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ABSTRACT
Optical cavities, e.g., as used in organic polariton experiments, often employ low finesse mirrors or plasmonic structures. The pho-
ton lifetime in these setups is comparable to the timescale of the nuclear dynamics governing the photochemistry. This highlights
the need for including the effect of dissipation in the molecular simulations. In this study, we perform wave packet dynamics with
the Lindblad master equation to study the effect of a finite photon lifetime on the dissociation of the MgH+ molecule model sys-
tem. Photon lifetimes of several different orders of magnitude are considered to encompass an ample range of effects inherent to lossy
cavities.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0033773., s

I. INTRODUCTION

Motivated by recent experimental advancements,1–3 state-of-
the-art computational tools are presently employed to consider
the interaction between quantized electromagnetic radiation and
a diverse range of matter systems in models reminiscent of the
early Jaynes–Cummings model.4 Examples of such matter sys-
tems include quantum dots,5 excitons,6 ensemble systems,7–9 Bose–
Einstein condensates,10 superconductors,11 and molecules of differ-
ent sizes and complexity.12

Central to these studies, be it experimental or theoretical, is
the macro- or nanoscopic material structure giving rise to elec-
tromagnetic field-modes in a confined space, henceforth called a
cavity structure, though they are not always reminiscent of the
widely used Fabry–Pérot cavity. The material and geometry of these
cavity structures determine the characteristics of the light–matter
interaction, and precise tailoring enables a unique possibility to
probe or control phenomena that take place on the scale of sin-
gle particles. Examples of such phenomena include chemical reac-
tions,1 photo-dissociation,9 electron transport,13,14 isomerization,15

and heat-transfer between molecules.16

In theoretical works such as this, the properties of the cavity
structure are typically translated into parametric values, such as the
mode frequency and the vacuum electric field strength,17,18 entering
the model of the system. The influence of these parameters is well
studied and generally well understood.

However, not all parameters describing the cavity structure
have gained equal attention. Effects arising from a finite lifetime
for field excitations, also known as the cavity Q-factor or photon
decay rate, have only recently been the main focus in a few ground-
breaking studies,19–21 and dissipative effects, in general, have been
described as a challenge for computational methods.1

Theoretical studies often assume an infinite lifetime,15 which
can be appropriate but introduces inaccuracies when used to model
conditions where finite photon lifetimes are de facto non-negligible.
For instance, this is typically the case for plasmonic nano-cavity
structures,11,22 such as ultra-thin metallic gaps23 or nano-gap anten-
nas,24,25 where the desire to concentrate a strong electromagnetic
field in a small volume inevitably leads to short-lived excitations of
the field.1

Another previously employed strategy is to incorporate a
Hamiltonian coupling between affected states and a reservoir of
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simple systems.26 However, this allows the energy to return from
the reservoir and affect the evolution of the system, which there-
fore makes an approximative model for electromagnetic energy
being lost into the environment. Additionally, photon decay pro-
cesses inevitably introduce decoherence into the system, which
makes an approach with a pure state wave function insufficient.27

Instead, a density matrix formalism is required for the time evo-
lution of these statistically mixed states, and the Schrödinger
equation is generalized to some variety of a master equation.
Here, we use the Markovian Lindblad master equation, where the
decay rate of field excitations will enter through the cavity decay
rate κ,27,28

∂t ρ̂ = −
i
h̵
[Ĥ, ρ̂] +∑

n
κn(L̂nρ̂L̂†

n −
1
2
[L̂†

nL̂n, ρ̂]
+
). (1)

However, using the density matrix, ρ̂, increases the computational
cost considerably compared to a wave function based approach.

Recent publications19–21,29,30 on cavity decay do not deal
directly with the Lindblad equation formalism; instead, the under-
lying formalism is a non-Hermitian evolution of a pure state,
which is shown to be appropriate for both relaxation dynamics19,21

and isomerization.20 However, for general applications, the method
omits some phenomenological processes, such as decoherence and
time evolution of statistically mixed states, and the impact of this
exclusion depends on the type of system and is observable under
investigation.

In this paper, we investigate the molecular dissociation of the
MgH+ molecule after excitation to an unbound electronic state
and in the presence of a lossy cavity structure. Here, the photon
decay will populate intermediate states that also contribute to the
dissociation. Thus, a wave function based approach is not suit-
able for this type of problem (see the discussion at the end of
Sec. II). Instead, the Lindblad master equation is used to capture
the behavior of the system and deliver accurate results. We inves-
tigate how the photon lifetime and cavity vacuum field strength
affect the photostability of the MgH+ molecule, and the photochem-
ical reaction mechanisms of the coupled light–matter system are
analyzed.

II. SYSTEM AND MODEL
The Hamiltonian in Eq. (1) is a molecular Jaynes–Cummings

type Hamiltonian9 modeling vibrationally and electronically excited
states in the presence of a lossy cavity mode. It is composed of
Ĥm for the molecule, Ĥc for the cavity mode, and the light–matter
interaction Ĥcm,

Ĥ = Ĥm + Ĥc + Ĥcm. (2)

We assume the cavity Born–Oppenheimer approximation,31 the
rotating wave approximation, and the dipole approximation for a
spatially fixed molecule. Excited electronic and vibrational states of
the molecule are described on one-dimensional potential energy sur-
faces. The four lowest electronically excited states of MgH+ are con-
sidered (see Fig. 1). Wave-packets approaching the dissociation limit
are absorbed by an imaginary potential. The cavity mode is mod-
eled as a single mode with a photon energy of 4.3 eV (285 nm).

FIG. 1. The four lowest electronic states in MgH+. Each potential energy surface
is implemented with an absorbing potential, whose Gaussian shape and relative
size are shown with the dotted line on the black curve.

Comprehensive details about the Hamiltonian are found in
Appendix A.

The states of the combined molecule-cavity system are
expressed as a product state, ∣n,M⟩ = ∣n⟩ ⊗ ∣M⟩, where ∣n⟩
∈ {∣0⟩, ∣1⟩, ∣2⟩, . . .} are the Fock states of the cavity mode and ∣M⟩
∈ {∣X⟩, ∣A⟩, ∣B⟩, ∣C⟩} are the electronic states of MgH+. All prod-
uct states that have distinctly higher energy than the initial state,
∣0,C⟩, will never be populated under the rotating wave approxima-
tion and are removed from the description. The full Hamiltonian in
Eq. (2) is then expressed in the basis of eight states {∣0,X⟩, ∣1,X⟩,
∣0,A⟩, ∣0,B⟩, ∣2,X⟩, ∣1,A⟩, ∣1,B⟩, ∣0,C⟩} covering an energy range
of ∼10 eV.

The product states are grouped into three subspaces: the
ground state subspace, the single excitation subspace, and the double
excitation subspace. The corresponding potential energy curves are

FIG. 2. Potential energy surfaces associated with the basis states for electronic
and cavity degrees of freedom. The initial state is the pure molecular excitation,
∣0,C⟩. Arrows indicate which states are coupled by Lindblad decay operators.
States shown as dashed curves are referred to as the double excitation subspace.
States shown as solid curves are referred to as the single excitation subspace. The
state shown as a dotted curve is referred to as the ground-state subspace. The two
lower subspaces (ground state and single excitation) are occasionally considered
as a group and referred to as the decohering subspaces.
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shown in Fig. 2. This partition will later be used for analyzing the
dynamics of the system. Under the rotating wave approximation,
states from different excitation subspaces are not coupled, which
simplifies the Hamiltonian.32 Only states within the same excita-
tion subspaces are coupled and exhibit curve crossings, as shown in
Fig. 2.

The photon decay, as modeled by the Markovian Lindblad mas-
ter equation, assumes that the photon is lost irrevocably from the
system28 (either into free space or by absorption at the surrounding
bulk material).

In the product basis, these unidirectional interactions are iden-
tified by, wherever possible, decreasing the photon number by one.
This yields four transitions: ∣1,B⟩ → ∣0,B⟩, ∣1,A⟩ → ∣0,A⟩, ∣2,X⟩
→ ∣1,X⟩, and ∣1,X⟩→ ∣0,X⟩, which are indicated by vertical arrows
in Fig. 2. Each of these unidirectional interactions forms a non-
Hermitian Lindblad jump operator. The decay rates {κn} from the
general case in Eq. (1) are here the same value, κ, for all photons in
the mode, and κ is determined for any particular cavity structure.
Since the state ∣2,X⟩ has two photons, the associated annihilation
operator will introduce a factor of 2 in the Lindblad operator, effec-
tively increasing the decay rate proportional to the energy increase
in the field,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 = ∣0,B⟩⟨1,B∣,

L2 = ∣0,A⟩⟨1,A∣,

L3 = 2∣1,X⟩⟨2,X∣,

L4 = ∣0,X⟩⟨1,X∣.

(3)

This model includes no Lindblad de-phasing operators, such as the
effects derived from weak interactions between the molecule and its
environment, which are assumed to be negligible on the timescale
for molecular dissociation of MgH+.

The initial state for the simulation, ρ̂0, is formed from the
pure state ∣0,C,ψ(q)⟩, where the component ψ(q) is the nuclear
vibrational wave function, created by weighting the ground-state
wave function of ∣X⟩ with the transition dipole moment between
∣X⟩↔ ∣C⟩, which corresponds to a vertical excitation,

ρ̂0 = ∣0,C,ψ(q)⟩⟨0,C,ψ(q)∣. (4)

This method provides a consistent initial condition of a fully excited
molecule without the introduction of additional parameters. With
Ĥ, {L̂n}, κ, and ρ̂0, the model is fully defined, and the time evolution
of Eq. (1) can be simulated as described in Sec. III.

As a general remark, to minimize computational cost, the
Lindblad master equation can be reduced to a non-Hermitian
Schrödinger equation employing an absorbing potential, given the
following three conditions: The Hamiltonian does not couple any
state in the subspace to other states that are not in the subspace,
the initial state projected onto that subspace is a pure state, and the
subspace is not the recipient of decaying states. This motivates the
method in previous studies,19–21 but in this study, these conditions
only apply to the doubly excited subspace (see Fig. 2 for definitions
of subspaces). The main issue is that a straightforward reduction
to a Schrödinger equation only accounts for the removal of popu-
lation, and not the re-population that happens in the single exci-
tation subspace, and ground-state subspace. The re-population is

necessary for this study since a dominant contribution to the observ-
able occurs after it. Additionally, when the decay from the Lindblad
operators is transferring population between subspaces, the state is
decohering and re-populating the receiving subspaces as a statistical
mixture of states. These mixed states display a suppressed interfer-
ence when evolving on the potential energy surfaces, an effect that
is further discussed in relation to our data in Sec. IV. For these
reasons, time evolution of a non-Hermitian Schrödinger equation,
which only accommodates pure states, is not well suited to our sys-
tem. Instead, the Lindblad equation will describe these influential
effects.

III. METHODS
The potential energy curves (see Fig. 1) are calculated with

the program package Molpro33 at the CASSCF(12/10)/MRCI/ROOS
level of theory.34,35 The time evolution of the Lindblad equation is
done numerically with a Runge–Kutta scheme as it is implemented
in the differential equation solver ode4536 in Octave.37 The density
operator ρ̂ is represented on a numerical grid for the nuclear coor-
dinate q with 96 grid points for each of the included states ∣n,M⟩.
The density matrix is propagated for 500 fs, a duration selected to
reflect the relevant timescale of the MgH+ dissociation. Due to the
increased computational cost associated with the Lindblad equa-
tion, a strategy was developed where Lindblad operators could be
summed ahead of time evolution, reducing both memory require-
ments and computational cost (see the derivation and details about
this strategy in Appendix B).

The accuracy of the method is tested against time evo-
lution with our in-house software package QDng using the
Chebyshev propagation method,38 and good agreement between
the two was found (see Appendix C for benchmarking results
and further details about the implementation of the numerical
method).

IV. RESULTS AND DISCUSSION
Initially, the system is vertically excited in full to the state ∣0,C⟩,

which corresponds to a dissociative state of the MgH+ molecule.
Since this state has no field excitations, the initial state will not
itself decay to any other state. The vacuum electric field strength
Ec—which scales the light–matter interaction strength according to
Eq. (A4)—is sampled for a range of values: Ec ∈ [0, 6] GV/m. After
500 fs of time evolution, the remaining population in the system (the
trace of ρ̂) is recorded. This is the portion that has not been removed
by absorbing potentials, and it measures the stability of the MgH+

molecule over the range of light–matter interaction strengths. The
mean lifetime of the field excitation, τ = 1/κ, is then varied over eight
orders of magnitude.

Figure 3 shows the population data from a batch of calcula-
tions, plotted on a two-dimensional grid. The photon lifetime τ is
divided into eight sectors, one for each order of magnitude, from
105 fs in sector (a) to 10−2 fs in sector (h). For comparison, two
relevant times are marked with one white solid line and one white
dashed line. The solid line identifies the total duration of time evolu-
tion, which corresponds to 500 fs. The dashed line at 0.5 fs identifies
the time it takes light to travel across a Fabry–Pérot type cavity with
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FIG. 3. The remaining population on the vertical axis is the trace of ρ̂, 500 fs of time evolution after the initial excitation to a dissociative state, and it measures the stability
of the MgH+ molecule. The electric field strength, Ec, determines the strength of the light–matter coupling in the interaction Hamiltonian (A3). Mean lifetime, τ, refers to that
of the field excitation from the cavity structure, and τ = 1/κ, where κ is the decay rate from the Lindblad equation (1). Black thicker lines partition the lifetime parameter into
eight sectors [(a)–(h)], each corresponding to one order of magnitude. For reference, the white solid line in sector (d) marks the duration for time evolution (500 fs). The white
dashed line in sector (g) marks the time duration for light to cross the length of a Fabry–Pérot type cavity (0.5 fs). The white dotted line crossing several sectors marks the
points where the Rabi splitting is roughly equal to the full width at half maximum broadening of the field excitation, ΩR(q) ≈ Γ. On the left-hand side of this line resides the
strong coupling regime where ΩR(q)≫ Γ.

length λ/2 ≈ 140 nm. For such cavities, shorter lifetimes are not
physical.

The features calling for explanations in Fig. 3 occur exclusively
at higher electric field strengths. For small values, on the other hand,
Ec ≲ 1 GV/m, the initial molecular excitation into the dissociative,
but non-decaying, state ∣0,C⟩ does not exchange enough population
with other dipole-coupled states, and essentially all the population
is absorbed during the first 50 fs. This is the expected behavior of a
free, dissociating molecule. The following discussion will therefore
only consider the behavior of a molecule coupled to the field mode,
i.e., Ec ≳ 2 GV/m.

In sectors (a) and (b) (Fig. 3), where lifetimes are long
(τ on the order of 105 fs or 104 fs), the molecule is significantly sta-
bilized. This parameter regime can be safely considered as strong
coupling. The mean lifetime here is long enough for decay processes
to be negligible, and the system behaves as if the lifetime was infinite
(or κ = 0). In these sectors, a sharp rise in molecular stability can be
observed as the electric field strengths go beyond 2 GV/m. The sta-
bility then plateaus and oscillates around ∼0.7. The cause for the rise
in stability can be attributed to the growing Rabi-splitting due to the
stronger light–matter coupling.39,40 This increases the energy differ-
ence between the polaritonic states, which suppresses the transfer of
population between them, and stabilizes the molecule. The observed
small-scale oscillations are understood as a consequence of interfer-
ence effects between nuclear wave packets in the crossing regions.41

The low rate of decay in these sectors retains the population in the
double excitation subspace and the state does not decohere. Time
evolution data from sector (b) is shown in Fig. 4.

In sector (c), where the mean lifetime is measured in thou-
sands of femtoseconds (τ on the order of 103 fs), the impact of
photon decay starts to become noticeable. However, when compared
to the infinite lifetime case, the sector is still qualitatively similar to a
varying Ec. The error introduced by an infinite lifetime approxima-
tion, in sector (c), can be quantified by population deviations from
the case of τ = ∞. To get the worst-case error in the sector for the

FIG. 4. Time evolution data for Ec = 3.0 GV/m and τ = 3.6 × 104 fs [sector (b) in
Fig. 3]. States not shown have a peak population of less than 0.002. (a) Populated
states in the double excitation subspace. (b) Solid line shows the total population,
and the dashed line shows the renormalized purity.
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population, the lifetime is fixed at its shortest, τ = 1000 fs, and the
deviation from τ = ∞ is calculated for all such points, which gives
an average deviation of ∼0.07.

The analysis is repeated for a lifetime one order of magnitude
larger than the timescale of the studied phenomena. Here, 500 fs
of time evolution gives τ = 5000 fs. The average deviation is then
calculated to ∼0.02, which can be an acceptable deviation for many
applications.

In sector (d), with mean lifetimes on the order of hundreds
of femtoseconds (τ on the order of 100 fs), the nuclear dynamics
is now on the same timescale as the photon decay and cannot be
neglected anymore. A small change in the lifetime now changes the
stability of the molecule. In sectors (a)–(c), the long lifetime implies
that dissociation is primarily happening in the double excitation
subspace but this changes in sector (d). The decay rate is now suffi-
cient for the system to also dissociate from the single excitation and
ground-state subspaces via the states ∣0,A⟩, ∣0,B⟩, ∣1,X⟩, and ∣0,X⟩.
For Ec ≳ 2.5 GV/m, this type of dissociation dominates in sector
(d). The loss of coherence in the state ρ̂(t) results in a suppression
of the interference effects and the finer oscillations are dampened.
The trapping in polariton states that has contributed to the stabi-
lization now becomes less efficient. The photon decay projects the
wave packet partially onto unbound vibrational eigenstates in the

FIG. 5. Time evolution data for Ec = 3.0 GV/m and τ = 48 f [sector (e) in Fig. 3].
All states are noticeably populated. (a) Populated states in the double excitation
subspace. (b) Populated states in the single excitation subspace. (c) Populated
states in the ground-state subspace. (d) Solid line shows the total population, and
the dashed line shows the renormalized purity.

single excitation subspace, as well as the ground state. The popula-
tion remaining in these unbound states for long enough will then
contribute to dissociation.

In sector (e), where the lifetime is on the order of tens of fem-
toseconds (τ on the order of 101 fs), the local minimum in Fig. 3 can
be understood as an optimum for dissociation via both the single
excitation subspace and the ground state subspace. All subspaces are
populated just long enough such that each subspace can contribute
to the dissociation. In this sector, the behavior of the system is domi-
nated by effects from decay, and we are now firmly in the dissipative
regime (see Fig. 5 for population data from time evolution in the
product states).

In sectors (f) and (g), where the photon lifetime is on the
order of femtoseconds or tens of femtoseconds (τ on the order of
100 fs or 10−1 fs), the lifetime is short enough that the population
decays into the ground state before there is enough time to con-
tribute to dissociation from the other subspaces. The time evolution
is shown in Fig. 6, where the initial population in ∣0,C⟩ decays almost
instantaneously to the mostly bound vibrational states in ∣0,X⟩ (via
∣0,A⟩).

In sectors (g) and (h), where the lifetime of field excitations is
on the order of tens or hundreds of femtoseconds (τ on the order
of 10−1 fs or 10−2 fs), a new phenomenon has to be introduced to

FIG. 6. Time evolution data for Ec = 3.0 GV/m and τ = 0.58 fs [sector (g) in Fig. 3].
States not shown have a peak population of less than 0.08. (a) Populated states
in the double excitation subspace. (b) Populated states in the single excitation
subspace. (c) Populated states in the ground-state subspace. (d) Solid line shows
the total population, and the dashed line shows the renormalized purity.
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understand why the molecular stability is declining for the fastest
decay. Basis states with a non-zero photon number inherit the rel-
evant lifetime, and here, it is short enough for the energy of these
states to become a non-negligible superposition of energies accord-
ing to a Lorentz distribution with the full width at half maximum
Γ = h̵κ. Or put differently, states with short lifetimes experience
energy broadening. Which states are affected and the extent of this
broadening are shown in Fig. 7. The superposition of energies means
that states that were otherwise resonantly dipole-coupled acquire an
increasing average detuning, and population transfer is suppressed.
The outcome is a smaller spectral overlap and a diminished popula-
tion transfer between the (sharp) initial state ∣0,C⟩ and the (broad-
ened) decaying states. This keeps most of the population on the
potential energy surface of ∣0,C⟩, where it is quickly absorbed at
the end of the grid, realizing the declining stability of the MgH+

molecule that is most pronounced in sector (h) of Fig. 3.
The increase in energy broadening from Fig. 7 implies that

additional states will overlap in energy, and thus, their interac-
tions should be included in the model, which occurs about half-way
through sector (g) and certainly in sector (h). This means that the
initial assumption about independent subspaces (see Fig. 2) will start
to break down. Fortunately, the decline in population seen in sec-
tor (h) from Fig. 3 is explained by the weaker coupling between
the non-broadening initial state ∣0,C⟩ and the decaying states. This
suppression will be unaffected by any missing couplings, and there-
fore, the qualitative behavior with a decline in stability for very short
lifetimes will still hold.

Changes in chemical properties due to the interaction with loss-
less optical cavities have been under intense theoretical study in the
last decade.1,15 However, from this study, it is clear that long life-
times are not a prerequisite for interesting modifications of chemical
properties. In Fig. 3, a white dotted line is drawn where the energy

FIG. 7. The left-hand side shows the basis states for the system (the same as
in Fig. 2). States in blue have some of its energy in the field mode. With the
finite photon lifetime, their energy will spread over a superposition of energies
in a Lorentzian broadening. The degree of broadening is shown on the right-hand
side, plotted on the same energy scale as the left-hand side (and, for clarity, renor-
malized to equal amplitudes). Graph (f) corresponds to the lifetime of τ = 3.2 fs,
which is the logarithmic center of sector (f) in Fig. 3, thus estimating the typical
energy broadening that sector. The pattern continues, with graph (g) estimating
the broadening in sector (g) and graph (h) estimating the broadening in sector (h).
The dashed state has two photons and thus twice the broadening of solid blue
states.

FIG. 8. Four transition dipole moments are used in the calculations. ∣X⟩ ↔ ∣A⟩,
∣X⟩ ↔ ∣B⟩, and ∣A⟩ ↔ ∣C⟩ are resonant with the cavity mode frequency and
thus included in the interaction Hamiltonian [Eq. (A3)]. The transition ∣X⟩ ↔ ∣C⟩
is used to create the initial excited state.

width of the field excitation Γ = h̵κ is roughly equal to the Rabi split-
ting ΩR(q) = 2Ecμ(q). Transition dipole moments are shown in
Fig. 8 as functions of q. For finding ΩR(q) ≈ Γ, the transition dipole
moment is thus estimated as μ = 1 × 10−29 cm, and a white dot-
ted line for ΩR = Γ can be drawn. Some orders of magnitude to the
left of this line lie the strong coupling regime, where ΩR(q) ≫ Γ,
and to its right, energy broadening is the dominant effect. Still, an
equally significant modification of MgH+ stability is observed in this
regime.

Using the same estimate for the transition dipole moment
(μ = 1 × 10−29 cm), the entire parameter regime shown in Fig. 3 falls
just below the ultrastrong coupling regime (where Ecμ/ωc > 0.1),
thus motivating the approximations made in the Hamiltonian (see
Appendix A).

V. CONCLUSION
We have studied the photostability of MgH+ in a lossy cav-

ity. The dynamics have been simulated by performing nuclear wave
packet dynamics via the Lindblad equation. This approach includes
the vibronic decoherence caused indirectly by the loss of photons
from the cavity. The studied parameter range includes decay rates
inside and outside the strong coupling regime.

Deep in the strong coupling regime, for cavity lifetimes longer
than the nuclear dynamics (τ ≫ 100 fs), stabilization of MgH+ is
achieved through the formation of well-separated polariton states.
Interference effects at the curve crossing can be observed due to the
nearly fully coherent time evolution. For cavity decay rates on the
order of tens of femtoseconds, the stabilization effect decreases and
the aforementioned interference effects disappear. Even though this
regime can still be regarded as the strong coupling regime, the coher-
ent wave packet time evolution now competes with the effects from
dissipation. The separation of polaritonic states, which is responsible
for the stabilization, is now affected by the photon decay.

Shortening the photon lifetime even further, down below 1 fs,
increases the stabilization again, as the molecule is rapidly funneled
back into its ground state of the system. Our results suggest that, for
an optimal photon lifetime in this region, low Q-factor cavities may
facilitate the control of photochemical reactions,21 where several

J. Chem. Phys. 153, 234304 (2020); doi: 10.1063/5.0033773 153, 234304-6

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

competing mechanisms are responsible for the observed phenom-
ena: The population is transferred efficiently between the polariton
states, which may be interpreted as an optimized spectral overlap of
the cavity mode42 with the energy width of the nuclear wave packet.
The short photon lifetime contributes to the cooling of the system.
With fast enough decay, the molecule can dissipate the energy stored
in the electronic excitation before dissociation takes place. The com-
bination of both effects results in an optimal stabilization of MgH+

in this particular configuration.
It is worth noting that the stability optimum is at the border

of the strong coupling regime, which has also been found in other
studies.21 This suggests that it may be an interplay of strong cou-
pling and cavity cooling, which is required to explain polaritonic
chemistry experiments.

ACKNOWLEDGMENTS
This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (Grant Agreement No. 852286).

APPENDIX A: THE HAMILTONIAN
The molecular Hamiltonian is here expressed in terms of the

four lowest electronic states {∣X⟩, ∣A⟩, ∣B⟩, ∣C⟩},

Ĥm = −
h̵2

2M
d2

dq2 + VX(q)∣X⟩⟨X∣ + VA(q)∣A⟩⟨A∣

+ VB(q)∣B⟩⟨B∣ + VC(q)∣C⟩⟨C∣. (A1)

The reduced mass, M, of the MgH+ molecule is 1763.2 me. 1D
potential energy surfaces {VX(q), . . ., VC(q)} are calculated under
the Born–Oppenheimer approximation with the program package
Molpro33 at the CASSCF(12/10)/MRCI/ROOS level of theory34,35

and interpolated using splines to a grid with 96 grid points. Wave
packets approaching the right-hand side of the grid are removed by
Gaussian-shaped absorbing potentials. How much norm that has
been removed is stored as a function of time, separately for each
product state (see Fig. 1).

The frequency of the fundamental cavity mode ωc is chosen to
match a bright transition of the Mg atom (at 285 nm).9 The cavity
mode is modeled in the Fock basis {∣0⟩, ∣1⟩, ∣2⟩, . . .}. With the pho-
tonic creation and annihilation operators, â† and â, respectively, the
cavity Hamiltonian is formed,

Ĥc = h̵ωc â†â. (A2)

Light–matter interactions are modeled under the dipole and rotating
wave approximations. Molecular transitions resonant with the cavity
mode frequency are ∣X⟩↔ ∣A⟩, ∣X⟩↔ ∣B⟩, and ∣A⟩↔ ∣C⟩ (see Fig. 1
for their potential energy surfaces),

Ĥcm = EcμXA(q)(â†
∣X⟩⟨A∣+â∣A⟩⟨X∣)+EcμXB(q)(â†

∣X⟩⟨B∣+â∣B⟩⟨X∣)

+ EcμAC(q)(â†
∣A⟩⟨C∣ + â∣C⟩⟨A∣). (A3)

The transitions ∣A⟩↔ ∣B⟩, ∣B⟩↔ ∣C⟩, and ∣X⟩↔ ∣C⟩ are not resonant
with the cavity mode frequency, but the transition ∣X⟩↔ ∣C⟩ is used

for creating the initial excited state. The transition dipole moments
{μ(q)} are obtained at the same level of theory as the potential energy
surfaces, and Fig. 8 shows the ones that are used in the model. For
a minimal model of the molecule, permanent dipole moments and
self-energy are omitted. The vacuum electric field strength, Ec, deter-
mines the strength of the light–matter interaction and depends on
the mode volume of the cavity structure, V,

Ec =

√
h̵ωc

2ϵ0V
. (A4)

APPENDIX B: SUMMING LINDBLAD OPERATORS
AHEAD OF TIME EVOLUTION

To do time evolution with the Lindblad equation (1), all {L̂n}
operators must be stored in memory, and given N such opera-
tors, 6N matrix multiplications are required for each time step. A
method for reducing memory requirements and computational cost
is demonstrated here. Memory storage is reduced from N matrices
to 2. The computational cost goes from 6N matrix multiplications to
four matrix multiplications and two operations where off-diagonal
elements are set to zero. Three assumptions are used, which are
fulfilled in this study.

Assumption 1. In the basis employed for the computation, each
Lindblad operator is decaying a single basis state to another basis
state. ◽

Assumption 2. There are no Lindblad pure de-phasing opera-
tors in the model. ◽

Assumption 3. Lindblad operators and decay rates are time-
independent. ◽

If assumptions 1 and 2 do not hold, this method may still
be useful in combination with a change of basis and/or treating
de-phasing operators separately.

There are two useful notations for the set of all Lindblad
operators. The most minimal notation is to simply enumerate
them,

{L̂n : n ∈ [1, . . . ,N]}. (B1)

However, according to assumption 1, each operator involves only
two states from the employed basis {∣ei⟩}. Thus, Lindblad opera-
tors can also be expressed in terms of the basis states that comprise
them,

{L̂ij : L̂ij ∶= ∣ei⟩⟨ej∣}. (B2)

The associated decay rates are denoted as {κn} or {κij}, respectively.
Depending on whether the emphasis is on the number of operators
or on the basis states that comprise them, these two notations will be
used interchangeably in the following.

The focus is on treating the Lindblad operators inside the sum
of the Lindblad equation,

∂t ρ̂ = −
i
h̵
[Ĥ, ρ̂] +∑

n
κn(L̂nρ̂L̂†

n −
1
2
[L̂†

nL̂n, ρ̂]
+
). (B3)

These two terms in Eq. (B3) are performing the functions of
re-populating states, and depopulating states, in that order of
appearance.
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The first term, responsible for re-populating states, can unfor-
tunately not be factorized,

∑
n
κnL̂nρ̂L̂†

n ≠ (∑
n

√
κnL̂n)ρ̂(∑

n

√
κnL̂n).† (B4)

However, we treat it as if it could be anyway and define the left
parenthesis from Eq. (B4) as Ŝ1,

Ŝ1 ∶=∑
n

√
κn L̂n ≡∑

{ij}

√κij L̂n. (B5)

The multiplication from Eq. (B4) is then expanded,

Ŝ1ρ̂Ŝ†1 = (κ1L̂1ρ̂L̂†
1 +
√
κ1κ2 L̂1ρ̂L̂†

2 +
√
κ1κ3L̂1ρ̂L̂†

3 +⋯)

+ (
√
κ2κ1 L̂2ρ̂L̂†

1 + κ2L̂2ρ̂L̂†
2 +
√
κ2κ3 L̂2ρ̂L̂†

3 +⋯)

+ (
√
κ3κ1 L̂3ρ̂L̂†

1 +
√
κ3κ2 L̂3ρ̂L̂†

2 + κ3L̂3ρ̂L̂†
3 +⋯) +⋯. (B6)

Terms with a single κn are identical to the desired terms from the
Lindblad equation (B3), but there are also several unwanted cross-
terms. Expressing ρ̂ in the employed basis {∣ei⟩} and using the result
that all operators {L̂n} ≡ {L̂ij} are of the form of Eq. (B2), we sim-
plify the operator for each type of term, beginning with the single κn
term,

L̂ijρ̂L̂†
ij = ∣ei⟩⟨ej∣

⎛

⎝
∑
k,l
∣ek⟩⟨el∣ρkl

⎞

⎠
∣ej⟩⟨ei∣ = ∣ei⟩⟨ei∣ρjj. (B7)

These desired terms thus correspond to increasing population in
diagonal matrix elements of ρ̂ (due to ∣ei⟩⟨ei∣), in proportion to other
diagonal matrix elements of ρ̂ (due to ρjj). Then, the cross-terms are
simplified as

L̂ijρ̂L̂†
mn = ∣ei⟩⟨ej∣

⎛

⎝
∑
k,l
∣ek⟩⟨el∣ρkl

⎞

⎠
∣en⟩⟨em∣ = ∣ei⟩⟨em∣ρjn. (B8)

The {L̂ij} operators are required to be orthogonal, which means that
either i ≠ m or j ≠ n. That is, either ∣ei⟩⟨em∣ is an off-diagonal matrix
element after matrix multiplication or ρjn is an off-diagonal matrix
element before matrix multiplication (or indeed both).

Setting off-diagonal elements of ρ̂ to zero both before and after
matrix multiplication with Ŝ1 will therefore remove only the cross-
terms from Eq. (B6). Let D[⋅] be this operation, which sets off-
diagonal matrix elements to zero in the employed basis. The ini-
tial sum over multiple matrix multiplications can now be rewritten
using Ŝ1,

∑
n
κnL̂nρ̂L̂†

n = D[Ŝ1D̂[ρ̂]Ŝ†1]. (B9)

In contrast to the re-populating term from the Lindblad equa-
tion (B3), the other term, responsible for depopulation, can be
factorized,

∑
n
−κn

1
2
[L̂†

nL̂n, ρ̂]
+
= (−

1
2∑n

κnL̂†
nL̂n)ρ̂ + ρ̂(−

1
2∑n

κnL̂†
nL̂n). (B10)

Defining the left parenthesis above as the operator Ŝ2, we can reduce
this to two matrix multiplications,

Ŝ2 ∶= −
1
2∑n

κnL̂†
nL̂n ≡ −

1
2 ∑{ij}

κijL̂†
ijL̂ij. (B11)

With the definition of Ŝ1 and Ŝ2 from Eqs. (B5) and (B11), they
are calculated once ahead of time evolution and stored in mem-
ory, and the set {L̂n} can be discarded. Together with the operation
D[⋅], the initial sum from Eq. (B3) with 6N matrix multiplications is
reduced to four matrix multiplications and two D-operations where
off-diagonal elements are set to zero,

∑
n
κn(L̂nρ̂L̂†

n −
1
2
[L̂†

nL̂n, ρ̂]
+
) = D[Ŝ1D̂[ρ̂]Ŝ†1] + Ŝ2ρ̂ + ρ̂Ŝ†2 . (B12)

APPENDIX C: NUMERICAL METHOD
AND VERIFICATION

The Lindblad equation is solved numerically, using the ode4536

(Runge–Kutta) differential equation solver, as implemented in
Octave,37 hereafter referred to as the Octave method. Verification
and accuracy benchmarks of the Octave method are done by com-
parison to time evolution with the Schrödinger equation, in the
in-house QDng package, using the Chebyshev propagator,38 here-
after referred to as the QDng method. This QDng method uses 512
grid points and a fixed duration time step set at 0.0242 fs, previously
determined to have high accuracy in similar systems when compared
to even shorter time steps.9 The Octave method uses 96 grid points
and a variable duration time step. Accuracy is here specified with a
1 × 10−6 absolute tolerance and 1 × 10−3 relative tolerance. For both
methods, we calculate the remaining population after 500 fs of time
evolution (i.e., the same data that make up our main result in Fig. 3).
The QDng method requires there to be no photon decay; thus,
κ = 0 in the Octave method. A comparison of the two methods is
shown in Fig. 9.

At a standard deviation in the remaining population of 0.0086,
the agreement between the two methods is satisfactory. Noticeable
deviations occur for higher field strengths, where the impact of
interference effects causes some disagreement. However, the overall
profile of the oscillations is still accurately tracked.

FIG. 9. Data for method accuracy benchmark. The remaining population in the
system after 500 fs of time evolution. The black curve is obtained from 1000 QDng,
Chebyshev propagator, calculations (QDng method) and considered the baseline
for accuracy comparisons. Pink crosses are the results from 100 Octave, ode45,
calculations (Octave method).
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APPENDIX D: TIME-RESOLVED DATA FROM
SIMULATIONS

Details from time evolution, for three data points in the param-
eter range, are shown in Figs. 4, 5, and 6. The first data point is in
the polaritonic strong coupling regime, with parameters Ec = 3.0
GV/m and τ = 3.6 × 104 fs, directly after the sudden rise in sec-
tor (b) of Fig. 3. The second data point has parameters Ec = 3.0
GV/m and τ = 48 fs, which puts it in the low stability region of
sector (e). The third data point has parameters Ec = 3.0 GV/m and
τ = 0.58 fs, which is a data point on top of the high stability region in
sector (g) of Fig. 3. At each data point, populations are plotted indi-
vidually for each product state (see Fig. 2 for the states). States that
are not noticeably populated (peak population less than 0.08) are not
shown. The total population remaining in the system is also shown,
along with a renormalized purity. The renormalization is done to
eliminate loss of purity caused directly from the loss of norm. The
full time evolution is 500 fs, but plots are limited to the first 250 fs
where the influential processes are taking place.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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