamus, and amygdala [96]. NPS has been proposed as a mediator of anxiety-related behaviors
following evidence that intracerebroventricular (i.c.v.) administration of NPS reduces behavioral
markers of anxiety in standard tests including the elevated plus maze and open field [96]. Additionally,
considering that i.c.v. NPS administration also produces increased locomotion and reduced the
amount of time animals spent in paradoxical REM sleep and the deepest stage of NREM sleep
known as slow wave sleep [96]. Alternatively, knocking out the NPS receptor resulted in a decrease
explorative behaviors in a novel environment [97], suggesting increased anxiety. Due to these
findings it has been suggested that NPS may play a role in modulating states of hyper-vigilance
such as fear or anxiety [96,98]. Due to the proximity of NPS to other neurons known to modulate
sleep-wake states, such as noradrenergic neurons in the locus coeruleus and neuron populations in
the parabrachial nucleus, these pharmacological methods have been used to avoid conflating the
effects of unintentional activation of these neighboring populations to NPS.3.6. Histaminergic neurons:
promoting wakefulness.

The link between histamine and wake-promotion was first suggested due to the side effect of
drowsiness caused by first-generation antihistamines, which antagonized histamine H1 receptors [23,24].
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A wake-promoting population of histaminergic neurons is located in the tuberomammillary nucleus,
these neurons are most active during waking, less active during NREM sleep, and quiet during
REM sleep [45–47]. Despite the obvious sedative effect of H1 receptor antagonists, as well as subsequent
studies showing that pharmacological inhibition of the histamine system produces drowsiness whereas
pharmacological activation of the histamine system promotes wakefulness [23,99], other investigations
of histaminergic modulation of wakefulness have produces mixed results. Lesion studies in the
cat [100] and the rat [101] produced no effect on sleep/wake duration, suggesting that this system is not
critical for the maintenance of sleep/wake architecture. H1 receptor knockout mice exhibited similar
sleep/wake durations to controls, only showing fewer micro-arousals (<16 s brief awakening), and fewer
transitions between NREM sleep and REM sleep, but no difference in overall sleep/wake duration [102].
Investigation of the histamine system using a knockout model where the histamine-synthesizing
enzyme histidine decarboxylase is knocked out (HDC KO) did not change the duration of sleep/wake
states under baseline conditions, however HDC KO animals did show decreased wakefulness in a novel
environment paradigm [103,104], suggesting a possible role for histamine in hyper-vigilance required
in the presence of novel stimuli [23].

3.6. Hypocretin Neurons: Promoting Wakefulness

Hypocretin (Hcrt) neurons are found in the lateral hypothalamus and were first linked to sleep
function due to a significant loss of Hcrt neurons in the brains of patients with narcolepsy [20,21] and
low levels of Hcrt-1 in the cerebrospinal fluid (CSF) of narcoleptic patients [105]. The role of Hcrt in
narcolepsy was further supported by animal models such as canine narcolepsy, which was linked
to a mutation in the Hcrt 2 receptor [106]. Similarly, mouse models, which present both behavioral
and EEG signs of narcolepsy, have been developed by manipulating the Hcrt system: either by
targeting the neuropeptide in a Hcrt knockout mouse line [107] or by genetically ablating the neurons
themselves [108].

Studies investigating the role of Hcrt in sleep modulation in non-diseased mouse models have
found evidence for a wake-promoting role for Hcrt; Hcrt 1 administration (i.c.v.) increases wakefulness
in a dose-dependent manner in rats [109]. Conversely, pharmacological antagonism of the Hcrt
receptors results in increased NREM and REM sleep and reduced wakefulness in both animals and
humans [110], and inhibition of Hcrt neurons using Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs) promotes sleep [111]. Hcrt neurons are most active during active-waking,
less active during quiet-waking, and are quiet during sleep, this has been shown in Fos studies [48,49],
measurements of Hcrt peptide release [50], and single-unit recordings [51–55]. Additionally, Hcrt
levels have been shown to peak toward the end of the day in squirrel monkeys, whose sleep-cycle is
similar to that of humans, suggesting that as the wake-cycle progresses wake-promoting Hcrt activity
increases, perhaps in opposition to an increased need to rest [56]. Taken together along with the
evidence from narcoleptic patients showing reduced ability to maintain wakefulness, these findings
suggest a role for Hcrt in maintaining wakefulness, particularly toward the end of the waking-period
of the animal.

While considering the role of different neuropeptides in modulating sleep-wake states across the
day/night cycle, researchers must also consider how outside influences on sleep behaviors interact
with these neurotransmitters. The two strongest determinants of sleeping behaviors are time of day
and food availability, humans generally adhere to an active light-period and a quiet dark-period.
EEG rhythms that are used to distinguish between sleep-wake states can oscillate according to these
24 h light–dark cycles, for example hippocampal θ rhythm, most often associated with waking states,
is modulated on a circadian rhythm and can be entrained by food availability [112]. Considering
evidence that genetic ablation of Hcrt neurons results in reduced mRNA expression of numerous clock
genes in the forebrain and restricted feeding can shift the peak of Hcrt activity [113], it is possible that
Hcrt may play a role in mediating food-related shifts in circadian rhythms, and thus effect sleeping
behaviors. This idea is supported by evidence suggesting that nutritional status can affect Hcrt activity,
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in particular, wake-active Hcrt neurons are inhibited following food-intake and Hcrt neuron activity
increases during periods of fasting in non-human primates [114]. Additionally, normal behavioral
responses to fasting, such as increased waking and foraging behaviors, are not observed in mice with
a genetic ablation of Hcrt neurons [113,115,116], suggesting that Hcrt is not only involved in, but
also necessary for these behavioral responses to food availability. Mechanistically there are many
candidates to investigate how Hcrt activity is modulated by food intake, Hcrt neurons interact with
multiple biomarkers related to nutritional state, and in particular appear to be inhibited by biomarkers
whose release is triggered by food intake, such as leptin, glucose, and neuropeptide Y [115–120].
Taken together these findings suggest a role for Hcrt in modulating not only sleep-wake transitions,
but also more general sleeping behaviors such shifting circadian rhythms in response to changes in
food availability or nutritional status.

3.7. Melanin-Concentrating Hormone Neurons: Promoting REM Sleep

Melanin-concentrating hormone (MCH) is another sleep-relevant neuron population located in
the hypothalamus. MCH appears to have an opposing function to the other hypothalamic population
of Hcrt neurons, while Hcrt promotes wakefulness it appears that MCH plays a role in promoting
sleep, particularly REM sleep. Fos studies have shown that MCH neurons are most responsive after
REM sleep [57,58]. This finding has been supported by a study using cellular recordings, which
observed that MCH neurons only fire during REM sleep [59]. Observation of MCH levels across the
sleep-wake cycle in the amygdala of humans also showed that the onset of sleep produces an increase
in MCH levels [60]. In order to further explore the role of MCH in sleep-wake states researchers
have also performed a variety of manipulation studies such as administration of MCH (i.c.v.) at the
beginning of the light period (sleep phase for rodents), which showed a dramatic ~300% increase
in the amount of REM sleep, and a slightly lower~150% increase in NREM sleep, as opposed to
controls [58]. Concordantly, administration of an MCH antagonist decreases the amount of REM
and NREM sleep [121], together these findings support the idea of MCH being a sleep-promoting
neuropeptide. These findings would suggest that any sleep-relevant function of MCH neurons must be
involved in REM sleep, however studies using genetic manipulation to investigate MCH function have
returned mixed results. MCH receptor 1 knockout animals showed no change in sleep levels and no
change in sleep rebound following a sleep deprivation paradigm [122], whereas MCH knockout mice
showed minor decreases in sleep duration at baseline conditions, but showed a significant decrease
in REM sleep and an increase in behavioral hyperactivity in response to fasting [123]. This link to
fasting has also been supported by in vitro evidence that MCH neurons can be excited by increased
circulating glucose levels [124]. This evidence for a modulatory effect of MCH function could suggest
a possible mechanism for the modulatory effect of nutritional status on sleep function and appears to
be in opposition to the effects seen in Hcrt neurons.

3.8. Glutamatergic and GABAergic Neurons

Alongside the other neuropeptides mentioned researchers must also consider the contribution of
glutamatergic neurons and γ-amino butyric acidergic (GABAergic) neurons to sleep-wake states. These
neuron types are found in all of the brain areas previously discussed [125–131], and in some cases
are co-expressed in the same neurons with these other neuropeptides. For example, Vincent, Hokfelt,
Skirboll and Wu [130] observed neurons co-expressing GABA and histamine in the hypothalamus,
this has also been observed with GABA and MCH [129], and it has been suggested that glutamate
may be a co-transmitter of Hcrt neurons in the hypothalamus [132], NPS neurons near the LC [96,133],
and serotonin neurons in the dorsal raphe nuclei [134]. Additionally, animals with Vglut2 (vesicular
glutamate transporter 2) deletion in the lateral parabrachial nucleus exhibited impaired ability to arouse
from sleep and animals with the same treatment in the medial parabrachial nucleus exhibited shorter
waking periods (~20%) and longer NREM duration (~43%) [135], suggesting a role for glutamatergic
parabrachial nucleus neurons in modulating sleep–wake states.
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Within the hypothalamus it has been shown that a population of wake-active neurons will increase
their firing rate in response to antagonism of GABAA receptors [136], whereas GABAergic neurons in
the BF and VTA show increased firing during waking and REM sleep [26,137]. It is thought that these
VTAGABA neurons in particular may be involved in directing arousal linked to the reward system
following evidence that their firing increases before intracranial self-stimulation in the medial forebrain
bundle [61]. GABAergic neurons in the preoptic area have also been put forward as a candidate for
mediating sleep-wake states. Electrophysiological studies have shown that these preoptic area neurons
are predominantly sleep-active, and lesions of the ventrolateral preoptic area results in insomnia [138].
Additionally, GABAergic neurons have also been shown to project to the lateral hypothalamic area
from the ventrolateral preoptic area and median preoptic nucleus [139]. These opposing actions of the
hypothalamus and the preoptic area, coupled with the synaptic connections between the two structures
have lead researchers to propose a possible state-switch mechanism, whereby the sleep-promoting
preoptic area and the wake-promoting hypothalamus communicate to effectively switch between
sleep-wake states [43]. The heterogeneity of these neuron populations makes functional investigation
using traditional methods such as lesions problematic, as it is difficult to know if the effects are due to
lesioning/recording/stimulating the other sleep–wake-relevant neuron populations that are known to
be neighboring, or even co-expressed within, the neurons being targeted.

4. Optogenetic Investigation of Individual Neuron Populations

The development of optogenetics has revolutionized neuroscience research. It has been
particularly useful for studying heterogeneous neuron populations in areas like the hypothalamus
where many neuropeptides may be co-expressed within the same cell. Within the hypothalamus
investigation of Hcrt and MCH neurons were made particularly difficult using traditional research
methods due to their proximity and their apparent duality of function [59]. The gene-targeting
specificity permitted by optogenetics has allowed researchers to overcome these problems studying
sleep circuits.

4.1. Hypocretin Neurons

The first illustration of in vivo optogenetic manipulation was an investigation of Hcrt activation
in the lateral hypothalamus (LH), which showed that optogenetic activation (5–30 Hz) of Hcrt
neurons increases the probability of a sleep-wake transition from either NREM or REM sleep [140].
This effect was apparent throughout both light and dark phases unless the animal was placed in
a 2 or 4 h sleep-deprivation paradigm resulting in increased sleep pressure [141]. Taken together
these results suggest that Hcrt activity may modulate sleep-wake transitions according to homeostatic
sleep-need. While these optogenetic stimulation studies have investigated the effect of activating Hcrt
neurons [142,143] have also investigated the effect of optogenetically silencing Hcrt neurons using
two transgenic mouse lines. Optogenetic inhibition of Hcrt neurons during the sleep-phase in mice
expressing halorhodopsin in Hcrt neurons resulted in EEG and EMG patterns characteristically seen
during NREM sleep, whereas no effect was seen following inhibition during the wake-phase [142].
Using a second transgenic mouse line with archaerhodopsin expressed in Hcrt neurons, [143] found
that 1 h of Hcrt inhibition during the wake-phase can increase the total amount of time spent sleeping
and reduce the total waking-time. These experiments have shown that stimulating Hcrt neurons can
increase the likelihood of transitions into wakefulness, whereas inhibition of these neurons increases
the likelihood of transitions into sleeping states.

4.2. Melanin-Concentrating Hormone Neurons

Optogenetic techniques have also been used to investigate MCH neurons in the hypothalamus
showing that optogenetic activation of LHMCH neurons at the start of the dark phase (waking
period) produces a dramatic increase in sleep duration, NREM sleep by 60% and REM sleep by
95% across the first 6 h [144]. Whereas optogenetic activation of MCH neurons during NREM sleep
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did not change the duration of NREM sleep but instead increased the probability of a transition from
NREM sleep to REM sleep, and MCH neuron activation at the onset of REM sleep resulted in longer
periods of REM sleep [145,146]. In order to investigate the downstream structures involved in this
modulation of REM sleep, Jego, Glasgow, Herrera, Ekstrand, Reed, Boyce, Friedman, Burdakov and
Adamantidis [145] also used optogenetics to target MCH fibers innervating the medial septum and
tuberomammillary nucleus and found that activating these innervating fibers produced the same REM
extension exhibited following optogenetic stimulation of the MCH neurons themselves. These results
support the role of MCH in promoting REM sleep.

4.3. Dopaminergic Neurons

Optogenetic investigation of DA neurons in the VTA has shown that semi-chronic stimulation of
VTADA neurons over 6 h is sufficient to maintain wakefulness and inhibit sleep-relevant behaviors such
as nest building [40]. Conversely, when these neurons were inhibited animals exhibited nest building
behaviors, suggesting that quieting these neurons triggers behaviors linked to sleep preparation [40].
Additionally, using fiber photometry to observe fluorescent calcium signals emitted by activation
of Th+ VTA neurons, Eban-Rothschild, Rothschild, Giardino, Jones and de Lecea [40] observed that
these neurons are more active during waking and REM sleep than NREM sleep, showed a decrease in
activity immediately prior to wake-to-NREM transitions, and showed an increase in activity prior to
either NREM-to-REM transitions or NREM-to-wake transitions, as had been shown previously [39].
In line with the results of inhibiting these neurons it was also observed that these Th+ VTA neurons
were quiet during nest building behaviors [40]. Similarly, investigation of DA neurons in the dorsal
raphe nucleus with fiber photometry showed increased activity to both rewarding and aversive
salient stimuli, and increased activation during waking and REM sleep compared to NREM [147].
Similarly to the VTA, optogenetic activation of dorsal raphe nucleus (DRN) DA neurons promotes
wakefulness, whereas their inhibition promotes sleeping [147]. Interestingly, fiber photometry results
showed that VTADA neurons appeared to have increased activity during REM sleep compared to
waking states [40], whereas DRNDA showed higher activation during waking states compared to
REM sleep, especially during the early stages of waking, showing a gradual decrease in activity
across the waking phase [147]. Considering previous evidence from measurements of Hcrt1 in CSF
suggesting that wake-promoting Hcrt neurons activity peaks in the latter third of the day [56], it is
possible that different wake-promoting neurons populations modulate wake-states throughout the
day, with DRNDA neurons promoting wakefulness in the earlier stages of the waking period, and Hcrt
neurons taking over modulation of arousal as the wake-phase progresses.

4.4. Cholinergic Neurons

Wake- and REM-active cholinergic neurons are found in the basal forebrain [25,26,30] and
the mesopontine tegmentum [31–35]. Due to the heterogeneity of these areas results from lesion
studies and electrophysiological stimulation studies have produced mixed results (as discussed in
Section 3), however the use of optogenetics has provided more precise targeting of these neurons.
Optogenetic activation of cholinergic basal forebrain neurons increases NREM-wake transitions,
resulting in increased waking-duration and decreased NREM-duration [30], suggesting that these are a
population of wake-promoting neurons. Interestingly, optogenetic activation of cholinergic neurons in
the pedunculopontine tegmentum or the laterodorsal tegmentum increase the likelihood of REM sleep,
and this increase in REM sleep is due to a greater number of REM sleep episodes, rather than an
increase in the duration of the REM sleep episodes [148]. This suggests that cholinergic neurons in
the pedunculopontine tegmentum and laterodorsal tegmentum are playing a role in the initiation
of REM sleep episodes, rather than the maintenance of REM sleep episodes. These results suggest a
wake-promoting role for cholinergic neurons in the basal forebrain, and a REM-initiation-promoting
role for cholinergic neurons in the mesopontine tegmentum.
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4.5. GABAergic Neurons

As previously stated, GABAergic neurons are located throughout the central nervous system
and are co-localized with many different sleep-relevant neuropeptides. Optogenetic activation of
GABAergic neurons found in the ventral medulla has been shown to rapidly and reliably induce
REM sleep, or extend REM sleep episodes when stimulated during an already initiated REM sleep
episode, whereas pharmacogenetic inhibition of these neurons results in dose-dependently reduced
REM sleep [62]. Genetically targeted optrode recordings also showed that these ventral medulla
GABAergic neurons are most active during REM sleep, and during wakefulness they responded
preferentially to feeding and grooming behaviors [62]. Interestingly, optogenetic activation of
GABAergic neurons in the bed nucleus of the stria terminalis (BdNST) during NREM sleep actually
triggers transitions into wakefulness, however stimulating these neurons during REM sleep produces
no transition from REM sleep [149]. Additionally, investigation of a group of GABAergic neurons
in the LH that are known to project to the ventrolateral preoptic area, and do not appear to
co-express either Hcrt or MCH showed that chemogenetic activation of these neurons produces
increased waking-duration, whereas their inhibition causes increased sleep-duration [150]. Conversely,
optogenetic activation of a population of GABAergic neurons in the preoptic area that project to
the tuberomammillary nucleus resulted in increased NREM and REM sleep, and decreased waking,
whereas their inhibition increased waking and decreased both NREM and REM sleep duration [151].
Taken together this suggests that LH and BdNST GABAergic neurons promote wakefulness, whereas
preoptic area GABAergic neurons promote both NREM and REM sleep, and ventral medulla
GABAergic neurons promote REM sleep.

A recent optogenetic investigation of the basal forebrain studied the role of two GABAergic neuron
populations in sleep/wake states. It was observed that parvalbumin-positive GABAergic neurons
are primarily wake- and REM-active, and optogenetic activation of these neurons results in increased
NREM-wake transitions, and an overall increase in the duration of waking states and decrease in
the duration of NREM sleep [30]. Conversely, somatostatin-positive GABAergic neurons showed
more activity during NREM sleep states, and activation of these neurons promotes NREM sleep [30].
Further investigation revealed that the parvalbumin-positive GABAergic neurons received inhibitory
connections from the somatostatin-positive GABAergic neurons [30]. These results suggest a possible
circuit for controlling sleep-wake transitions in the basal forebrain via different neuron populations.

4.6. Astrocytes

While DA, Hcrt, MCH, and GABAergic neurons are well accepted as being part of the sleep-wake
state machine, recent studies have also taken advantage of optogenetic tools to investigate possible
roles in sleep regulation in other non-neuron cell types in the brain. Pelluru, et al. [152] used the
promoter for the astrocyte-specific cytoskeletal protein (GFAP) to optogenetically target astrocytes to
investigate the possibility of astrocyte regulation of sleep-wake states. Although a range of stimulation
frequencies were used (0, 5, 10, 30 Hz), only 10 Hz stimulation of astrocytes produced a significant
decrease in waking and a significant increase in both in REM and NREM sleep duration [152]. This
finding suggests a possible role for astrocytes in the maintenance of sleep-states; however further
investigation is required to understand the precise role of these cells, and the importance of a 10 Hz
stimulation frequency.

5. Optogenetic Tools for Circuit Investigation

While optogenetic tools have provided insight into each of these neuron populations individually,
the most beneficial quality of these tools is the possibilities they present for circuit investigation.
By combining optogenetic methods with other pharmacological and genetic approaches such as
DREADDs, chemogenetic inhibition/excitation, or genetic mouse models researchers can observe how
manipulating one part of the sleep–wake state circuitry affects the relevant upstream/downstream
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targets. The majority of studies using optogenetic methods to investigate these neuropeptides have
focused on the wake promoting neurons, with a particular focus on interactions with Hcrt neurons.

5.1. Hypocretin Interactions with Histamine

Hcrt and histamine are both wake-active neuron populations and the possibility of some kind
of sleep-wake state mediating circuit was suggested by in vitro evidence that Hcrt neurons excite
histamine neurons [153], and reports of low histamine levels in the CSF of narcolepsy patients,
particularly those who are not taking medications to regulate their narcolepsy [154,155]. Low levels
of histamine were also observed in the brains of narcoleptic dogs [156]. Additionally, administration
(i.c.v.) of Hcrt 1 promotes wakefulness, and this effect is attenuated by interruption of histamine H1

receptor function either by application of an H1 receptor antagonist [157,158] or altered in via gene
manipulation in knockout mouse models [159], and patch clamp electrophysiological recordings have
also shown that infusion of Hcrt increases the activity of histaminergic neurons [158]. Conversely,
while the wake promoting effect of Hcrt 1 was reduced in histamine H1 receptor knockout mice [159],
optogenetic stimulation of Hcrt neurons in histidine decarboxylase (HDC) knockout mice was sufficient
to increase the probability of a sleep-wake transition [141]. These findings suggest that there is some
interaction between the hypocretin system and the histamine system and their modulation of arousal.

To observe Hcrt activation of histamine neurons more closely Schone, et al. [160] combined
optogenetic stimulation with in vitro slice electrophysiology to observe the response profiles of
histamine neurons to optogenetic stimulation of Hcrt neurons. Hcrt neuron stimulation resulted
in fast postsynaptic currents in histamine neurons and a robust connection of Hcrt neurons to
histamine neurons was observed (~60% of histamine neurons received connections from ~40% of
Hcrt neurons) [160]. Subsequent investigation of the role of the Hcrt receptor 2 (HcrtR2) in this
connectivity revealed that Hcrt activation of histamine neurons could produce two distinct phases of
histamine neuron firing: an initial fast transient firing peak which is unaffected by HcrtR2 antagonism
and is followed by a slow firing phase that increases linearly during constant Hcrt activation and
is abolished when HcrtR2 is blocked [161]. The same combination of methods was used to observe
targets of tuberomammillary nucleus (TMN) histamine neurons following optogenetic stimulation of
histamine neurons. Results showed that stimulating histamine neurons results in disinhibition of the
wake-active ventrolateral TMN by decreasing inhibitory GABAergic inputs to the vlTMN, whereas
histamine activation resulted in the inhibition of activity in the sleep-active ventrolateral preoptic
nucleus (VLPO) [162]. These observations of two phases of histamine activation differentially affected
by the blocking of HcrtR2 could explain inconsistencies in the role of histamine in Hcrt modulation of
arousal seen in previous studies.

5.2. Hypocretin Interactions with the Locus Coeruleus

The densest afferent projections from Hcrt neurons project to the wake-promoting locus
coeruleus [163] and in vivo studies have shown that Hcrt injections into the LC promote wakefulness
and reduce REM sleep [164,165]. Additionally, while mice lacking the Hcrt receptor show
narcolepsy-like symptoms, targeted restoration of Hcrt receptors in the LC can reduce symptoms of
chronic sleepiness and fragmented wakefulness [166]. Similarly to Hcrt neurons, optogenetic low
frequency stimulation of LC neurons during sleep induces immediate sleep-wake transitions, and
in awake mice it triggers increases in activity and total waking-duration [167]. Additionally, c-Fos
stainings have shown that optogenetic activation of Hcrt neurons in the LH results in increased
neural activity in the LC [141]. To investigate how these neurons interact with the Hcrt system Carter,
et al. [168] carried out a dual optogenetic approach in which they could simultaneously stimulate
Hcrt neurons in the LH and either inhibit or stimulate LC neurons. Using this method they found
that bilateral inhibition of LC neurons blocked the Hcrt-mediated sleep-wake transitions normally
induced by optogenetic stimulation. Conversely, concomitant optogenetic stimulation of Hcrt neurons
and LC neurons enhances Hcrt-mediated sleep-wake transitions. While the Hcrt neurons and LC



Int. J. Mol. Sci. 2017, 18, 1773 12 of 23

neurons have similar wake-promoting effects, the millisecond precision allowed using optogenetics
has allowed researchers to investigate the temporal distinctions between these neuron populations.
While optogenetic stimulation of LC neurons triggers rapid, reliable sleep-wake transitions within ~5 s,
Hcrt neurons act over a longer 10–30 s to induce arousal [169]. It is possible that, while Hcrt modulates
sleep-wake transitions according to homeostatic need, the LC which is known to be active during
exposure to stressful stimuli [41] might play a role in enhancing Hcrt modulation of arousal when the
animal is in a state of hyper-vigilance.

5.3. Hypocretin Interactions with Leptin

While the majority of arousal and sleep–wake state research focuses on transitions between
waking, NREM, and REM sleep due to their clear delineations, there is also the possibility of
subcategorizing wake-states. Although there are not currently widely accepted criteria to define
categories of wakefulness, states of quiet-waking and active-waking are discussed frequently as
well as the state following presentation of salient stimuli to induce either exploratory behaviors
(rewards) or stress responses (aversive/fearful) stimuli. Hypocretin has been linked to states of
hyper-arousal such as stress in a study by Bonnavion, et al. [170], which showed that extended
phasic high-frequency optogenetic stimulation of Hcrt neurons produced multiple physiological and
behavioral markers of stress including elevated plasma corticosterone concentrations, increased heart
rate, increased blood pressure, and reduced exploratory behavior in the open field task. Interestingly,
in food deprived animals optogenetic stimulation of Hcrt neurons resulted in a 3-fold increase in
corticosterone concentrations above that of mice fed ad libitum [170], suggesting that food deprivation
heightened the stress-response induced by Hcrt activation.

Hcrt is inhibited following food intake [114] and by biomarkers that are released following food
intake such as leptin, glucose, and neuropeptide Y [115,117–120]. Of these compounds it has been
shown that leptin, which is released in response to dietary fat intake, is behaviorally anxiolytic [171,172].
LepRb neurons are also known to be present in the lateral hypothalamic area, and directly innervate
Hcrt neurons in the LH [173]. By combining optogenetic activation of Hcrt with leptin infusion
into the lateral hypothalamic area, Bonnavion, Jackson, Carter and de Lecea [170] showed that
Hcrt-mediated increase in corticosterone that is enhanced by food restriction, is attenuated by leptin
administration. Then, to observe the direct effect of leptin receptor activation they optogenetically
activated LepRb neurons during a behavioral restraint stress paradigm, which is known to trigger
increased corticosterone release. Results showed that activation of LepRb neurons resulted in a
suppression of Hcrt activity and resulted in decreased corticosterone concentrations [170]. Taken
together, these results show that nutritional status modulates physiological and behavioral markers of
stress via the Hcrt system, and Hcrt-induced stress can be attenuated by leptin, which is endogenously
released following dietary fat intake.

5.4. Hypocretin Interactions with Melanin-Concentrating Hormone (Feat. GABA)

Optogenetic methods have also been used to investigate the apparent opposing functions of
wake-promoting Hcrt neurons [140] and REM-promoting MCH neurons [145,146] in the lateral
hypothalamus. Gene-deletion studies have also provided evidence for contrasting functions of these
two neuron populations: deletion of Hcrt neurons results in increased sleepiness (as seen in narcolepsy)
and weight gain [107,108], whereas deletion of MCH neurons results in increased hyperactivity and
reduced bodyweight [174–176]. Recent research investigating the interactions between these neurons
using combinations of pharmacological manipulation, optogenetic manipulation, and network-level
calcium imaging in in vitro slice recordings have shown that bath-application of Hcrt in the LH
results in the activation of approximately 30% of MCH neurons [177]. Further investigation showed
that optogenetic activation of Hcrt neurons resulted in a rapid reduction of firing in approximately
80% of the MCH neurons recorded [177], however this effect was attenuated following application
of a GABAA receptor blocker (10 µm gabazine), suggesting a possible role for GABA in mediating
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interactions between MCH and Hcrt neurons [177]. Indeed, optogenetic activation of Hcrt neurons
produces increased GABAergic tone in the LH (also seen following bath application of Hcrt [161])
and this effect is reduced following application of Hcrt receptor antagonists [177]. Taken together,
these results show that Hcrt neural activity can mediate MCH neuron activity either by excitation or
inhibition, and that these interactions may be mediated via GABAA receptors.

6. Further Developments and Future Directions

Optogenetic stimulation dramatically improved the ability of researchers to stimulate specific
populations of neurons without unintentionally stimulating neighboring neuron populations.
This specificity can also be achieved for the recording of neural activity of targeted neurons
populations without inadvertently recording activity from other adjacent populations by using
fiber-photometry [178,179]. The implementation of this method will be crucial for understanding
endogenous function of neuron populations—without first observing the naturally occurring activity
patterns of these neuron populations, the optogenetic stimulation of them will only allow researchers
to understand what artificial activation of the neurons produces. Greater insight into the naturally
occurring neural activity patterns of different types of neurons will be important for driving further
studies manipulating these activity patterns using optogenetic stimulation.

The main improvement that optogenetic tools provide over traditional electrophysiological
recording and stimulating methods is the ability to target specific neurons based on their
gene-expression. However, this does not help if the population of neurons being studied is not yet
genetically defined. Therefore, in order for researchers to receive the maximum benefit from these tools
it is important to carry out a systematic characterization of the target population. Recent developments
in next-generation sequencing methods now allow researchers to investigate gene-expression profiles
of single neurons [180]. These methods will be extremely useful for defining subpopulations of neurons
within highly heterogeneous structures, such as the hypothalamus, to allow greater specificity when
genetically targeting neurons. In particular, the use of drop-seq to sequence the RNA of a single
cell separated into nanoliter-sized droplets has now been used to successfully define 50 genetically
distinct neuron types in the heterogeneous hypothalamic arcuate–median eminence complex [181].
These different methods are impressive when used alone, but the real benefits for circuit investigation
are apparent when they are used in combination. A recent study by [151] investigated GABAergic
neurons in the preoptic area, beginning with viral tracing methods, combined EEG and EMG sleep state
monitoring, optogenetic manipulation, and optrode recordings they found a population of sleep-active,
sleep-promoting GABAergic neurons in the preoptic area that project to the tuberomammillary nucleus.
Further investigations identified multiple candidate markers found within the neurons by using cingle
cell RNA sequencing and translating ribosome affinity purification. With these candidate genes [151]
were then able to use further optogenetic and pharmacogenetic stimulation experiments to show a role
for each of these gene candidates in promoting sleep. By following this example of using a combination
of these techniques, researchers will be able to define their target neuron populations, observe the
endogenous neuronal activity with fiber-photometry, and then optogenetically manipulate it.

7. Conclusions

While the optogenetic investigations discussed here have all taken great steps toward
understanding the mechanisms underlying how the brain modulates between REM, NREM, quiet
waking, active waking, and hyper-arousal states, there is still much to be learned. Each of the neural
populations discussed here hold their own interest for the function of sleep and wake states, however,
no behavior as complex as the modulation of sleep-wake transitions occurs in a single-structure vacuum,
and it will only be by investigating circuits that researchers can finally comprehend the mechanisms via
which animals can modulate sleep behaviors. Optogenetic technologies have vastly improved the ability
of researchers to investigate the complex circuitry underlying sleep behaviors and these technologies
will be fundamental in increasing our current knowledge of the sleep functions carried out in the brain.
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While much attention has been paid to optogenetic stimulation in particular, without first observing
the endogenously occurring neuronal activation it would be impossible to successfully mimic neural
activity using optogenetic stimulation. Therefore preliminary studies using optogenetic techniques
such as fiber photometry should be taken advantage of to first observe the naturally occurring neural
patterns researchers wish to recreate in the neurons expressing their neuropeptide of interest.
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Abbreviations

BdNST Bed nucleus of the stria terminalis
CSF Cerebrospinal fluid
DA Dopaminergic
DREADD Designer receptors exclusively activated by designer drugs
DRN Dorsal raphe nucleus
EEG Electroencephalogram
EMG Electromyogram
GABA γ Amino butyric acid
GFAP Glial fibrillary acidic protein
Hcrt Hypocretin
HcrtR2 Hypocretin receptor 2
Hz Hertz
i.c.v. Intracerebroventricular
LC Locus coeruleus
LH Lateral hypothalamus
MCH Melanin-concentrating hormone
mRNA Messenger ribonucleic acid
NE Norepinephrine
NPS Neuropeptide S
NREM Non-rapid eye movement
REM Rapid eye movement
TMN Tuberomammillary nucleus
Vglut2 Vesicular glutamate transporter 2
VLPO Ventrolateral pre-optic nucleus
vlTMN Ventrolateral tuberomammillary nucleus
vPAG Ventral periaqueductal gray
VTA Ventral tegmental area
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