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Pre- and postmarket drug safety evaluations usually include an integrated summary of results obtained using data from multiple
studies related to a drug of interest. -is paper proposes three approaches based on the likelihood ratio test (LRT), called the LRT
methods, for drug safety signal detection from large observational databases with multiple studies, with focus on identifying
signals of adverse events (AEs) frommany AEs associated with a particular drug or inversely for signals of drugs associated with a
particular AE. -e methods discussed include simple pooled LRT method and its variations such as the weighted LRT that
incorporates the total drug exposure information by study. -e power and type-I error of the LRT methods are evaluated in a
simulation study with varying heterogeneity across studies. For illustration purpose, these methods are applied to Proton Pump
Inhibitors (PPIs) data with 6 studies for the effect of concomitant use of PPIs in treating patients with osteoporosis and to Lipiodol
(a contrast agent) data with 13 studies for evaluating that drug’s safety profiles.

1. Introduction

Meta-analysis approaches for multiple independent studies
have become very popular in medical research. In many
observational and/or clinical trial studies, meta-analysis can
be performed using the study-level summary measures or
patient-level information; for example, the studies can be
integrated using a common statistical measure such as the
study-level mean or effect size and computing a weighted
average of this common measure using a statistical approach
such as a fixed-effect model or a random-effects model [1].
-e weights are usually related to the study-level sample sizes
or within study variation but may depend on other factors.
-is type of approach is referred as the traditional meta-
analysis and is being extensively used (as supportive) in the
pre- and postapproval of drug products for evaluating their
efficacy and safety. -e traditional meta-analysis of many
large and small clinical trials, published studies, registries, and
large clinical and/or observational databases, for thorough

evaluation of clinical efficacy endpoints such as the mean
change in the weight-loss or blood-pressure and hazard ratio in
survival comparison and clinical safety endpoints such as odds
ratio, risk ratio, and absolute risk difference, has become a
common practice for a modern-day pre- and postmarket
clinical/observational studies [1, 2]. For example, a number of
meta-analyses of rosiglitazone trials for patients with type-2
diabetes have been conducted to evaluate the risk for myo-
cardial infarction (MI) and cardiovascular mortality [3],
whereas in a meta-analysis of 15 clinical trials submitted to
FDA during 1987–2012, Borges et al. [4] reviewed randomized
withdrawal maintenance trials for major depressive disorder.

Using the traditional meta-analysis for safety evaluation,
researchers can evaluate the point estimates and 95% con-
fidence intervals for odds ratio or risk ratio of the drug-AE
pair of interest from each study, and then combine the es-
timates through a fixed-effect model or a random-effects
model, produce an overall estimate of the parameter of in-
terest and its associated 95% confidence interval, and then
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display the results using a forest plot. Here, we intend to
extend the exploration of using traditional meta-analysis to
safety signal detection, where relative risks (RRs) are com-
monly used when the drug exposure information is available,
and they are usually called the risk ratios. -e relative event
rates or proportional reporting rates are used when there is
lack of drug exposure information, which is usually the case in
passive surveillance of medical products. It is important to
explore safety signals in each study; however, when studying
safety signals, researchers usually collect information from
many trials (or studies) since a single clinical study with focus
on efficacy cannot provide enough information for safety
events. -e clinical studies, included in a large safety data or
database, are usually independent studies with different
protocols. It is possible that a signal detected in one studymay
not be detected in other studies due to variation across studies
(in terms of sample sizes, study sites, personnel, patients
enrolled, study time, and others).

Several methods have been developed for data mining or
safety signal detection for exploring multiple drugs and AEs
(for example, proportional reporting ratios [5], reporting odds
ratios [6], likelihood ratio tests [7–9], and Bayesian methods
[10–13]). However, these signal detection methods usually
work on pooled large passive data and are not designed to
incorporate the heterogeneity from multiple studies. Here, we
propose new methods for drug safety signal detection (with an
intent to control the type-I error and false discovery rate), for
data with multiple studies, obtained from large observational
databases such as FDA event reporting system (FAERS; https://
open.fda.gov/data/faers/) or from clinical trial databases. -e
new methods utilize the regular likelihood ratio test (LRT) for
signal detection [7] and consist of a two-step approach for
exploring safety signals from multiple studies/sources. In the
first step, the regular LRT is applied to the safety data by study
and in the second step, the regular LRT test statistics from
different studies are combined to derive an overall test statistic
for conducting the global test at a prespecified level of sig-
nificance, and if the global null is rejected in favor of the global
alternative, the data provides evidence of a signal, overall.

-e paper is organized as follows. In Section 2, we give a
brief review of the basic LRT method for signal detection
(regular LRT) and introduce several methods, based on regular
LRT, for signal detection from multiple studies. In Section 3,
the proposed LRTmethods for signal detection are applied to
two datasets for illustration: first one, to a dataset on con-
comitant use of PPI drugs for patients taking drugs treating
osteoporosis, with interest in comparing two drug groups
(PPI+placebo vs. placebo only) from 6 selected studies; and
second one to a selected set of 13 published studies on Lipiodol
(a contrast agent) with maximum dose of 15mg. A simulation
study is conducted to evaluate the performance of the LRT
analysismethods formultiple studies in Section 4.We conclude
Section 5 with a discussion.

2. Methods

2.1. A Summary of Regular LRT. -e likelihood-ratio-test
based method for signal detection developed originally for
passive surveillance of large safety databases and is available

to public for use in openFDA (https://open.fda.gov/tools/),
called here as the regular LRT method, is a frequentist
method based on multiple 2 × 2 tables [7]. For a particular
AE j, of interest, there are I 2 × 2 tables if there are a total of I
drugs in the study. Here, the drugs are considered different
rows, and the jth AE can be considered as a column (see
Section 3.1). If, for a particular drug, one wants to compare
many AEs, drug should be considered as a column variable
and the AEs should be the rows (see Section 3.2).

Define nij as the cell count for ith row (e.g., drug) and jth
column (e.g., AE) and assume that nij ∼ indPoisson
(ni.pij), i � 1, . . . I, where pij is the reporting rate of ith
drug for jth AE, and that ((n.j − nij) ∼ indPoisson(n.. −
ni.)qij), i � 1, . . . I, where qij is the reporting rate of all
other drugs excluding ith drug for jth AE. Here, ni. �􏽐

j�J
j�1nij,

n.j � 􏽐
i�I
i�1nij, and n.. � 􏽐jn.j. Dropping the suffix j in pij and

qij, assume that AEj is fixed, the interest is to test the null
hypothesis H0 : pi � qi � p0, against the alternative hy-
pothesis thatHa : pi > qi(i.e.,RRi � pi/qi > 1) for at least one
i, i � 1, · · · , I. -e likelihood ratio statistic for Drugi and AEj,
as derived in [7], is

LRij �
nij/ni.􏼐 􏼑

nij
n.j − nij/n.. − ni.􏼐 􏼑

n.j−nij

n.j/n..􏼐 􏼑
n.j

�
nij

Eij

􏼠 􏼡

nij n.j − nij

n.j −Eij

􏼠 􏼡

n.j−nij

, i � 1, · · · , I,

(1)

where n.. � 􏽐
I
i�1ni. and Eij � ni.n.j/n...

-e maximum likelihood ratio (MLR) test statistic, for
the one-sided alternative, is

MLR � maxi LRijI 􏽢pi > 􏽢qi( 􏼁􏼐 􏼑

� maxi

nij

Eij

􏼠 􏼡

nij n.j − nij

n.j −Eij

􏼠 􏼡

n.j−nij

I 􏽢pi > 􏽢qi( 􏼁,

(2)

where the maximum is taken over i � 1, · · · , I. Since loga-
rithm log(LRij) is a monotonic (increasing) function of
LRij, so it is convenient to work with MLLR � maxi

(log(LRij)I(􏽢pi > 􏽢qi)).
-e above formulation was constructed assuming there

is no drug exposure information in the large postmarket
safety database from passive surveillance system. In this case,
“no drug exposure” usually refers to the fact that we may
know how many adverse events are reported with respect to
a certain drug in a passive surveillance system, but we may
not know the number of patients who actually took the drug
and the drug exposure information for each person.
-erefore, ni. was used to serve as an approximation of total
drug use and relative reporting rates were compared for such
an analysis using data from FDA adverse event reporting
system (FAERS; https://open.fda.gov/data/faers/).

When the drug exposure for ith drug (Pi) is available, all
ni. can be replaced by Pi and the relative risks can then be
compared with available drug exposure information (see
some definitions in Huang et al. [8]). Drug exposure in-
formation may be available in a legacy database including
data from completed clinical trials or data from ongoing
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clinical trials (for safety monitoring purpose). In clinical trial
data, the drug exposure for a patient is usually well-defined
and prespecified as the total dose taken by the patient during
the study, or the exposure time from a certain amount of
drug. In some cases, we may not have well defined drug
exposure information from completed clinical trials. For
example, the precise drug exposure for the concomitant use
of PPI is not collected in the studies included in Section 3.1,

where we may have to impute the exposure with some
reasonable assumptions.

Note that in order to detect signals using information
from multiple studies, the drug exposure definition should
be consistent and comparable across different studies con-
sidered in a single meta-analysis. More details will be dis-
cussed in the applications.

-e log likelihood ratio statistic is then written as

log LRij􏼐 􏼑 � log
nij/Pi􏼐 􏼑

nij
n.j − nij/P. −Pi􏼐 􏼑

n.j−nij
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􏼢 􏼣− log
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(3)

where P. � 􏽐
I
i�1Pi, 􏽐

I
i�1Pi/P. � 1, and Eij � Pin.j/P..

Since the distribution of MLLR test statistic under the
null hypothesis is not tractable, a Monte Carlo procedure
(MC) is used to obtain the empirical distribution of MLLR.
-e empirical distribution of MLLR under the null hy-
pothesis can now be obtained by generating a large number
of Monte Carlo samples for the cell-report counts
(n1j, · · · , nIj) and for the jth AE, using multinomial distri-
bution (n1j, · · · , nIj) | n.j ∼ Mult(n.j, ((n1./n..), · · · , (nI./n..)))

with known n.j as the total number of events. If the drug
exposure is available, the distribution is then (n1j, · · · ,

nIj) | n.j ∼ Mult(n.j, ((P1/P.), · · · , (PI/P.))). If the MLLR
based on the observed data, MLLRdata, is greater than the
threshold value of MLLR0.05 (the upper 5th percentile point
of the empirical distribution), the null hypothesis is
rejected with alpha � 0.05. -e p value of MLLR can be
calculated as

1−
rank of MLLRdata amongMLLRdata and MLLRs from the empirical distribution

1 + total number of simulation for the empirical distribution generation
. (4)

-e drug associated with MLLRdata is then the most
significant signal detected.

2.2. LRT Analysis Approaches for Signal Detection from
Multiple Studies. Here, we propose several LRT approaches
based on the regular likelihood ratio test (LRT) for safety
signal detection with multiple studies. Note that in the
following, logLRijs or logLRis can be calculated by the
formula described in Section 2.1 by study.

2.2.1. Analysis of Pooled Data from Several Studies Using
Regular LRT. Suppose there are a total of S studies or datasets.
Let nij(� 􏽐snijs) denotes the total of event/report counts for
ith drug and jth AE, summed over all the S studies (note that
the subscript i is used for drug here and that one can define the
row as drug or AE depending on the interest). Using this
definition of “pooled” nij, we can apply the regular LRT to
detect the drug signals. However, the regular LRTapplied to the
pooled data may not control the type-I error as the Monte

Carlo simulation for obtaining the empirical distribution of the
test statistic is carried out based on the pooled data, but not the
study-level data.We observed this issue in the simulation study.

Another issue with this analysis of pooled studies is that
it does not address the study to study variation, that is,
heterogeneity of studies. Study heterogeneity may come
from different sources including study designs (prospective
versus retrospective), different endpoints, different distri-
butions of effect modifiers, and different source of data.
-erefore, the analysis of the pooled studies without con-
sidering the heterogeneity may lead to biased results. -is
method is also vulnerable to Simpson’s paradox [14, 15] and
should be used with caution. For example, in a medical study
for evaluating kidney stone treatment [16, 17], the para-
doxical conclusion is that treatment A is more effective when
used on patients with small stones and also when used on
patients with large stones, yet treatment B is more effective
on all patients (combined data).

In the following subsections, two LRT approaches for
incorporating study-level heterogeneity are presented.

Computational and Mathematical Methods in Medicine 3



2.2.2. Maximum of MLLR Statistics from Multiple Studies
(MMLR). Assume there are a total of S studies (with similar
patients and objectives and are relevant for the purpose of
current active/passive surveillance safety study), we define
MLLR statistic for a fixed AE (j) of interest and sth study
is MLLRs � maxi(log(LRijs)) � maxi(log(LRis)) dropping
the suffix j. -en, the test statistic for testing the global null
hypothesis versus the global alternative hypothesis is the
maximum of MLLRs over all studies defined by MMLLR �

maxs(MLLRs). -e empirical distribution of MMLLR can
be obtained by Monte Carlo simulation by generating the
null data with n.s and Pis from observed data and with the
same relative risk for all rows from each study, s � 1, . . . , S,

and then calculating MMLLR � maxs(maxi(log(LRis)).

Like the regular LRT, MMLR controls the type-I error.
A drug with MMLLR from observed data (for a par-

ticular study) is a signal if the related p value (the rank of the
MMLLR from the observed data among the MMLLR values
obtained from empirical data divided by the total number of
empirical data) is less than a prespecified significance level
(such as 0.05). Furthermore, if interested, we can identify
secondary drug-study combinations as signals with logLR
values (log(LRis), i � 1, · · · , I, s � 1, · · · , S) as the second
largest, third largest, and forth largest values among all
values for the drug-study combinations.

2.2.3. Weighted LRT Using Total Drug Exposure as Weight
(wLRn). In this subsection, we assume fixed jth column and
drop the suffix j in the following derivations.

Let Pis be the total drug exposure for ith drug in sth study.
-en, the weighted LRT statistic, based on the total drug
exposure, is defined as wLRi � (􏽐​ Si

s�1Pis log(LRis))/
(􏽐​ Si

s�1Pis), where Si denotes the number of studies for the
ith drug, and note that Si, i � 1, · · · , I could be different for
different rows. wLRi can be interpreted as the weighted av-
erage of logLR from different studies for ith row with weight
Pis.

-e test statistic for testing the global null hypothesis
versus global alternative hypothesis is then defined as
MwLR � maxi(wLRi), where the maximum is obtained over
all drugs, i � 1, · · · , I.

For statistical inference of wLRn method, the simulated
null datasets are generated from a multinomial distribution
with n.s and Pis from observed data and with the same
relative risk for all rows by study. -e empirical distribution
of wLR is formed by the 10,000 wLRsim obtained from
10, 000 simulated null data. -e p value of the wLRobs is
obtained by comparing the wLRobs with the 10,000 wLRsim
values from the Monte Carlo process:

p value �
# of times wLRsim >wLRobs

10, 000
. (5)

If the wLRobs for ith drug (row) has p value < 0.05, then
the ith drug is a signal. After detecting the global signal, we
can move to the 2nd largest, 3rd largest logLR or weighted
logLR values, and so on for secondary signals.

In summary, the statistics discussed in Section 2.2 are
presented in Table 1.

3. Applications

We illustrate the use of the LRTmethods by applying them
to two datasets with multiple studies for safety signal ex-
ploration. -e first data is hypothetical, but based on real
situation in the PPI data from FDA legacy database. -e
second data includes 13 published clinical studies on Lip-
iodol (a contrast agent) from literature search. In both
examples, we tried to include studies with similar features
for fair comparison (such as similar patients, similar drugs,
and similar objectives).

3.1. Analysis of PPIDatawith TwoDrugs and aComposite AE.
Proton Pump Inhibitors (PPIs) are a class of drugs that
decrease gastric acid secretion through inhibition of the
proton pump. It has been found that PPIs are associated with
increased risk of hip fractures (adverse event) [18, 19].
Huang et al. [8] evaluated if the concomitant use of PPIs
reduced the efficacy of test drugs intending to treat osteo-
porosis among targeted patients, using clinical trial data
from FDA/OTS/OCS legacy database. -at database con-
tained data from 10 trials (including single-arm studies, two-
arm studies, and three-arm studies). One medication (test
drug for treating osteoporosis, active control, or placebo)
will be given to patients in one arm, and PPIs were given to
patients in different arms concomitantly. -e sample sizes of
the trials range from hundreds to more than thousands. -e
main focus was on the composite AE (AEOST as defined in
Huang et al. [8], Appendix A1), which includes many AE
terms related with osteoporosis symptoms. After further
examination of this data, we noticed that one trial does not
have placebo arm, one trial has placebo arm but does not
have subjects with concomitant PPIs, and two trials do not
have AEOSTevent reported in placebo + PPIs (PLandPPI) or
placebo only (PL) groups. For illustration, we selected 6 trials
with AEOSTevents reported and with partial subjects taking
concomitant PPIs in the placebo arm. Note that the patients
were randomized into test drug, active control, and placebo
arms in those trials. -e effect of PPIs and the other drugs
(test drug and active control drugs) cannot be separated if
they were used together in test drug arm and active drug
arm. In the following, we illustrate the analysis of safety
signals using the hypothetical data with 6 studies, which
reflects the data pattern of the PPI clinical data for com-
paring PLandPPI and PL.

Two AEs considered here are the 1st occurrence of
AEOST (denoted by 1occ) and repeated occurrences of
AEOST (denoted by allocc). We evaluate the relative risks of
the 1st occurrence of AEOST (or repeated occurrences of
AEOST) for patients in PLandPPI group with exposure of
placebo and concomitant PPIs vs. patients in PL group with
exposure of placebo only. For 1occ analysis, nis is the number
of events for ith row (drug: placebo and PPIs together or
placebo only) and sth study when one subject having only
one event (1st occurrence of the repeated AEOST); Pis is the
exposure (sum of the exposure times in units of person-day)
to the 1st occurrence of AEOST from all subjects) for
ith drug (row) and sth study. For allocc analysis, nis is the
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number of events for ith drug (row) and sth study when one
subject has several repeated events for one AE such as
AEOST, and Pis is the exposure (sum of the drug exposure
time from all subjects) for ith drug (row) and sth study. Note
that a subject’s exposure time here is defined to be the time
period of the subjects with placebo in PL group (time from
taking placebo to end of the study or drop-off).-e exposure
of concomitant PPIs in PLandPPI group is not well recorded
and is always shorter than placebo period; therefore, we
assume that the exposure of placebo and concomitant PPIs
for subjects in PLandPPI group is simply the period of
placebo exposure. -e actual dose and exposure time of
concomitant PPIs may vary by patient and the pattern may
not be consistent with the total placebo exposure in the
PLandPPI patients, which may introduce bias in evaluating
the relative risk of PPIs together with placebo vs. placebo
only.

Using traditional meta-analysis based on relative risks of
safety issues, one may obtain an overall relative risk and 95%
CI using fixed-effect or random-effects models (Borenstain
et al. [1], chapters 11 and 12).-e τ2 is 0 for the 1occ analysis
and 0.07 for the allocc analysis. -erefore, the integrated
results from fixed-effect model and random-effects model
are almost the same. -e overall relative risk and 95% CI is
1.87 (1.43, 2.45) for the 1occ analysis and 2.44 (2.02, 2.94) for
the allocc analysis. -e results are shown in Figure 1 by a
forest plot.

We also analyzed these data using the LRT methods,
namely, simple pooled analysis with regular LRT, MMLR,
and wLRn. Note that the application with two drugs can be
easily extended to multiple drugs using the step-down
procedure in LRT analysis methods (not traditional meta-
analysis methods). For example, if one drug (Drug A) vs.
other drugs is a signal, another drug (Drug B) could be a
secondary signal if the value of the test statistic has a p value
smaller than 0.05 when there are more than two drugs.

For simple summary, the events and the relative risks (rr)
of PLandPPI and PL with 95% confidence intervals by study
are shown in Table 2. -e results from regular LRT on in-
dividual study and the LRT analysis methods for multiple
studies together are shown in Table 3. -e 95% threshold in
Table 3 is the 95% percentile of the empirical distribution of
the related STAT.

-e individual study analysis shows that the findings of
the signals may vary in different studies with various levels of
signal strength. -e simple pooled analysis without con-
sidering the study variation and the MMLR and wLRn
methods each considering the study-level variability have
consistent results (AEOST is a signal for PLandPPI group
when compared with PL only group). MMLR provides the
strongest global signal of AEOST (along with the related

study) as the integrated result. Stronger signal patterns were
observed for the repeated occurrences analyses due to the
large sample sizes. AEOST tends to be a signal for subjects
taking concomitant use of PPIs (in PLandPPI group).

From the MMLR method, the most significant global
signal of AEOST (1st occurrence or repeated occurrences) in
subjects taking concomitant PPIs (PLandPPI group) comes
from the 2nd study (s� 2). -is signal for repeated occur-
rences is also seen in 4th study (s� 4, with p value 0.006), 5th
study (s� 5, with p value 0.006), and 6th study (s� 6, with p

value 0.009). -e observed logLR for studies 2, 4, 5, and 6 are
all greater than the threshold of 2.47 for the analysis of
repeated occurrences (allocc).

3.2. Analysis of Lipiodol Data with One Drug and Multiple
AEs. Lipiodol (labeled Ethiodol in the USA), also known as
ethiodized oil, is a poppyseed oil used by injection as a
radiopaque contrast agent that is used to outline structures
in radiological investigations [20, 21]. It is used in che-
moembolization applications as a contrast agent in follow-
up imaging [22].

In order to detect possible safety signals to document the
safety of Lipiodol when it is used for selective intraarterial
use for imaging liver lesions in adults with known hepa-
tocellular carcinoma (HCC), thirteen studies (articles) were
identified with a maximum dose of Lipiodol as 15ml rec-
ommended in the drug label, from more than 100 articles
included in NDA 09190/S-024 submission (https://www.
accessdata.fda.gov/scripts/cder/drugsatfda/). -e actual
doses for different subjects varied. However, the maximum
dose was reported to be 15ml for all subjects in those se-
lected studies. -e subjects in the 13 studies are all adults
(average age ranging from 45 to 69). -e year which the 13
articles published ranges from 1993 to 2009. -e number of
subjects in the studies ranges from 11 to 257.-ere are a total
of 27 AEs reported in all the 13 studies for the drug con-
sidered (Lipiodol).

-e number of subjects with a particular AE (nis) is
reported by study, note that one subject may have multiple
AEs reported. Since the exact drug exposure time is un-
known for each subject from the articles, we assumed that
the drug exposure is the same for each subject and that it is
one unit. -e total drug exposure by study (Pis) is then the
total number of subjects in each study, which is the same for
all rows in this case (Pis � Ps).

Applying the regular LRT to the individual study and the
LRT methods to all the 13 studies (with a total of 27 AE
terms), the detected signals are shown in Tables 4 and 5.
When the observed STAT (obsstat) is greater than the 95%
threshold obtained from the empirical distribution under

Table 1: Statistics in different methods (j is fixed and drop suffix j in the following formulation). Either logLR or LR can be used. In addition
to the most significant signal, secondary signals can also be identified.

Method logLR or weighted logLR Test statistic (STAT) Most significant signal detected
Pooled logLRi MLLR � maxi(log(LRi)) a row
MMLR logLRis MMLLR � maxs maxi(log(LRis)) a row-study combination
wLRn wLRi � (􏽐

Si

s�1Pis logLRis)/(􏽐
Si

s�1Pis) MwLR � maxi(wLRi) a row
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the null hypothesis of no signals, the related AE is a signal
detected.

When interpreting the detected signals, one can consider
lumping together similar AEs (with different AECODE codes)
to form a group. For example, postembolization syndrome
(PES) (with the definition fromhttp://radiopaedia.org/articles/
post-embolisation-syndrome-1), including AECODE codes
FEVER, VOMITTING, NAUSEA, and ABDOMINAL PAIN,
is detected by all LRT analysis methods (Table 5).

-e detected signals varied in the individual study an-
alyses (Table 4). By the simple pooled method and wLRn
method, three AEs (all in PES group) are detected as signals

with p value less than 0.05 (Table 5). All the signals are
integrated signals by considering the information from all
the 13 studies.

By the MMLR method, 21 AE-study combinations are
detected as signals. PES is the most significant global signal
among all the signals. -ere are 11 AEs among the signals (4
in PES group) ignoring the studies.

3.3. Summary of the Two Examples. We presented the two
examples here for showing the performance of the proposed
methods on two different types of datasets. Both examples
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Figure 1: Forest plot of relative risk and 95% CI by study and summary (integrated using fixed effect model) relative risk using traditional
meta-analysis methods (1occ analysis (a) and allocc analysis (b)).

Table 2: Summary of basic information of the PPIs study by trials (rr is for PLandPPI vs. PL).

Study
PL PL and PPI

rr (95% CI)
N (subject) Event Exposure (person-day) N (subject) Event Exposure (person-day)

1st occurrence of AEOST analyses
s� 1 309 14 168947 25 1 10225 1.18 (0.16, 8.97)
s� 2 1647 77 1534190 245 20 181753 2.19 (1.34, 3.58)
s� 3 210 11 133813 20 2 9822 2.48 (0.55, 11.17)
s� 4 1058 167 470833 165 30 56845 1.49 (1.01, 2.19)
s� 5 950 144 713856 32 8 19575 2.03 (0.99, 4.13)
s� 6 150 17 87481 9 3 2884 5.35 (1.57, 18.26)
All s 4324 430 3109120 496 64 281104 1.65 (1.27, 2.14)
Repeated occurrences of AEOST analyses
s� 1 309 30 173796 25 4 10383 2.23 (0.78, 6.33)
s� 2 1647 179 1575058 245 67 196698 3.00 (2.26, 3.97)
s� 3 210 13 136128 20 3 10381 3.03 (0.86, 10.62)
s� 4 1058 228 513109 165 48 64764 1.67 (1.22, 2.28)
s� 5 950 169 789274 32 14 24188 2.70 (1.57, 4.66)
s� 6 150 21 95959 9 5 4266 5.36 (2.02, 14.20)
All s 4324 640 3283324 496 141 310680 2.33 (1.94, 2.79)
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consider data from clinical trials with some exposure in-
formation. -e AE signals detected can be called signals
with higher relative risk. Same kind of applications can be
conducted for data from passive surveillance system by
evaluating reporting rates (see reference [7]), because there
is no exposure information and one cannot evaluate relative
risk. Without exposure information, the formula used in
computing the likelihood ratios (Section 2.1) will be different
with different denominators.

-e example of PPIs includes patients who were treated
with multiple drugs and with exposure over time (patients
may receive different doses at different visits). -e AE
studied (AEOST) in this example is an AE with many terms
associated with osteoporosis. We may observe many re-
peated reports of the AEOST during the exposure duration.
-ere are only two drug groups (drug groups as rows with
i � 1, 2) and one selected composite AE (AEOST) for
comparison.-is is a simple case in signal detection and very

Table 3: Results of PPIs data (for PLandPPI vs. PL). obsstat is the statistics shown in Table 1 for different methods, obtained from the
observed data.

1st occurrence of AEOST Repeated occurrences of AEOST
obsstat p value 95% threshold obsstat p value 95% threshold

Individual study analysis using regular LRT
s� 1 0.12 0.99 1.79 0.93 0.438 1.96
s� 2 4.16 0.004 2.10 24.28 0 2.00
s� 3 0.56 0.61 1.73 1.18 0.243 1.18
s� 4 1.83 0.07 2.04 4.63 0.006 2.03
s� 5 1.54 0.137 1.69 4.88 0.006 2.27
s� 6 2.43 0.031 0.97 3.97 0.009 1.17
Simple pooled analysis using regular LRT

6.12 0.003 1.78 34.27 0.0 1.83
MMLR

4.16 0.006 (from s� 2) 2.43 24.28 0 (from s� 2) 2.47
wLRn

2.81 0.019 1.92 14.02 0 2.12

Table 4: Analysis of Lipiodol data (individual study analysis). Bold AE terms are in the PES group.

Studies # signals AE terms obsstat p value 95% threshold
s� 1 0 None 3.33

s� 2 4

ABDOMINAL PAIN 171.8 0

3.93FEVER 157.5 0
ANOREXIA/LOSS OF APPETITE 130.4 0

VOMITTING 11.6 0

s� 3 3
FEVER 192.9 0

4.50ABDOMINAL PAIN 56.7 0
NAUSEA 8.5 0

s� 4 2 FEVER 7.8 0 4.77ABDOMINAL PAIN 4.8 0.003

s� 5 3
FEVER 29.4 0

4.72ABDOMINAL PAIN 6.7 0
NAUSEA 4.73 0.007

s� 6 1 POST EMBOLIZATION SYNDROME 29.6 0 3.73
s� 7 1 SHOULDER PAIN 32.2 0 4.89

s� 8 2 VOMITTING 23.6 0 4.89ABDOMINAL PAIN 7.3 0

s� 9 4

HEMATOLOGICAL or BONE MARROW
TOXICITY 34.1 0

4.02FEVER 9.3 0
BILIRUBIN RELATED ABNORMALITIES 4.7 0.015

HEPATIC PEDICULITIS 4.7 0.015

s� 10 3
PAIN NOS 26.8 0

3.47FEVER 24.1 0
VOMITTING 16.7 0

s� 11 2 FEVER 121.8 0 3.73PLUERAL EFFUSION 15.5 0
s� 12 1 FEVER 4.5 0.008 4.38
s� 13 1 RESPPIRATORY DISTURBANCE 3.3 0 3.18
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similar to the set-up for traditional ways of data analysis in
clinical trials. In this example, we compared the two drug
groups with the fixed AE (AEOST).

In contrast, the example of Lipiodol is different. Contrast
agents are used in discrete bursts, and many patients have
only a single exposure to the drug. -erefore, if the dose of
the one-time injection is similar for each patient, we can
assume that the drug exposure is the same for each subject
and that it is one unit. -en, Pi can be imputed with number
of patients without more information on the exposure. In
this example, we have 27 AEs (AEs as rows, i � 1, · · · , 27) and
one drug of interest. -e purpose of signal detection is to
identify the AEs with high relative risks by comparing one
AE vs. other AEs for Lipiodol. -ere are a total of 27
comparisons (not 2 comparisons such as the one in the first
example). -e proposed LRT method can handle the mul-
tiple comparisons here with false discovery rate (FDR)
controlled [7]. Traditional meta-analysis evaluating risk
ratios can be applied to the PPI data with two drug groups
for comparison (two rows), but may not be applied to the
Lipiodol data with more than two rows due to the inflated
type-I error and FDR, in the presence of multiple
comparisons.

4. Simulation

A simulation study is conducted with focus to evaluate the
performance of the LRT analysis methods, discussed in
Section 2, for data with multiple studies and drug exposure
information available. -e performance of tradition meta-
analysis on risk ratio is also explored in simulated data with
two rows.

4.1. Simulation Assumptions and Parameters. We simulate
data using the information on the total number of studies,
total number of rows, n.s, and Pis from the datasets used in
the illustration (see the cases in Table 6), with equal relative
risks for the data generation under the global null hypothesis
(without any safety signals by study) and with different

relative risks associated with different rows (for example,
assigning the higher relative risk to the 1st row for data
generation under the global alternative hypothesis). Note
that each row corresponds to a drug or an AE. For example,
row corresponds to a drug in Illustrations 3.1 and an AE in
Illustration 3.2.

If the relative risks are the same for different rows, for
each study, the simulated null data are generated from the
following multinomial distribution (dropping suffix j):

n1s, · · · , nIs( 􏼁 n.s

􏼌􏼌􏼌􏼌 ∼ Mult n.s,
P1s

􏽐​ I
i�1 Pis( 􏼁

, · · · ,
PIs

􏽐​ I
i�1 Pis( 􏼁

􏼠 􏼡􏼠 􏼡.

(6)

If the first row is a signal, with a higher relative risk, for
each study, the simulated data (under global alternative)
are generated from the following multinomial
distribution:

n1s, · · · , nIs( 􏼁 n.s

􏼌􏼌􏼌􏼌

∼ Mult n.s, η1s

P1s

􏽐​ I
i�1 ηisPis( 􏼁

, · · · , ηIs

PIs

􏽐​ I
i�1 ηisPis( 􏼁

􏼠 􏼡􏼠 􏼡,

(7)

where η1s(P1s)/(􏽐
I
i (ηisPis)) + · · · + ηIs(PIs)/(􏽐i(ηisPis)) � 1.

-e relative risk of the first row vs. all other rows for sth study
with ηis � 1, i � 2, · · · , I, is simply η1s. -e values of η1s

(same for different studies) in this simulation are selected to
be 1, 1.2, 1.5, 2, and 3 (results with η1s � 1.2 will not be shown
in Table 6, but the powers are low for the scenarios with
η1s � 1.2). η values may vary by study too (for example, η1s �

1.5,1.2,3,1,1.3,2 for studies 1 to 6, respectively, in the sce-
nario with rr21 in Table 6).

-e results for type-I error and power calculations, for
different scenarios with equal relative risks (under global
null) and different relative risks (under global alternative),
are presented in Table 6. -e drug exposure information Pi

by row is obtained from the real data discussed in Section 4
(such as sim01occ, sim0allocc, and sim0lip). -e drug

Table 5: Analysis of Lipiodol data from multiple studies (integrated results over studies).

Analysis # signals AE term (obsstat) 95% threshold

Simple pooled
analysis 4

FEVER (473.6)

3.93ABDOMINAL PAIN (195.2)
ANOREXIA/LOSS OF APPETITE (61.0)

VOMITTING (10.7)

wLRn 4
FEVER (89.7), ABDOMINAL PAIN (66.8)

1.56ANOREXIA/LOSS OF APPETITE (44.0)
VOMITTING (5.9)

MMLR 21a

FEVER (192.9), ABDOMINAL PAIN (171.8)

6.40

ANOREXIA/LOSS OF APPETITE (130.4)
HEMATOLOGICAL/BONE MARROW TOXICITY (34.1)

SHOULDER PAIN (32.2)
POST EMBOLIZATION SYNDROME (29.6)

PAIN NOS(30.0), VOMITTING (26.8)
PLUERAL EFFUSION (18.2), NAUSEA (8.5)

Note. 21 AE-study combination signals detected byMMLRmethod, p value is 0 for themost significant one (for AE FEVER and 3rd study (s� 3)). 10 AE terms
were reported in those signals ignoring the study information and are shown in the column for AE term with maximum observed logLR over the studies.
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exposure and case information are the same for scenarios
sim01occ (null data) and sima1occ (alternative data), with
only difference in the relative risks. -e same rule was
applied to all other null data and alternative data generation.

-e total number of replications is 10,000 for the sce-
narios for type-I error evaluation and 1000 for the scenarios
for power evaluation, respectively. -e power is defined as
the number of times the null hypothesis (that there is no
signal detected in each study) is rejected, divided by the total
number of replications. When the data are generated with
the assumption of no signals, the power becomes type-I
error.

4.2. SimulationResults. As shown in Table 6, the type-I error
(or FDR) for data without any signals in each study stays low
for wLRn and MMLR. -e type-I error for the pooled
method is slightly higher than the other methods with values
up to 0.07 (not controlled). -is is because the null data
(counts) are generated from multinomial distribution by
study and then they are simply added over all studies. -e
pooled method is then applied to the pooled data (observed),
and the empirical distribution of statistics for decision
making is obtained by Monte Carlo procedure based on the
pooled data, but not on the study-level data. -e other two
LRT analysis methods controls the type-I error since both
their statistics and the empirical distributions are based on
study-level data and then are combined using different
weighting approaches.

-e power in Table 6 is highest for pooled method, and
moderate for wLRn and MMLR methods. -e MMLR
method is more conservative than wLRn. -e power values
increase with the increase of relative risk values assigned to
the 1st row. Usually, the power reaches 0.7-0.8 when the
relative risk becomes 2 or 3, for all methods. -e sample size
in scenario simaallocc is larger than the scenario sima1occ;
therefore, the power values are higher for scenarios
simaallocc with different relative risks. In the scenario with
rr21 (with different η values by study), the pooled analysis no
longer has the largest power.

Traditional meta-analysis (Borenstein et al. [1]) with test
based on normal assumption (Z statistic) and the null hy-
pothesis that the mean effect is 1 (relative risk case) or 0 (log
of relative risk) is applied to several simulated data scenarios
with two rows for power and type-I error evaluation. If the p

value (from the standard normal Z test) is less than 0.05, we
reject the null hypothesis of relative risk (PLandPPI vs. PL)
as 1. -e type-I error is 0.067 and 0.070 for scenarios
sim0allocc and sim01occ, respectively. -e results reflect the
inflated error of the traditional meta-analysis for data with
two rows (one comparison). With more than two rows
(multiple comparison) in the data, we expect bigger type-I
error from the traditional meta-analysis.

-e power values of the traditional meta-analysis are
73%, 98%, and 100% for scenarios simaallocc with true
relative risks for the 1st row as 1.5, 2, and 3, respectively. -e
powers for sima1occ scenarios are smaller than the
simaallocc cases due to smaller sample size, but reasonably

Table 6: Type-I error (or FDR) for cases with data generated under null hypothesis (all relative risks to be 1) and power (%) for cases with
data generated under alternative hypothesis (varying relative risks).

Cases Description
LRT methods

Pooled wLRn MMLR
Type-I error

sim0allocc With pis and n.s from real data 0.055 0.047 0.050Allocc case in Table 2, rr1

sim01occ With pis and n.s from real data 0.073 0.047 0.0491st occurrence case in Table 2, rr1

sim0LIP With pis and n.s from real Lipiodol 0.046 0.045 0.038Data, 13 studies, 27 rows, rr1
Power
Simaallocc rr2 86.7 67.2 48.9
Simaallocc rr3 99.3 98.4 92.8
Simaallocc rr4 100 100 99.9
sima1occ rr2 74.3 37.2 30.1
sima1occ rr3 97.5 77.0 66.5
sima1occ rr4 100 98.2 96.9
simaLIP rr2 38.3 23.4 11.1
simaLIP rr3 95.0 86.3 63.0
simaLIP rr4 100 100 99.3
Simaallocc rr21 32.9 100 99.9
sima1occ rr21 16.7 11.5 8.0
Note. rr1, rr2, rr3, and rr4 are for cases having the 1st row with relative risk (η1) to be 1, 1.5, 2, and 3, respectively (all other rows have relative risk as 1). In rr1,
rr2, rr3, and rr4 cases, η1 is the same for all 6 studies. In rr21 case, η1 � 1.5, 1.2, 3, 1, 1.3, 2, for 1st row in studies 1 to 6, respectively. For case sim01occ,
n1s(� 1, 20, 2, 30, 8, 3) are the counts of the 1st AEOSET events for PLandPPI group from studies 1 to 6, respectively.
P1s(� 10225, 181753, 9822, 56845, 19575, 2884) are the exposure for PLandPPI group from studies 1 to 6, respectively. n2s(� 14, 77, 11, 167, 144, 17) are the
counts of 1st AEOSET events for PL group from studies 1 to 6, respectively. P2s(� 168947, 1534190, 133813, 470833, 713856, 87481) are the exposure for PL
group from studies 1 to 6, respectively. -e nis and Pis, i � 1, 2 for case sim0allocc can also be found in Table 2 (for repeated occurrences of AEOST). For case
sim0LIP, nis and Pis(i � 1, · · · , 27 and s � 1, · · · , 13) cannot be listed here due to space limitation. -e values of nis range from 0 to 128, and the values of
Pis � Ps range from 11 to 257.
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large for cases with relative risk 2 or above. When the data
were generated with varying relative risks for different
studies (scenarios simaallocc and sima1occ with rr21), the
powers from the traditional meta-analysis are very low
(about 5%).

5. Discussion

In summary, the analysis using regular LRT on pooled data,
MMLR, and weighted LRTmethod (wLRn) identifies signals
for ith row (a drug or an AE) by incorporating the in-
formation from different studies. In addition, with MMLR
method, one can identify the global signal(s) for ith row (a
drug or an AE) along with the studies containing that global
signal(s). Multiple signals can be detected with step-down
process imbedded in the LRTmethod for wLRn and MMLR
methods.

-e traditional meta-analysis methods obtain a sum-
mary statistic based on the study-level statistics such as
relative risk (can also called risk ratio) by fixed-effect or
random-effects models or other weighting methods. -ere
are two steps in the traditional methods: first, obtaining the
study-level statistic (odds ratio or risk ratio), and second,
obtaining the summary statistic for overall evaluation using
the study-level statistic. One may then use a normal ap-
proximation for the confidence interval construction and
testing for statistical significance using the summary sta-
tistic. -e two-step approach is also used by the proposed
LRT methods in a different way of exploring safety issues.
However, in LRT methods (MMLR and wLRn), the study-
level statistics are logLR. Monte Carlo (MC) simulation is
used for testing for significance of the summary statistic. -e
use of logLR and a step-down process for identifying sec-
ondary signals with smaller logLR values and the non-
parametric MC simulation for empirical distribution of the
logLR or summary of logLR using null datasets together
controls type-I error and FDR. In practice, one may consider
conducting the traditional meta-analysis and the proposed
signal detection method together in safety evaluation from
multiple studies.

Normal distribution of the parameter estimates from
different studies is commonly assumed in the fixed-effect
model and random-effects model for traditional meta-
analysis. Simulations have shown these methods are rela-
tively robust even under extreme violations of distributional
assumptions in estimating heterogeneity [23] and calcu-
lating an overall effect size in traditional meta-analysis [24].
However, many meta-analyses include a few studies (such as
5 studies) and such a sample is more inadequate to accu-
rately estimate heterogeneity. In the cases with limited
studies, one can still use the weighted LRT method using
drug exposure as weight for safety signal exploration. Note
that the weight could be study sample size, drug exposure, or
could also be defined by the researchers to reflect the im-
portance of the different studies or other study features.

-e proposed LRT methods are mainly for postmarket
safety evaluation using adverse event data collected from
different studies (such as completed clinical trials or ob-
servational studies) and for safety signal monitoring using

data from ongoing clinical trials. When analyzing obser-
vational data from passive surveillance system such as
FAERS, we do not have exposure information including total
of subjects taking drugs, drug exposure time, and dose.
-erefore, we can only evaluate reporting rate, and the
denominator for the rate calculation is ni.. When analyzing
data from clinical trials, we usually have some information
about exposure including the number of patients, the dose
for each patient, and the exposure time from taking drug to
event. -erefore, we can evaluate the risk with denominator
Pi. When using the proposed method for combining in-
formation from multiple studies, one cannot simply com-
bine information from observational data and clinical trial
data. In a meta-analysis, we only apply the proposed method
to studies with similar features, such as similar de-
nominators, patient populations, study objectives, and so on.

-e proposed LRT methods output the p values, which
incorporate information of relative risk (rr) and exposure
from different studies. For each study, an AE signal with
higher rr and bigger exposure value may lead to a small p

value; and an AE with higher rr and small exposure value
may not have a small p value. -e integrated AE signals with
small p values from all studies are affected by the combined
information of the rr estimates and exposure information
from all studies. Both relative risk and exposure by study are
important information that can be included in the output in
addition to the p values from the proposed LRT method.

Note that there are missing data issues in data collected
from surveillance system (such as delayed reporting, missing
reporting, and repeated reporting). -ere are also missing
data issues in clinical trials. For example, patients may drop
off before the completion of the one study with less adverse
events reported and those patients may have worse disease
status compared with patients completing the study. In these
situations, we will only observe the available adverse events
before drop-off and miss many adverse events after drop-off.
We may miss some reports for the patients’ missing visits in
clinical trials. Some studies may have less missing values and
somemay havemore. In datamining for safety signals, safety
investigators usually ignore those missing events in the
analysis for the signals. Signals detected without considering
missing data in single study or multiple studies may in-
troduce bias. -is may be a topic for future research.

Data Availability

-e hypothetical data for PPI analysis and the Lipiodol data
used to support the findings of this study are available from
the corresponding author upon request.
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