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In modern society, more and more people suffer from circadian disruption, which in
turn affects health. But until now, there are no widely accepted therapies for circadian
disorders. Rhythmic feeding behavior is one of the most potent non-photic zeitgebers,
thus it has been suggested that it was important to eat during specific periods of
time (time-restricted feeding, TRF) so that feeding is aligned with environmental cues
under normal light/dark conditions. Here, we challenged mice with a 6 h advanced shift,
combined with various approaches to TRF, and found that food restricted to the second
half of the nights after the shift facilitated adaptation. This coincided with improved
resilience to sepsis. These results raise the possibility of reducing the adverse responses
to jet lag by subsequent timing of food intake.
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INTRODUCTION

Despite an increasing awareness of the hazards of circadian disruption, modern lifestyle is subject to
frequent desynchronization due to shift working, artificial light, and transmeridian air flight. While
the molecular clock may be adjusted by small molecules that target clock proteins (Cho et al., 2012;
Solt et al., 2012; Wallach and Kramer, 2015), we have found that inhibiting circadian rhythms may
also mitigate circadian disorders (Yang et al., 2019, 2020).

As a potent non-photic cue, food is an important secondary zeitgebers in animal models
(Golombek and Rosenstein, 2010). Unlike light, daily feeding behavior mainly affects peripheral
clocks, especially in the liver (Damiola et al., 2000; Hara et al., 2001; Stokkan et al., 2001; Fuller et al.,
2008). Indeed, studies in rodents suggest the benefits of eating during specific periods of time (time-
restricted feeding, TRF) so that feeding is aligned with light cues. For example, if food is available
only at night, during the active phase in mice, it can prevent the metabolic syndrome induced by
a high-fat diet (Hatori et al., 2012), and even reverse pre-existing obesity and impaired glucose
tolerance (Chaix et al., 2014). These beneficial effects are lost on reversion to more temporally
disrupted ad libitum feeding.

Although there is evidence of a beneficial effect of TRF on health under regular light/dark
conditions, it is not known if TRF could still retain its advantage under disrupted time schedules,
such as jet lag. When animals are challenged with artificial jet lag, the central clock can be quickly
reset by the new light/dark cycle, while the peripheral clocks adjust over a longer time scale
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(Yamazaki et al., 2000; Kiessling et al., 2010). This temporal
lag represents the key determinant of adjustment to jet lag.
Since feeding behavior can affect peripheral clocks, certain TRF
regimens would facilitate adaptation to jet lag. Accordingly,
feeding scheduled to the first 2 h in dark phase accelerated re-
entrainment speed in rats treated with a 6 h advanced jet lag
(Angeles-Castellanos et al., 2011; Ubaldo-Reyes et al., 2017).
Similarly, a recent report showed that restricting food intake to
the whole dark phase (12 h) accelerated adjustment to weekly
repeated day-night reversals in female FVB (Friend Leukemia
Virus B) mice (Schilperoort et al., 2019). Despite the fact that
activity data reflect the speed of adjustment to a jet lag, it does
not necessarily mean faster responders are healthier. Objective
evaluation of health status has to be taken into account when
describing circadian adaptation. Although chronic circadian
disruption (such as multiple jet lags) has been related to various
diseases in human and animal models (Yang et al., 2013), a
single jet lag is too mild to cause obvious health problems in
normal mice. Interestingly, a bacterial lipopolysaccharide (LPS)-
induced sepsis in mice was exacerbated after four 6 h advanced
shifts or showed a statistically non-significant trend toward to
exacerbation after a single shift (Castanon-Cervantes et al., 2010).
This effect was evident even 7 days after the last shift when
mice were fully re-entrained. Therefore, in our study, we utilized
this jet lag sensitive disease model to investigate if any TRF-
facilitated adaptation to a 6 h advanced shift was accompanied
by resilience to LPS.

To simplify the study, we chose the combination of various
6 h TRFs and a 6 h advanced shift (Supplementary Figure S1),
the most commonly used artificial jet lag, as the first attempt
to explore the possible beneficial effect of TRF under circadian
disruption conditions. The 6 h TRF was set to the first or the
second half of the nights, so they can cover the whole night
without leaving a gap. Immediately after the behavioral study,
mice were treated with LPS to induce sepsis for evaluation of
health status. We used these approaches to determine whether
any strategies might facilitate adaptation to the jet lag.

MATERIALS AND METHODS

Mice
Eightweek-old male C57BL/6 mice were individually housed
in well-ventilated and light-proof cabinet (Probecare, Wuhan,
China). Mice were kept under regular light/dark cycles (12 h
light:12 h dark, LD) at room temperature for 2 weeks before
experiments, during which all mice had free access to normal
chow diet (Changsheng Biotechnology, Benxi, China) and water.
Lights-on was at 08:00 h, defined as zeitgeber time 0 (ZT0), and
lights off at 20:00 h defined as ZT12. Light intensity at the level of
animals during the day was about 100 lux.

Study Design
Two sets of mice were treated with or without a 6 h advanced
shift, combined with a variety of TRF regimens. The mice in the
first set (Supplementary Figure S1) were given food in the first
(ZT12-18) or the second half (ZT18-0) of the night 1 week before

and after the shift (group B, C, D, E) or have free access to food
(group A). Another set of mice were divided into three groups
(Supplementary Figure S3), i.e., the control group (no jet lag, no
TRF); the group of jet lag without TRF; and group of jet lag with
TRF (TRF was set to the second half of the nights after the shift).

We used this approach to investigate the speed of adaptation
to the 6 h advanced shift. 7 days after the shift, mice were
peritoneally injected with LPS (Solarbio, Beijing, China) to
induce sepsis (Castanon-Cervantes et al., 2010). The health status
and lethality were then monitored for a week, during which
food and water bottle were placed on bedding for convenient
access without TRF.

Wheel Running Activity
Mice for activity recording were individually housed in a
running wheel-equipped cage contained within the cabinet
described above. The wheel revolution was continuously
recorded throughout the experiment and analyzed using
ClockLab software (Actimetrics, Wilimette, IL, United States).
The number of days until stable re-entrainment of the activity
rhythm following the shift was determined as previously
described (Pfeffer et al., 2015) with modification. Specifically,
entrainment to the new LD cycle was defined as activity onset
relative to lights off <0.5 h for 4 consecutive days or for days
before LPS treatment if less than 4. A mouse not re-entrained
7 days after the shift was considered as re-entrained on day 8 for
statistical analysis.

Sepsis Model
Mice were injected intraperitoneally with LPS (1.5 mg/ml in PBS,
10 µL/g body weight, i.e., 15 mg/kg body weight) at ZT3. Health
status was observed every 3 h for the first 2 days, and then every
6 h for 5 more consecutive days. The health status was scored
as previously described with modifications (Shrum et al., 2014),
including the level of consciousness, the response to stimulation,
and the survival rate, as follows (Table 1).

Statistics
All statistical tests were two-sided. Student’s t-test was used
when a single variable was compared between two groups. One-
way or 2-way ANOVA with Tukey’s test was used for multiple
comparisons. The log-rank test was used to compare the survival
distributions. In all figures with error bars, the graphs depict
means± SEM.

RESULTS

Effect of TRF on the Behavior of Jet
Lagged Mice
Mice (groups C and E) whose food was only available late at
night after the 6 h advanced shift adjusted much faster than
those in the other three groups (Figure 1 and Supplementary
Figure S2). These were the mice not subjected to TRF (group A,
the control group), and the mice with TRF during the first half of
the nights after the shift (groups B and D). On average, the mice
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TABLE 1 | Sepsis score.

Score Level of consciousness Response to stimulus

1 Mouse is active but avoids standing upright Slow or no response to auditory stimulus; strong response to touch
(moves to escape)

2 Mouse activity is noticeably slowed. The mouse is still ambulant No response to auditory stimulus; moderate response to touch
(moves a few steps)

3 Activity is impaired. Mouse only moves when provoked, movements
have a tremor

No response to auditory stimulus; mild response to touch (no
locomotion)

4 Activity severely impaired. Mouse remains stationary when
provoked, with possible tremor

No response to auditory stimulus. Little or no response to touch.
Cannot right itself if pushed over

5 Death Death

FIGURE 1 | Wheel running activity of mice under 6 h advanced jet lag. (A) Representative double–plotted actograms of wheel running activity of mice in group A–E.
Blue arrows indicate the date by which the mice were re-entrained to the new LD cycle. The dashed arrows represent that the mice did not adapt to the new
schedule within 7 days and were considered re-entrained on day 8. (B) Days for recovery from jet lag. ***p < 0.001, C vs. A, B, or D; *p < 0.05, E vs. A, B, or D.
There is no statistical difference between C and E, or between any two groups among A, B, and D. One-way ANOVA with Tukey’s multiple comparisons test.

in groups C and E recovered from the shift in 2–3 days based on
the calculation of their onset of daily activity, while about 7 days
was required for the slow responders (group A, B, and D) to adapt
to the change of the schedule.

Resilience in Septic Mice
To test if the speed of adaptation is correlated with their health
status, we injected the mice with LPS to induce sepsis and test
their resilience to a perturbation. The end points were the level
of consciousness (Figure 2A) or the response to an auditory
or tactile stimulus (Figure 2B). Together these aggregated to a
sepsis score. This was evident 3 h after LPS, without differences
in the groups (Figure 2). However, at 9 and 15 h after LPS
injection, the sepsis score in mice in groups A, B, and D (the slow
responders to the jet lag) had further deteriorated (Figure 2C),
while that in the fast responders (group C and E) remained
constant level.

Survival of Septic Mice
The control group (Group A) had more fatal events than group
C and E, the fast responders (Figure 3). One week after LPS

treatment only 23% survived in Group A whereas more than
70% survived in groups C and E (p < 0.01). The survival rate of
the mice in groups B and D was 42%; both had a trend toward
a decrease in survival rate compared with group C (B vs. C,
p= 0.066; D vs. C, p= 0.074).

The Behavior of Mice After LPS
Treatment
Wheel running activity was continuously recorded throughout
the experiment. After LPS treatment, there was little activity in
the slow responders (group A, B, and D), while the fast responders
(group C and E) recovered to a certain level after a short period
of mild disturbance (Figure 4). These changes are consistent with
their health status.

Additional Study With TRF After Phase
Shift Only
These results suggested that making food available late at night
after a 6 h advanced shift was beneficial, irrespective of setting
the TRF early or late in the night phase before the shift.
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FIGURE 2 | Assessment of severity of LPS-induced sepsis (sepsis score). (A) Level of consciousness (n = 11–13). (B) Response to auditory stimulus and touch.
***p < 0.001; **p < 0.01; *p < 0.05; #p < 0.1, One-way ANOVA with Tukey’s multiple comparisons test (n = 11–13). (C) Comparison between time points.
***p < 0.001; **p < 0.01; *p < 0.05; ns, no statistical difference, 9 or 15 h vs. 3 h, paired Student’s t-test.

Thus, we performed additional experiment with TRF applied
after the shift only.

Mice administered TRF late at night after the advanced
shift adjusted their behavior faster than the mice without

FIGURE 3 | Effect of TRF on survival of septic mice. **p < 0.01, Log-rank test.

TRF (4vs. 6 days averagely, Figure 5 and Supplementary
Figure S4). Similarly, subsequent TRF ameliorated sepsis score
(Figure 6A), and survival rate (Figure 6B) after LPS treatment in
jet lagged mice.

DISCUSSION

Disruption of circadian rhythms is associated with adverse health
effects in humans and is causative of physiological dysfunction
in rodent models (Yang et al., 2013). Despite the commonality of
this phenomenon in modern life—up to a third of the workforce
may pursue shift work—there are no strategies to alleviate such
circadian disorders. Here, we speculated that timing of feeding
behavior, one of the most potent non-photic zeitgebers, might
offer such a possibility.

The benefits of TRF in rodent models have attracted much
attention (Salgado-Delgado et al., 2010; Oike et al., 2015;
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FIGURE 4 | Wheel running activity of LPS-treated mice. (A) Representative wheel running activity after LPS treatment. (B) Total number of wheel revolution after LPS
treatment. Data are presented as mean ± SEM. Dunn’s multiple comparisons test, *p < 0.05; **p < 0.01.

FIGURE 5 | Wheel running activity of mice (the 2nd set). (A) Representative wheel running activity. Blue arrow indicates the date by which the mouse was
re-entrained to the new LD cycle. The dashed arrow represents that the mouse did not adapt to the new schedule within 7 days and was considered re-entrained on
day 8. (B) Total number of wheel revolution after LPS treatment. Data are presented as mean ± SEM. Dunn’s multiple comparisons test.

Casiraghi et al., 2016; Longo and Panda, 2016; Chaix et al.,
2019; Manoogian et al., 2019; Kriebs, 2020), although its value
as a strategy in humans remains to be established. However,
most studies were performed under regular light/dark conditions
rather than disrupted light schedules. Recently, Schilperoort et al.
(2019), exposed female FVB mice to weekly 12 h shifts (day-
night reversal), combined with TRF for 28 weeks, and found that
restricting food intake to the dark phase enhanced adaptation
to the repeated shifts, as reflected by accelerated adjustment of
core body temperature and activity rhythms. However, it seemed
that TRF strategy did not improve the plasma lipids compared to
ad libitum feeding. Perhaps the disruption induced by the jet lag
paradigm or the benefit of food restricted to the whole night was
insufficient to detect a difference. Additionally, the mice in this
study were subjected to complete food restriction for 24 h each of

the 28 weeks, an unusual feature in TRF protocols. There are also
reports using rats showing that feeding restricted to the first 2 h in
dark phase post a 6 h advanced shift accelerated re-entrainment
speed in terms of behavior (Angeles-Castellanos et al., 2011;
Ubaldo-Reyes et al., 2017; Escobar et al., 2020). However, none
of them investigated if their TRF strategies have beneficial effect
on health that may be compromised by a single jet lag.

In the current study, we investigated both behavioral
adaptation and health status. Firstly, we used male mice to study
the effect of TRF (during the dark phases only) on adaptation
to a single jet lag (a 6 h advanced shift of light/dark cycle).
We did not perform food restriction to the light phase either
before or after the shift, as that could, respectively, introduce
forced desynchrony (Damiola et al., 2000) or retard adaptation
to jet lag. Usually, the rate of resynchronization of clock time
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FIGURE 6 | Effect of TRF on severity and survival of septic mice (the 2nd set). (A), Assessment of severity of LPS-treated mice (sepsis score). Left, level of
consciousness; right, response to auditory stimulus and touch. ***p < 0.001; **p < 0.01; #p < 0.1, 2-way ANOVA with Tukey’s multiple comparisons test. (B) Effect
of TRF on survival of septic mice. **p < 0.01; #p < 0.1, Log-rank test.

and circadian time is 1–1.5 h/d (Weingarten and Collop, 2013).
Initially, we presumed that the mice that had food available
during the first half of the nights after a 6 h advanced shift would
adapt to the time change quickly, because the availability of food
would keep them awake. However, these mice took about 7 days
to adjust their behavior, which is not distinguishable from jet-
lagged mice without TRF. In contrast, when food was restricted
to the second half of the nights after the shift, the mice adjusted
more quickly—in only 2–3 days. One possible reason is that
food-anticipatory activity is induced at the first half of the dark
phase when food is available in the late night (Abe et al., 1989;
Mistlberger, 2009).

However, faster adaptation to jet lag is not synonymous with
avoidance of the adverse effects of circadian disruption. Many
jet-lagged people have experience of forced adjustment which
seems to be fast but may be accompanied by more symptoms of
circadian disorders. Therefore, health status should be evaluated
objectively when performing behavioral study. Thus, we utilized
the jet lag sensitive LPS sepsis model and found that the speed
of behavioral adaptation was highly correlated with resilience to
LPS administration as reflected by septic score and lethality. Since
the second half of the nights after the 6 h advanced shift can
be regarded as subjective night following pre-shift periods, mice
under such schedule will not be forced by food availability. This
also suggests that the beneficial effect of TRF on adaptation to
circadian disruption is time dependent.

In summary, a TRF strategy is described that accelerates
adaptation to jet lag and restrains a measure of its adverse

consequences in mice. Although we did not perform thoroughly
studies by extending strategies of jet lag or TRF, our results raised
a feasibility of timing of food intake to alleviate circadian clock
disorders. This offers an approach to trans-meridian travel that
might be tested, its extension to chronic models of circadian
disruption might offer an approach to reducing the burden of
cardiometabolic disease that has been associated with shift work
in humans (Chen and Yang, 2015).
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