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Simple Summary: Immune checkpoint inhibitor (ICI) therapy has proven effective for many cancer
patients, but predicting which patients with renal cell carcinoma (RCC) will respond has been
challenging. We analyzed clinical characteristics and molecular parameters of a cohort of patients
with RCC treated with anti-programmed death 1 (PD-1)/PD-L1 therapy to determine factors that
correlate with patient outcome. We found that the composition of circulating immune cells in the
blood, development of immune-related toxicities, and gene expression patterns within the tumor
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correlate with patient response. In addition, we see that high expression of PD-L1 and lower numbers
of unique T cell clones in RCC tumors are associated with improved survival. In summary, our
findings corroborate previously published work and introduce new potential factors impacting
response to ICI therapy that deserve further investigation.

Abstract: Predicting response to ICI therapy among patients with renal cell carcinoma (RCC) has been
uniquely challenging. We analyzed patient characteristics and clinical correlates from a retrospective
single-site cohort of advanced RCC patients receiving anti-PD-1/PD-L1 monotherapy (N = 97), as
well as molecular parameters in a subset of patients, including multiplexed immunofluorescence
(mIF), whole exome sequencing (WES), T cell receptor (TCR) sequencing, and RNA sequencing
(RNA-seq). Clinical factors such as the development of immune-related adverse events (odds ratio
(OR) = 2.50, 95% confidence interval (CI) = 1.05–5.91) and immunological prognostic parameters,
including a higher percentage of circulating lymphocytes (23.4% vs. 17.4%, p = 0.0015) and a
lower percentage of circulating neutrophils (61.8% vs. 68.5%, p = 0.0045), correlated with response.
Previously identified gene expression signatures representing pathways of angiogenesis, myeloid
inflammation, T effector presence, and clear cell signatures also correlated with response. High
PD-L1 expression (>10% cells) as well as low TCR diversity (≤644 clonotypes) were associated with
improved progression-free survival (PFS). We corroborate previously published findings and provide
preliminary evidence of T cell clonality impacting the outcome of RCC patients. To further biomarker
development in RCC, future studies will benefit from integrated analysis of multiple molecular
platforms and prospective validation.

Keywords: renal cell carcinoma; PD-1; PD-L1; biomarkers; immune checkpoint inhibitors

1. Introduction

Over the past decade, immune checkpoint inhibitors (ICIs), including antibodies
against the programmed death 1 (PD-1) receptor, its ligand (PD-L1), and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), have become a mainstay of treatment against
cancer. Patients with metastatic renal cell carcinoma (RCC) have overall response rates
(ORRs) to single-agent PD-1/PD-L1 blockade in the first- and second-line setting of approx-
imately 16–34% [1–4]. The current standard of care in the frontline setting is combination
therapy using anti-PD-1/PD-L1 with either anti-CTLA-4 or a vascular endothelial growth
factor (VEGF)-targeting agent, which yields ORRs of 40–60% [4–9].

Predicting response to ICI therapy in patients with RCC has proven to be difficult. The
predictive value of tumor PD-L1 expression and mutational burden (TMB), which are used
as companion diagnostic biomarkers for other tumor types, remains equivocal in RCC, with
a number of studies demonstrating no correlation with response [2,3,6,7,9–11]. Results of
standard clinical tests on peripheral blood, including elevated absolute lymphocyte count
(ALC) [12], or lower absolute neutrophil count (ANC) [12,13], neutrophil-to-lymphocyte
ratio (NLR) [12–15], and monocyte-to-lymphocyte ratio (MLR) [14], have been associated
with better response in solid tumors but not prospectively validated. In addition, the
relationship between body mass index (BMI) and response is still disputable, with studies
demonstrating improved response and survival in RCC patients with higher BMI [16,17]
and others showing the opposite [18].

Molecular studies have shed light on the biological response behind anti-PD-1 monother-
apy, such as the presence of endogenous retroviruses [19,20] and differential expression
of gene signatures, including T cell effector function [10], interferon (IFN) or tumor necro-
sis factor (TNFα) signaling [21], and metabolic gene signatures [22]. In the randomized
trials IMmotion150 and IMmotion151, molecular signatures of response were assessed in
treatment-naïve patients who received sunitinib, the combination of atezolizumab (PD-L1
antibody) and bevacizumab (vascular endothelial growth factor (VEGF) antibody), or,
in the case of IMmotion150, atezolizumab monotherapy [10,23]. A T effector signature
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correlated with response in both ICI monotherapy and combination therapy arms, while
the angiogenic signature correlated with response in anti-VEGF monotherapy and combina-
tion therapy. Furthermore, responders to atezolizumab monotherapy generally had lower
inflammatory myeloid signatures and higher T effector signatures, while patients with high
suppressive myeloid signatures were more likely to achieve response if VEGF inhibition
was combined with checkpoint inhibition [10]. More in-depth analysis from IMmotion150
further categorized RCC patients based on integration of various molecular parameters
into seven molecular subsets, which appeared to have differential clinical outcomes to
sunitinib versus atezolizumab plus bevacizumab [23].

Other investigations have attempted to correlate genetic drivers of RCC with response
to ICI. The role of PBRM1, the second most commonly mutated gene in clear cell RCC
(ccRCC) and a component of the chromatin remodeling complex, is heavily contested,
with several studies yielding mixed results [11,24–27]. Recently, Braun et al. analyzed
592 ccRCC samples from patients in prospective trials of PD-1 blockade using whole exome
sequencing (WES), RNA-sequencing (RNA-seq), and immunofluorescence (IF) analysis [11].
The authors found that although TMB and CD8+ T cell infiltration do not correlate with
response, additional chromosomal abnormalities are specifically associated with response
or resistance to anti-PD-1 monotherapy. For example, chromosomal loss of 9p21.3 was
associated with decreased response among tumors with high CD8+ T cell infiltration.
In addition, truncating mutations in PBRM1 were associated with higher angiogenesis
gene expression and lower IL6-JAK-STAT3 signaling, as well as improved survival with
anti-PD-1 monotherapy [11,24,25].

In this study, we evaluated an institutional cohort of patients with RCC who received
single-agent anti-PD-1/PD-L1 to study both clinical and molecular correlates of response.
In our cohort of 94 patients, we analyzed clinical characteristics and laboratory data
during the course of ICI treatment. Our study shows the feasibility of performing multiple
molecular analyses, including mIF, WES, TCR sequencing, and RNA-seq, on a biomarker
cohort created from available archived tumor samples.

2. Materials and Methods
2.1. Patient Population and Data Collection

Patients with RCC who had been treated with single-agent anti-PD-1/PD-L1 at Van-
derbilt University Medical Center (VUMC) between 2007 and 2017 were identified under
an investigator review board (IRB)-approved protocol and verified to have sufficient
documentation to assess response to therapy, defined by a minimum of a baseline and
three-month computed tomography (CT) scan after initiating ICI therapy (Figure 1A).
Objective response was evaluated by investigators. Of the 94 patients, 18 had available
archived formalin-fixed, paraffin-embedded (FFPE) tumor tissue specimens at VUMC.
These specimens and their matched normal samples, when available, combined with eight
external tumor specimens from Rutgers University, were used for molecular studies in the
biomarker cohort. A total of 26 patients were represented by 21 primary and 16 metastatic
tumor samples.

2.2. DNA and RNA Extraction

DNA and RNA were extracted from FFPE RCC and normal tissue using the Maxwell
16 FFPE Plus LEV DNA Purification Kit (Promega (Madison, WI, USA) #AS1135) and RNA
Purification Kit (Promega #AS1260) respectively, on the Promega Maxwell 16 instrument.

2.3. mIF Immunohistochemistry
2.3.1. Immunofluorescence Staining

Antibody validation for the PD-1, PD-L1, and cytokeratin panel was performed as
previously indicated in Johnson et al. [28] and can be found in Table S1. The CD4, CD8,
CD25, FoxP3, Ki67, cytokeratin panel was performed using a fully automated staining
protocol on the Bond Rx (Leica). Slides were dewaxed using the Bond Rx followed by
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antigen retrieval in Epitope Retrieval Solution 2 (Leica) buffer at 95 ◦C for 20 min. Primary
antibodies were incubated for 1 h, detected with either EnVision+ HRP Mouse or EnVision+
HRP Rabbit for 30 min and slides were heat-cycled in ER1 (Leica) buffer for 20 min at 95 ◦C
after each round of primary, secondary, and Opal fluorophore staining. Slides were stained
with 1:100 dilution of mouse anti-CD4 (4B12, Agilent, Santa Clara, CA, USA), detected with
Opal 520 (Akoya Biosciences, Marlborough, MA, USA), 1:400 dilution of mouse anti-CD8
(C8/144B, Agilent), detected with Opal 620 (Akoya Biosciences), 1:100 dilution of rabbit
anti-FoxP3 (D2W8E, Cell Signaling Technology, Danvers, MA, USA), detected with Opal
540 (Akoya Biosciences), 1:400 dilution of rabbit anti-CD25 (SP176, Sigma Aldrich, St. Louis,
MO, USA), detected with Opal 570 (Akoya Biosciences), 1:1000 dilution of mouse anti-Ki67
(MIB-1, Agilent), detected with Opal 650 (Akoya Biosciences), and 1:400 dilution of mouse
anti-cytokeratin (AE1/AE3, Agilent), detected with Opal 690, and finally, incubated for
10 min with spectral 4′,6-diamidino-2-phenylindole (DAPI) (Akoya Biosciences).
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Figure 1. Clinical correlates and response to single-agent anti-PD-1/PD-L1. (A) Flow diagram depicting subdivision of 
primary and biomarker patient cohorts. (B) Number of immune-related adverse events (irAEs) experienced by responders 
and non-responders. Data shown are averages ± standard deviation (SD). * p < 0.05, unpaired Mann–Whitney U-test (n = 
38, 56). (C) Stage at diagnosis, International Metastatic RCC Database Consortium (IMDC) risk score, and number of met-
astatic lesions of at initiation of ICI therapy. (D) Prior lines of therapy before ICI therapy, as well as concurrent radiation 
during ICI therapy. (E) Percentage of lymphocytes (two-way analysis of variance (ANOVA): response effect, p < 0.0001; 
time effect, p = 0.012; interaction, p = 0.44) and neutrophils (response effect, p = 0.0002; time effect, p = 0.063; interaction, p 
= 0.55) in peripheral blood of responders compared to non-responders at baseline, 4 to 10 weeks of therapy, and end of 
therapy (n = 37, 53). Data shown are averages ± SEM. * p < 0.05, ** p < 0.01, post-hoc two-tailed unpaired Welch’s t test, 
uncorrected for multiple comparisons. (F) Monocyte-to-lymphocyte ratio (MLR) (response effect, p < 0.0001; time effect, p 
= 0.047; interaction, p = 0.91) in responders compared to non-responders (n = 36, 52). 
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Figure 1. Clinical correlates and response to single-agent anti-PD-1/PD-L1. (A) Flow diagram depicting subdivision of
primary and biomarker patient cohorts. (B) Number of immune-related adverse events (irAEs) experienced by responders
and non-responders. Data shown are averages ± standard deviation (SD). * p < 0.05, unpaired Mann–Whitney U-test
(n = 38, 56). (C) Stage at diagnosis, International Metastatic RCC Database Consortium (IMDC) risk score, and number of
metastatic lesions of at initiation of ICI therapy. (D) Prior lines of therapy before ICI therapy, as well as concurrent radiation
during ICI therapy. (E) Percentage of lymphocytes (two-way analysis of variance (ANOVA): response effect, p < 0.0001;
time effect, p = 0.012; interaction, p = 0.44) and neutrophils (response effect, p = 0.0002; time effect, p = 0.063; interaction,
p = 0.55) in peripheral blood of responders compared to non-responders at baseline, 4 to 10 weeks of therapy, and end of
therapy (n = 37, 53). Data shown are averages ± SEM. * p < 0.05, ** p < 0.01, post-hoc two-tailed unpaired Welch’s t test,
uncorrected for multiple comparisons. (F) Monocyte-to-lymphocyte ratio (MLR) (response effect, p < 0.0001; time effect,
p = 0.047; interaction, p = 0.91) in responders compared to non-responders (n = 36, 52).

2.3.2. Sample Imaging

Fluorescence imaging was obtained as indicated in Johnson et al. [28]. The CD4/CD8/
CD25/FoxP3/Ki67/CK assay was imaged using Vectra 3 software (Akoya Biosciences),
where the whole slide was scanned at 4× for DAPI, fluorescein isothiocyanate (FITC), CY3,
Texas Red, and Cy5, and an automated algorithm was used to enrich for areas with CD25
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and FoxP3 staining. The images were then reviewed by a pathologist and adjusted to
ensure tumor areas were included in the imaging before 20×multispectral images were
acquired of up to 40 fields of view. Accepted images were processed with AQUA import
tool (Navigate) to generate spectrally unmixed images for analysis.

2.4. WES and Analysis

Raw sequencing data, paired fastq files, were processed using Genome Analysis
Toolkit (GATK) [29]. Briefly, reads were aligned using Burrows-Wheeler Aligner Maximum
Exact Match (BWA-MEM) [30] against the hg38 human reference and duplicate reads were
marked. Joint variant calling was performed using Haplotype Caller [31]. Analysis was
performed using Terra [32] on Google Cloud Platform. Variants were annotated using
Annotate Variation (ANNOVAR) [33] and filtered using standard filtering criteria to obtain
high quality, likely somatic variants, and variant classification. The following filters were
used: (1) quality filters: quality by depth, read position bias, (2) exclusion of non-exonic
variants, (3) exclusion of variants with missing genotypes found in >25% of the samples,
(4) exclusion of variants found in matched normal samples, (5) exclusion of synonymous
variants or variants of unknown function, and (6) max population frequency < 0.001 using
the following population datasets: ExAC [34], gnomAD [35], 1000 G [36], and ESP6500 [37].

Driver gene-filtering was performed as follows. Genes implicated in prior studies [38]
and implicated in OncoKB [39] were retained. For the remaining genes, we applied the
following filters for downstream analysis: (1) non-synonymous/synonymous ratio >2.5 or
frequency of frameshifts >33%, (2) transcript size <15,000 amino acids, and (3) variability
≤0.06 (number of variants as a function of variant size in the ESP6500 database [37]). For the
mutation heatmap, genes were sorted based on frequency, and variants were color-coded
based on their effect.

2.5. TCR Sequencing and Analysis

Analysis of TCR sequencing data was performed using MIGEC and VDJtools [40].
Briefly, unique molecular barcodes (UMIs) were used to create consensus reads associated
with each molecule, reducing polymerase chain reaction (PCR) and sequencing errors.
Hierarchical clustering was performed on TCR genes to verify that samples from the same
patient clustered together and to detect cross-contamination. TCR diversity was correlated
with clinical variables, and median diversity was used as a cutoff for PFS curves.

2.6. RNA-seq and Analysis

RNA-seq libraries were generated with the Illumina TruSeq RNA Access kit, according
to the manufacturer’s protocol. Sequencing was performed using 2 × 100 read chemistry
on an Illumina HiSeq 2500 system. Alignment of FASTQ files was performed using STAR
v2.4.2a with default arguments, with downstream quantification performed using Salmon
v0.8.2 in quantification mode. Quality control of BAM files was performed using Picard
Tools v1.86 “CollectRnaSeqMetrics”. Gene count matrices were analyzed using DESeq2 [41],
and normalized gene expression counts were obtained. We performed principal compo-
nent analysis (PCA) to identify groupings or outliers from the data and compared them
to clinical covariates. Differential analysis was performed to identify differential genes
between responders and non-responders (adjusted p-value (Benjamini–Hochberg) < 0.1).
Angiogenic, T effector, inflammatory myeloid signatures, and the expanded immune and
antigen-presenting gene panel were defined as previously published [10]. The contri-
bution of immune cell types in each of the samples was identified using deconvolution
methods [42]. Clear cell subtypes ccA and ccB were defined by the ClearCode34 gene [43].

2.7. Statistical Analysis

Analyses of clinical characteristics were performed using GraphPad Prism v6. Com-
parisons of clinical characteristics between responders and non-responders were carried
out using two-way analysis of variance (ANOVA) with post-hoc unpaired Welch’s t test
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at individual time points for laboratory data, Mann–Whitney U-tests for continuous and
ordinal variables with non-normal distributions (i.e., number of irAEs), and Pearson χ2 or
Fisher’s exact tests for categorical variables (i.e., previous nephrectomy). Survival analysis
was performed using Kaplan–Meier estimation of survival functions followed by log-rank
testing. All tests were two-sided, and a p-value less than 0.05 was statistically significant.
Statistical analysis did not correct for multiple comparisons.

Analyses using molecular platforms and clinical variables were performed using R
v3.6.1 (https://www.r-project.org/, accessed on 13 May 2020) and GraphPad Prism v6
(San Diego, CA, USA). For mIF, only primary clear cell RCC samples were included in
comparative analyses to prevent confounding due to tissue or tumor type, and comparison
of mIF data was evaluated by Mann–Whitney U-tests. Gene-level mutations obtained from
WES and gene expression data were used to identify associations with clinical covariates.
Survival analysis was used to identify associations with PFS, and differential analysis was
used to identify associations with clinical response.

3. Results
3.1. Study Population

Of the 212 patients who were verified to have RCC and treated with any ICI therapy, 94
patients had sufficient electronic medical record (EMR) documentation and treatment with
single-agent anti-PD-1 or PD-L1 therapy to assess response (Figure 1A). The demographic
and treatment information for these patients are summarized in Table 1 (Table S6). Clinical
characteristics were similar to those reported in trials investigating single-agent anti-
PD-1/PD-L1, though our cohort had a considerably lower proportion of patients in the
favorable International Metastatic RCC Database Consortium (IMDC) risk group [2,15].
Thirty-eight patients (40.4%) were considered as responders (complete response (CR),
partial response (PR), mixed response), and 56 (59.6%) as non-responders (stable disease
(SD) and progressive disease (PD)). Median PFS and overall survival (OS) of all patients was
6.6 months (95% confidence interval (CI): 4.4–8.7) and 23.5 months (20.4–34.1), respectively.
The clinical characteristics for the biomarker cohort are detailed in Table S2 and were
enriched for responders (50%) compared to the primary cohort.

3.2. Clinical Correlates and Response to Anti-PD-1/PD-L1

Consistent with previous reports, the number of irAEs experienced while on ICI
therapy was higher in responders than non-responders (n = 38, 56; p = 0.012) (Figure 1B),
and the odds of response were increased in patients who experienced at least one irAE
compared to those who experienced none (odds ratio (OR) = 2.50, 95% CI = 1.057–5.911)
(Table S3). Among patients who experienced an irAE, the type of irAE that occurred, the
highest grade of irAE experienced, and the percentage of patients requiring oral and/or
intravenous steroid administration did not differ significantly between responders and
non-responders (Table S3). Stage at diagnosis, IMDC risk score, number of metastatic
lesions at initiation of ICI therapy, number of previous lines of systemic therapy, and
concurrent radiation with ICI therapy were not associated with the probability of objective
response (Figure 1C, D). Although the number of metastatic sites did not differ between
responders and non-responders, the presence of pancreatic metastasis correlated with
decreased likelihood of response (OR = 0.257, 95% CI = 0.0683–0.968) (Table S4). Other
demographic (age, gender, BMI), and treatment characteristics (previous nephrectomy,
radiation, antiangiogenic agent, mammalian target of rapamycin (mTOR) inhibitor, or IL-2
therapy) were not significantly different between groups (Figure S1A,B).

Evaluation of patient laboratory values showed that while no difference in percentage
of lymphocytes (n = 37, 53; 24.8% vs. 21.3%, p = 0.10) or neutrophils (n = 37, 53; 62.5%
vs. 65.7%, p = 0.18) of total leukocytes was seen at time of ICI initiation, there was a
significantly higher percentage of lymphocytes (23.4% vs. 17.4, p = 0.0015) and lower
percentage of neutrophils (61.8% vs. 68.5%, p = 0.0045) in responders compared to non-
responders early during the course of ICI therapy that was sustained until the end of

https://www.r-project.org/
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therapy (p = 0.0030, p = 0.038) (Figure 1E). Additionally, MLR was lower in responders
compared to non-responders throughout all measured timepoints (n = 36, 52; two-way
ANOVA; response effect p < 0.0001, time effect p = 0.047, interaction p = 0.91) (Figure 1F).

Table 1. Clinical characteristics of primary cohort of patients with RCC.

Clinical Characteristic Primary Cohort, n = 94 Responders (CR, PR, Mixed),
n = 38

Non-Responders (PD, SD),
n = 56

Best response to ICI therapy
(%)
CR 2 (2.1) 2 (5.3) 0 (0.0)
PR 23 (24.5) 23 (60.5) 0 (0.0)
SD 18 (19.1) 0 (0.0) 18 (32.1)
PD 38 (40.4) 0 (0.0) 38 (67.9)

Mixed 13 (13.8) 13 (34.2) 0 (0.0)

Median age at initiation of ICI
(range), year 63 (27–82) 62 (27–79) 63 (31–82)

Sex (%)
Male 71 (75.5) 30 (78.9) 41 (73.2)

Female 23 (24.5) 8 (21.1) 15 (26.8)

Stage at diagnosis (%)
I 15 (16.0) 6 (15.8) 9 (16.1)
II 13 (13.8) 4 (10.5) 9 (16.1)
III 22 (23.4) 11 (28.9) 11 (19.6)
IV 44 (46.8) 17 (44.7) 27 (48.2)

Histology
Clear cell 79 (84.0) 32 (84.2) 47 (83.9)
Papillary 4 (4.3) 1 (2.6) 3 (5.4)

Sarcomatoid 2 (2.1) 1 (2.6) 1 (1.8)
Chromophobe 2 (2.1) 0 (0.0) 2 (3.6)

Undifferentiated 7 (7.4) 4 (10.5) 3 (5.4)

IMDC risk group (%)
Favorable 9 (9.6) 5 (13.2) 4 (7.1)

Intermediate 63 (67.0) 28 (73.7) 35 (62.5)
Poor 22 (23.4) 5 (13.2) 17 (30.4)

Previous therapies (%)
Nephrectomy 90 (95.7) 35 (92.1) 55 (98.2)

Radiation 32 (34.0) 13 (34.2) 19 (33.9)
Anti-angiogenic agent 81 (86.2) 30 (78.9) 51 (91.1)

mTOR inhibitor 25 (26.6) 10 (26.3) 15 (26.8)
High-dose IL-2 22 (23.4) 11 (28.9) 11 (19.6)

ICI agent (%)
Nivolumab 79 (84.0) 28 (73.7) 51 (91.1)

Atezolizumab 15 (16.0) 10 (26.3) 5 (8.9)

ICI line of therapy (%)
First-line 8 (8.5) 5 (13.2) 3 (5.4)

Second-line 28 (29.8) 11 (28.9) 17 (30.4)
Third-line 32 (34.0) 13 (34.2) 19 (33.9)

Fourth-line+ 26 (27.7) 9 (23.7) 17 (30.4)

Median duration of ICI
therapy (range), days 189 (12–1637) 329 (28–1637) **** 98 (12–769) ****

Median survival (95% CI),
months

PFS 6.6 (4.4–8.7) 11.1 (9.0–23.6) #### 3.1 (2.7–5.7) ####

OS 23.5 (20.4–34.1) 43.6 (29.4–not reached) #### 16.4 (10.6–23.0) ####

**** p < 0.0001, two-tailed Mann-Whitney U test. #### p < 0.0001, log-rank test, Abbreviations: CR, complete response; PR, partial response;
SD, stable disease; PD, progression of disease; ICI, immune checkpoint inhibitor; IMDC, International Metastatic RCC Database Consortium;
irAE, immune-related adverse event; CI, confidence interval; PFS, progression-free survival; OS, overall survival.

3.3. PD-L1 Expression and Immune Milieu

To further our understanding of the biology underlying response to PD-1/PD-L1
blockade in patients with RCC, we performed multiplatform molecular profiling in the
biomarker cohort (Table S7). PD-L1 expression was assessed on tumor, non-tumor, and
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all cells. The percentage of PD-L1-expressing cells was increased in responders com-
pared to non-responders, most significantly among non-tumor cells (n = 7, 11; p = 0.0058)
(Figure 2A,B). Prior work in melanoma suggests that the density of both PD-1 and PD-L1
expression, quantified by the interaction score, is a stronger predictor than PD-L1 alone [28].
Although PD-1 expression in non-tumor cells was not different between responders and
non-responders (Figure S2A), the PD-1/PD-L1 interaction score was non-significantly
higher in responders (n = 7, 11; p = 0.055) (Figure 2C) and a score over 200 correlated with
improved PFS (n = 6, 12; hazard ratio (HR) = 0.38, 95% CI = 0.11–0.70) (Figure 2D). Regard-
less of cell type measured, PD-L1 expression correlated with PFS when using a threshold
of >5% when measured on either tumor cells (n = 10, 8; HR = 0.31, 95% CI = 0.047–0.48) or
non-tumor cells (n = 7, 11; HR = 0.36, 95% CI = 0.098–0.67) (Figure 2E). When looking across
all cells, higher overall PD-L1 expression correlated with improved survival, which was
significant when using a cutoff of 10% of all cells (n = 6, 12; HR = 0.30, 95% CI = 0.079–0.53)
(Figure S2B).
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To better understand the presence and impact of other cells in the tumor immune
microenvironment in RCC and response to immunotherapy, mIF measured both immune
stimulatory and suppressive components. The amount of total, CD4+, and CD8+ T cell
infiltration did not correlate with response (Figure S2C). Immune-suppressive components
in the RCC microenvironment such as T regulatory cells (Tregs), macrophages, myeloid-
derived suppressor cells (MDSCs), and cells expressing indoleamine 2,3-dioxygenase
(IDO1) were lower in responders, though not significantly (n = 7, 10; p = 0.16, 0.29, 0.39,
0.41) (Figure S2D).
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3.4. TMB and Driver Mutations Do Not Correlate with ICI Response

WES was performed in patients who had matched primary tumor, metastasis, and/or
adjacent normal tissue. Matched samples from the same patient showed a high degree of
similarity quantified by the Jaccard index and clustered together as expected (Table S8).
Consistent with previous reports, the classical driver mutations associated with ccRCC,
including alterations in VHL, PBRM1, BAP1, and SETD2, were identified in tumor samples.
Truncating mutations were the most common, followed by missense and synonymous
mutations (Figure 3A). However, responders and non-responders did not cluster based
on WES analysis, and no single gene or mutation significantly correlated with response.
Non-synonymous PBRM1 mutations trended towards response (OR = 15.00) but were not
statistically significant (p = 0.10). Additionally, TMB calculated based on all unfiltered
variants did not correlate with response to therapy (Figure 3B). Thus, tumor mutational
profile did not predict likelihood of response to ICI.
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3.5. TCR Clonal Diversity Does Not Correlate with Response but May Impact Survival

Lower TCR diversity may represent purposeful expansion of specific tumor antigen-
driven TCR clones, indicating an existing anti-tumor T cell response that can be further
enhanced with immunotherapy. Previous studies in ccRCC have demonstrated that a
polyclonal infiltrating T cell population is indicative of an exhausted, poorly cytotoxic T
cell phenotype compared to an oligoclonal population [44]. As expected, unsupervised
clustering of TCR clones in our samples showed that TCRs were not generally shared across
patients, and multiple samples from a single individual clustered together (Figure 4A,
Table S9). Although TCR diversity was not significantly different in objective response
(n = 5, 7) (Figure 4B), a lower TCR diversity (<644 clonotypes) among tumor-infiltrating
lymphocytes suggested improved survival (n = 6, 6; PFS HR = 0.49, 95% CI = 0.13–1.6; OS
HR = 0.32, 95% CI = 0.055–0.98) (Figure 4C).
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3.6. Gene Expression Patterns in RCC Suggest Response to Single-Agent Immunotherapy

Prior work has suggested that gene expression signatures correlate with response to
anti-PD-1/PD-L1 therapy [10,21,22]. Differential gene expression analysis in our study
demonstrated genes that were significantly differentially expressed between responders
and non-responders (n = 8, 7) (Figure 5A, Table S10) and gene set variation analysis revealed
differentially expressed pathways, including immune and metabolic pathways, between
responders and non-responders (Table S5). Furthermore, deconvolution analysis revealed a
non-significantly higher proportion of tumor-infiltrating immune cells (p = 0.34), including
M1 macrophages (p = 0.094), among responders compared to non-responders (Figure 5B).
Consistent with mIF results, proportions of other immune cell types, including CD8+ T
cells, were not different between responders and non-responders (Figure S3A). Evaluation
using the previously published ClearCode34 gene set [43] showed that responders to
PD-1/PD-L1 blockade tended to cluster together with a ccB profile, while non-responders
were largely grouped under the ccA profile (Figure S3B).

Unsupervised clustering analysis showed that responders and non-responders tended
to cluster separately based on key gene expression pathways, including angiogenesis,
myeloid, and T effector signature scores previously defined by McDermott et al. [10] and
shown in Figure 5C. Responders in this cohort tended to have a lower angiogenic and
higher T effector signature. Expression of the expanded immune and antigen-presenting
gene panel [10], which includes other stimulatory cytokines and immune checkpoint
proteins in addition to the T effector signature, was upregulated in responders compared to
non-responders (Figure 5D). In summary, previously identified gene expression signatures
including angiogenic, T effector, expanded immune, and clear cell subtype (ClearCode34)
gene signatures correlated with response to anti-PD-1/PD-L1 monotherapy.
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4. Discussion

The results of this retrospective study identify clinical and laboratory characteristics
associated with response to ICI in patients with RCC and explore how these characteristics
relate to novel biomarker platforms. Patients who experienced at least one irAE were
more likely to respond to ICI. These results replicate prior associations between irAE
and patient response to ICI [16,17] and suggest that immune reactivity occurs not only at
the site of the tumor but also at non-tumor tissue sites. While such association requires
large-scale validation, irAE in patients with mixed response on imaging or concerns for
pseudoprogression may aid in decision-making for clinicians. Patients with pancreatic
metastases were less likely to respond to anti-PD-1/PD-L1. This is consistent with results
reported by Singla et al., who have shown that pancreatic metastases of RCC are typically
VEGF-driven and refractory to ICI treatment [45].

Patients with response to ICI commonly had higher lymphocyte and lower neutrophil
percentages, corroborating work that has shown NLR at baseline and after several weeks
on treatment as a predictor of response in RCC. Patients with higher NLR have lower ORR,
PFS, and OS on ICI therapy [12]. These findings suggest that higher levels of suppressive
myeloid cells induced by the tumor and lower levels of activated circulating lymphocytes
contribute to the correlation between high NLR and poor response to ICI therapy. The
clinical application of NLR awaits further prospective study.

PD-L1 testing has been fraught with challenges, including tumor heterogeneity, dif-
fering antibodies, varying percent expression cutoff, and differing target cell populations
of the analysis. PD-L1 in this mIF assay showed correlation with response across cell
types assessed, but, similar to prior studies [2,3,6,7,10], not all patients with response had
expression of PD-L1 at the protein level. Unlike our findings, prior studies generally did
not find an association between overall PD-L1 expression and response to ICI therapy.
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Potential reasons for these discrepant results include the fact that the PD-L1 antibody in
our assay does not share the same clonality or manufacturer as those used in clinical trials
and our staining and detection methods differ from traditional immunohistochemistry
(IHC). The novelty of this study was the ability to look not only at PD-L1 but at other cells
in the tumor immune microenvironment. In non-responders, there were higher immune
suppressive components such as Tregs and macrophages, while in responders, higher total
T cell infiltration was found. These data suggest that, in addition to PD-L1, the presence
and function of cells in the microenvironment are associated with response to ICI. Larger
validation studies incorporating additional cell types covering both immune effector as
well as suppressive functions are likely to add to the understanding of response to ICI
in RCC.

Braun et al. recently used WES, RNA-seq, IF, and copy number analysis to study
response in a similar clinical context as this study for patients with ccRCC receiving ICI
therapy [11]. They utilized clinical correlates from patients enrolled on Checkmate010
and Checkmate025, with the majority of this group receiving nivolumab following VEGF-
targeted therapy. Our biomarker cohort differs in that the majority of patients received
anti-PD-1/PD-L1 monotherapy in the third or later line of treatment and that responses
were durable in the responders (median PFS, 13.4 months) compared to non-responders
(median PFS, 2.76 months). Similar to Braun et al., we found that TMB and CD8+ T cell
infiltration were not associated with clinical response. We did not observe a significant
correlation between PBRM1 mutations and response as Braun et al. did, and this may in
part be due to differences in cohorts and inclusion of non-truncating PBRM1 mutations
in correlative analyses. Additionally, Braun et al. performed copy number variation
analysis that we did not, which showed that additional chromosomal aberrations can help
discriminate response.

Based on data from studies using ClearCode34 [43] and IMmotion150 [10], we re-
viewed gene expression patterns to determine if specific pathways or previously established
signatures could be differentially enriched in this study. In our small cohort, patients with
response demonstrated differentially expressed genes involved in inflammatory signaling
and metabolic pathways. Response tended to correlate more with the ccB subtype, as well
as lower angiogenic, higher T effector, and higher expanded immune gene signatures. This
is the first study to date suggesting an association between clear cell subtype and response
to ICI therapy. Previous studies utilizing patient cohorts not treated with checkpoint
inhibitors demonstrated that ccB tumors tend to have a worse prognosis compared to ccA
tumors [43]. Thus, our work suggests that ICI therapy may provide greater clinical benefit,
specifically in patients with ccB tumors.

Compared to IMotion150, we observed similar patterns in responders with high T ef-
fector signature and high expanded immune infiltrate signature. In IMotion150, treatment-
naïve patients with high T effector combined with high myeloid-suppressive signatures
tended not to do as well with single-agent PD-L1 blockade [10]. In this cohort, low an-
giogenesis and high T effector signatures were more likely to respond, consistent with
previously published studies [10,23]. While results between this study and IMotion150
were discrepant regarding ability to respond with a high myeloid signature, this may be due
to differences in patient population and line of therapy. While the patients in IMotion150
were treatment-naïve, patients in this study had several lines of therapy between sample
collection and ICI treatment. Standard of care treatments in RCC such as VEGF inhibition
have been shown to alter the tumor immune microenvironment and enhance response to
anti-PD-1/PD-L1 monotherapy [46]. Samples were from archival FFPE tissue, including
prior nephrectomy samples when the biology of a patient’s response may have been very
different. Sequential biopsy while on therapy and at time of progression would improve
our understanding of the changes in the tumor microenvironment and immune milieu that
we hypothesize may occur after treatment with VEGF inhibition or other therapies.

New data from this study are preliminary results suggesting that the presence of lower
TCR clonality should be investigated further for its potential to distinguish patient outcome.
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This analysis suggests that having a lower TCR diversity may correlate with improved
PFS and OS and specific tumor clonotypes may drive the response to anti-PD-1/PD-L1
monotherapy. Future directions include identifying the tumor antigens associated with
these clonotypes. In our cohort, we did not find overall TMB and alterations in commonly
mutated genes like PBRM1 to be associated with response. Thus, neoantigens derived from
these common mutations may not be the primary drivers of the adaptive T cell response in
RCC; instead, the role of other factors such as endogenous retroviral genes [19,20] or larger
chromosomal abnormalities [11] should be studied in shaping the TCR repertoire.

We note that this study has limitations, including being conducted at a single site in
a retrospective manner. The use of archival FFPE specimens may skew analyses due to
suboptimal molecular quality, though many others have similarly utilized this preservation
method for their studies. RCC is also characterized by intratumoral heterogeneity and thus
a single tissue sample analyses likely underestimated the complex biology of response.
Similarly, future studies would benefit from focused analyses of varying histologies in-
cluding non-ccRCC such as papillary. Although we demonstrate patterns and further our
understanding of the biology that correlate with response to ICI in RCC, we are unable
to definitively classify responders and non-responders based on these data. The clinical
and biomarker cohorts were both limited by number of patients and samples included in
each. In the future, more rigorous analyses will benefit from larger cohorts and accounting
for multiplicity of testing. While limited, ultimately, this study independently confirms
gene expression data from previously published work while also showing the feasibility to
study more than one biomarker in order to improve understanding behind the complex
biology underlying response to ICI treatment in RCC.

5. Conclusions

Response to ICI therapy remains challenging to predict in RCC, but these data build
upon previous work and suggest that PD-L1 staining alone does not give sufficient infor-
mation to predict response [11,24]. Checkpoint inhibitors elicit a complex biology that will
require a combination of biomarkers to predict response. Platforms analyzing TCR diver-
sity, gene expression, multiplex IHC or IF, and chromosomal alterations or endogenous
retroviruses will need to be assessed in large prospective clinical trials moving forward
with the goals of developing sensitive and specific biomarkers that can be used in the clinic.
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