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ABSTRACT The Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-
CoV-2 originated in bats and adapted to infect humans. Several SARS-CoV-2 strains have
been identified. Genetic variation is fundamental to virus evolution and, in response to
selection pressure, is manifested as the emergence of new strains and species adapted
to different hosts or with novel pathogenicity. The combination of variation and selec-
tion forms a genetic footprint on the genome, consisting of the preferential accumula-
tion of mutations in particular areas. Properties of betacoronaviruses contributing to var-
iation and the emergence of new strains and species are beginning to be elucidated. To
better understand their variation, we profiled the accumulation of mutations in all spe-
cies in the genus Betacoronavirus, including SARS-CoV-2 and two other species that
infect humans: SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).
Variation profiles identified both genetically stable and variable areas at homologous
locations across species within the genus Betacoronavirus. The S glycoprotein is the
most variable part of the genome and is structurally disordered. Other variable parts
include proteins 3 and 7 and ORF8, which participate in replication and suppression of
antiviral defense. In contrast, replication proteins in ORF1b are the least variable.
Collectively, our results show that variation and structural disorder in the S glycoprotein
is a general feature of all members of the genus Betacoronavirus, including SARS-CoV-2.
These findings highlight the potential for the continual emergence of new species and
strains with novel biological properties and indicate that the S glycoprotein has a critical
role in host adaptation.

IMPORTANCE Natural infection with SARS-CoV-2 and vaccines triggers the formation of
antibodies against the S glycoprotein, which are detected by antibody-based diagnostic
tests. Our analysis showed that variation in the S glycoprotein is a general feature of all
species in the genus Betacoronavirus, including three species that infect humans: SARS-
CoV, SARS-CoV-2, and MERS-CoV. The variable nature of the S glycoprotein provides an
explanation for the emergence of SARS-CoV-2, the differentiation of SARS-CoV-2 into
strains, and the probability of SARS-CoV-2 repeated infections in people. Variation of
the S glycoprotein also has important implications for the reliability of SARS-CoV-2 anti-
body-based diagnostic tests and the design and deployment of vaccines and antiviral
drugs. These findings indicate that adjustments to vaccine design and deployment
and to antibody-based diagnostic tests are necessary to account for S glycoprotein
variation.

KEYWORDS COVID-19, MERS-CoV, S protein, SARS-CoV, SARS-CoV-2, coronavirus,
genomic variation, glycoprotein S, protein S, vaccine

Coronaviruses cause respiratory and intestinal infections in animals, including
humans. Three species are highly pathogenic to humans: Severe acute respiratory

syndrome coronavirus (SARS-CoV), first described in China in 2002; Middle East respira-
tory syndrome coronavirus (MERS-CoV), first described in South Arabia in 2012 (1); and
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in December
2019 in Wuhan, China (2, 3).

Coronaviruses consist of a group of four genera (Alphacoronavirus, Betacoronavirus,
Gammacoronavirus, and Deltacoronavirus) in the order Nidovirales, family Coronaviridae,
subfamily Coronavirinae (2, 3). Gammacoronaviruses and deltacoronaviruses infect birds,
and some species infect mammals. Alphacoronaviruses and betacoronaviruses (b-CoVs)
infect mammals, primarily bats and humans (1). The genus Betacoronavirus contains five
subgenera (Table 1): Embevorirus, Merbecovirus, Nobecovirus, Hibecovirus, and Sarbecovirus
(2, 3). The subgenus Sarbecovirus contains species that infect bats or humans. Among
species that infect humans, the closest relatives to SARS-CoV-2 are SARS-CoV and MERS-
CoV (Table 1) (3, 4).

b-CoVs have a monopartite, linear, positive-strand RNA genome of approximately
30,000nucleotides (nt). The virion is spherical, enveloped, and about 120nm in diameter
(1, 5). Genomic RNA associates with the nucleoprotein (N) to form a nucleocapsid. The
membrane (M) protein forms part of the envelope, which also contains the small mem-
brane E protein. The virion surface displays spikes formed by the S glycoprotein (6–8) that
mediate cell entry by interacting with cellular receptors and entry cofactors (9–12). The S
glycoprotein is divided into S1 and S2 subunits that are separated by proteolytic cleavage
via cellular proteases and cofactors (12–15). The virion contains large and small spikes
formed by S1 and S2 together and by S2 subunits, respectively (8). In subunit S1, the car-
boxyl-terminal domain contains a core and the receptor binding subdomains (1, 7–11).

Several lines of evidence show that b-CoVs, including SARS-CoV-2, are evolving and
accumulate mutations in their genome (1, 16). For RNA viruses, important sources of

TABLE 1 Betacoronavirus (order Nidovirales, family Coronaviridae, subfamily Coronavirinae) nucleotide accessions used in this studya

Subgenus species
No. of
accessions

No. of complete
genomes

Reference
accession no. Length (nt)

Embecovirus
Bovine coronavirus 1148 111 AF220295.1 31,100
Camel coronavirus HKU23 22 9 MN514966.1 31,075
Canine respiratory coronavirus 60 3 LR721664.1 31,190
Equine coronavirus 37 4 EF446615.1 30,992
Human coronavirus HKU1 416 48 DQ415901.1 30,097
Human coronavirus OC43 1386 178 MN306053.1 30,818
Murine coronavirus 258 38 AC_000192.1 31,526
Porcine hemagglutinating
encephalomyelitis

92 13 KY994645.1 30,684

Rattus coronavirus HKU24 4 4 NC_026011.1 31,249

Hibecovirus
Bat Hp-betacoronavirus Zhejiang2013 1 1 NC_025217.1 31,491

Merbecovirus
Betacoronavirus erinaceus 10 6 KC545386.1 30,175
Bat coronavirus HKU4 87 11 EF065508.1 30,316
Bat coronavirus HKU5 66 10 MH002342.1 30,529
MERS-CoV 1351 572 MG987420.1 30,484

Nobecovirus
Rousettus bat coronavirus HKU9-1 116 10 EF065516.1 29,155
Rousettus bat coronavirus GCCDC1 27 3 NC_030886.1 30,161

Sarbecovirus
Bat coronavirus 2 2 GU190215 29,276
Bat SARS coronavirus 45 28 MN996532.1 29,855
Bat SARS-like coronavirus 147 19 KY417150.1 30,311
SARS-CoV 637 254 MK062183.1 29,874
SARS-CoV-2 2,379 2,315 NC_045512.2 29,903

aFor each virus species, one annotated accession describing the full genome was used as a reference. Only accessions describing complete genomes were used for
nucleotide variation analyses. Accessions were downloaded from NCBI on 6 April 2020. For SARS-CoV-2, additional accessions were downloaded on 13 May 2020.
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genetic variation are RNA recombination and nucleotide insertions, deletions, and sub-
stitutions introduced during RNA replication (17). Genetic variation combined with
selection pressure imposed by genetically diverse hosts favors the accumulation of
mutations that support the emergence of new virus strains and species (18–20). These
general principles of virus evolution explain several features of b-CoVs, including
SARS-CoV-2. Both SARS-CoV and SARS-CoV-2 likely emerged through RNA recombina-
tion of two species infecting bats. The recombinant progeny then adapted to infect
humans (3). Within a year of the initial description, several SARS-CoV-2 strains have
been detected that mainly accumulate mutations in the S glycoprotein (16, 21).
Temporal and spatial genetic relationships show accumulation of mutations in the ge-
nome, allowing SARS-CoV-2 isolates to be differentiated (22, 23). In the United States, a
variant carrying the Q677P substitution in the S glycoprotein is now abundant in the
southwest, and new mutations within this variant have created sublineages (24).
Furthermore, variants infecting the same individual have been detected (20, 25–27).

The S glycoprotein is the common target for neutralizing antibodies developed in
response to natural infection or vaccines (28–31). Neutralizing antibodies are formed
against the prefusion conformation of the entire S glycoprotein. In contrast, nonneutr-
alizing antibodies are formed against the S2 subunit (8, 32). Antibodies against the
S glycoprotein are used as markers in diagnostic assays (28, 29, 32). Accordingly, the
emergence of new variants with mutations in the S glycoprotein has the potential to
compromise the efficacy of vaccines and the immunity mediated by natural infection
(20, 27, 33–36). Conversely, antibodies developed through natural infection or vaccines
may impose selection pressure on b-CoVs (20, 36). For these and other reasons, it is im-
perative to understand the biological properties of b-CoVs that contribute to the
emergence of new strains and species.

Virus variation, evolution, and adaptation to diverse hosts are mediated by genetic
determinants in the viral genome and selection pressure imposed by the host (37–40).
Accordingly, characterization of genomic variation is fundamental to our understanding
of b-CoV evolution and host adaptation. We hypothesized that genetic determinants of
variation in b-CoVs are conserved across species, including SARS-CoV-2. In this study, we
profiled the genomic variation in all species in the genus Betacoronavirus. Genome-wide
nucleotide variation analyses combined with amino acid variation analyses revealed that
variation patterns are conserved across b-CoVs, including the presence of variable areas
at homologous locations. The most variable parts are the S glycoprotein, followed by
open reading frame 8, accessory proteins 3 and 7, and the N protein. Genome-wide dis-
tribution of mutations of all b-CoVs provides an explanation for the emergence of new
b-CoV species, such as SARS-CoV-2, and for the emergence of strains. These findings
and published results (16, 20, 24, 41, 42) predict how and where SARS-CoV-2 will accu-
mulate mutations and differentiate into new biological strains. SARS-CoV-2 will likely
evolve as it adapts to genetically diverse human populations (20, 43) and possibly to
selection constraints imposed by vaccines, antiviral drugs, and antibodies developed
against natural infections (20, 30, 36). Our results underscore the potential for the contin-
ual emergence of new b-CoV species and strains with novel biological properties.

RESULTS
S glycoprotein is more variable than the rest of the genome. SARS-CoV-2 strains

identified to date (16, 21) differ in the accumulation of nonsynonymous substitutions
in the entire genome (Fig. 1A). However, nonsynonymous substitutions preferentially
accumulate in the S glycoprotein and in the N protein. In all other parts of the genome,
mutations accumulate to a frequency that is equal to or less than that expected
randomly (Fig. 1B). New mutations continue to arise and diversify SARS-CoV-2 into
variants (20, 24). However, recurrent mutations mapped along the SARS-CoV-2 genome
preferentially accumulate in the S glycoprotein (22, 23).

To further test preferential accumulation of mutations in the S glycoprotein, we
measured single-nucleotide polymorphisms (SNPs) in the entire SARS-CoV-2 genome
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and separately in the S glycoprotein, normalized to their respective length. SARS-CoV
was included in the analysis as it was closely related to SARS-CoV-2. Nucleotide acces-
sions were added in increments of 50 or 10 for SARS-CoV-2 and SARS-CoV, respectively.
In both species, the S glycoprotein accumulated more polymorphic sites than the rest
of the genome proportionately (Fig. 2A). Using a chronological approach, SARS-CoV-2
accessions were analyzed by month from December 2019 to April 2020. For SARS-CoV,
accessions were analyzed by year from 2003 to 2017. The number of polymorphic sites
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in the S glycoprotein was similar to or higher than that of the rest of the genome in
SARS-CoV and SARS-CoV-2 over time (Fig. 2B) and in all hosts (civets, humans, mice,
and Vero cells) (Fig. 2C). In SARS-CoV-2, the S glycoprotein represents approximately
17% of the genome (Fig. 1B). However, it accumulated at least 50% of the mutations
(Fig. 1B). Accordingly, the S glycoprotein accumulated mutations at a frequency that is
at least 3-fold higher than would be expected randomly. The frequency was even
higher in accessions derived from nonhuman hosts and in SARS-CoV (Fig. 2C). These
results show that the SARS-CoV-2 S glycoprotein is the most variable part of the
genome.

Differentiation of SARS-CoV-2 based on the S glycoprotein. The variable nature
of the S glycoprotein suggests it is a major contributor to SARS-CoV-2 evolution and
diversification. To further test this model, using accessions from the United States, we
generated a phylogenetic tree using the S glycoprotein and two time periods. Based
on nucleotide (Fig. 3A) or amino acid sequence (Fig. 3B), accessions from January 2020
clustered separately from accessions from July and August 2020. With respect to the

0

0.02

0.04

0.06

0.08

0.10

1 500 1000 1500 2000 2500

SARS-CoV-2

Genome
S Protein

Accessions

N
uc

le
ot

id
e 

va
ria

tio
n

0

0.05

0.10

0.15

0.20

0.25

1 50 100 150 200 250 300

SARS-CoV

Accessions

2003

0.05

0.10

0.15

0.20

0.25

2005 2007 2009 2011 2013 2015 2017

SARS-CoV

0

N
uc

le
ot

id
e 

va
ria

tio
n

0

0.02

0.04

0.06

0.08

0.10

Dec
2019

Jan
2020

Feb
2020

Mar
2020

Apr
2020

SARS-CoV-2

N
uc

le
ot

id
e 

va
ria

tio
n

N
uc

le
ot

id
e 

va
ria

tio
n

N
uc

le
ot

id
e 

va
ria

tio
n

0

0.05

0.10

0.15

0.20

Civet 
(n=8)

Monkeys,
bats, swine
(n=5 )

Human
(n-80)

Mouse
(n=42)

Vero cells
(n=87)

Genome
S Protein

SARS-CoV

Non-human
(n=4)

SARS-CoV-2

Human
(n=2196)

0

0.02

0.04

0.06

0.08

N
uc

le
ot

id
e 

va
ria

tio
n

0

0.002

0.004

0.006

0.008

Genome
S Protein

A  SNPs accumulation with accessions

B  SNPs over time

C  SNPs by host

FIG 2 Nucleotide variation in SARS-CoV-2 and SARS-CoV. (A) Nucleotide variation over accessions. (B) Nucleotide variation over time. (C) Nucleotide
variation by host. The number of accessions in the analysis is indicated in parenthesis.

Coronavirus Genomic Variation Journal of Virology

August 2021 Volume 95 Issue 15 e00496-21 jvi.asm.org 5

https://jvi.asm.org


reference sequence Wuhan-Hu-1 (NC_045512.2), U.S. accessions from January accumu-
lated two nucleotide substitutions (Fig. 3C) and one amino acid (H49Y) substitution
that maps to the N-terminal domain of the S1 subunit (Fig. 3D). These mutations were
not present on accessions from July and August 2020. Instead, eight new nucleotide
(Fig. 3C) and two new amino acid mutations were detected, a Q494L substitution in
the receptor binding motif and an E1202V substitution in the transmembrane motif
(Fig. 3D). In both time periods, all accessions contained the D614G mutation (Fig. 3D).
Consistent with recent observations (16, 24), these results support the model that

Arkansas
Arizona
California
Florida

Time period (2020)
January
July-August

Illinois

Massachusetts

State

Maryland

Minnesota
New Mexico
Washington
Wisconsin

73

73

Time period
State

79

79

Time period
State

July-August

January

July-August

January

200 400 800 1000600 12001 100 300 500 700 900 13001100

N-terminal Receptor-binding C-terminal
1           2

Fusion peptide
proximal region

Heptad
repeat 1

Connector Trans-
membrane

H49Y

Q494 E1202V

C21708T C24035T

Amino Acids

T21809A G24125TT22163C A23041T C23192T G24927T

C25154T A25168T

C-terminalS1 S2S1/S2

21563 22763 23963 2516321963 22363 23163 23563 24363 24763 25384

Nucleotides

614G

614G

A  Nucleotide sequences of S glycoprotein B  Amino acid sequences of S glycoprotein 

C  Nucleotide substitutions

D  Amino acid substitutions

FIG 3 Phylogram and mutations of U.S. SARS-CoV-2 accessions based on the S glycoprotein. (A) Phylogenetic tree of the coding sequence for S protein
based on nucleotide accessions from early (January) and middle (July and August) 2020. Color-coded rings indicate the time period and state of origin. (B)
Phylogenetic tree of S protein generated using amino acid sequences from early and late time periods. (C) Mutations found in nucleotide accessions from
early and late time periods. (D) Mutations found in protein accessions from early and late time periods. Amino acid 614 (G) is indicated.

LaTourrette et al. Journal of Virology

August 2021 Volume 95 Issue 15 e00496-21 jvi.asm.org 6

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
https://jvi.asm.org


mutations in the S glycoprotein mediate the emergence of new strains and that the S
glycoprotein is a major contributor to SARS-CoV-2 evolution.

Genome-wide variation in SARS-CoV-2. Although nonsynonymous substitutions
preferentially accumulate in the S glycoprotein, other areas of the genome also accu-
mulate mutations (Fig. 1). To characterize SARS-CoV-2 genome variation, we compared
accessions early and later in the pandemic. Using a 50-nt window, variation in SARS-
CoV-2 was measured for the 106 nucleotide accessions available on NCBI on 23 March
2020, the 2,315 nucleotide accessions available on 13 May 2020, and the 2,299 amino
acid accessions available on 14 May 2020. No variable areas in the genome were
detected in accessions representing the early part of the pandemic (Fig. 4A). However,
by May 2020, variation was detected in several areas (Fig. 4B). SNPs were higher than
the average of the genome in the S glycoprotein, ORF8, and at the N-terminal part of
ORF 1a (Fig. 4B). A single-amino-acid polymorphism (SAP) analysis showed variation in
the S glycoprotein maps to the N-terminal domain, the receptor binding domain, the
fusion peptide-proximal region, the heptad repeat 2, and the transmembrane domain
(Fig. 4C). These results are consistent with the detection of recurrent deletions that
map to the N-terminal domain in immunocompromised patients (20). An order/disorder
analysis showed that, in SARS-CoV-2, the S glycoprotein has intrinsically disordered areas
in the receptor binding domain, C-terminal domain 2, and the fusion peptide proximal
region (Fig. 4D). Intrinsically disordered regions often interact with multiple molecular
partners, are highly plastic, and show high evolutionary rates (44). Consistent with
these results, major mutations (D614G and Q677P) that render the virus more trans-
missible and pathogenic to humans (24, 34, 45) map near the hypervariable region in
the disordered C-terminal domain 2 in S1 (Fig. 4C). The S1/S2 cleavage site is located
within a variable region (Fig. 4D). In the U.S. accession subset analyzed here (Fig. 3),
no variation was detected in the S1/S2 cleavage site. However, in the larger data set,
mutations were detected at the S1/S2 cleavage site (Fig. 4C). Because variation in the
S1/S2 cleavage site contributes to cellular tropisms and pathogenesis (13), these
results suggest that the S1/S2 cleavage site tolerates mutations and can contribute
to SARS-CoV-2 diversification.

Collectively, these observations support the model that the S glycoprotein is vari-
able and mutationally robust and contains intrinsically disordered areas.

Genome-wide variation in betacoronaviruses. The variation pattern described above
could be a property exclusive to SARS-CoV-2, to a subset of species, or a general property of
b-CoVs. To distinguish the difference, we profiled the genome variation in all members of
the genus Betacoronavirus. To ensure statistical power (46), the analyses described here
were based on species with three or more accessions. At least three accessions describing
complete genomes were available for 19 of the 21 species in the genus Betacoronavirus. The
length of the genomes ranged from 29,855 to 31,190nt (Table 1).

We measured nucleotide variation in all members of the genus Betacoronavirus
(Table 1). SNPs and nucleotide diversity, estimated in a 50-nt window, showed that
b-CoVs in general and species in the subgenus Sarbecovirus in particular are highly
variable (Fig. 5A). Due to its high variability (47), and as a point of comparison, we esti-
mated HIV-1 variation using the same method. The most diversity was observed in
Rousettus bat coronavirus HKU9, other species infecting bats, and MERS-CoV (Fig. 5A).
In these species, more than 25% of the nucleotides in the genome were polymorphic.
Genomic variation is not a function of the number of accessions, because similar
results were observed using the nucleotide diversity index (Pi), which normalizes for
the number of accessions (48) (Fig. 5A).

Variation in HIV-1 (Fig. 6) was higher than that for all b-CoVs, with one exception
(Fig. 5A). Based on nucleotide diversity (Pi), the genome of Rousettus bat coronavirus
accumulated more variation than HIV-1. The next three most variable species included
bat SARS coronaviruses, and their nucleotide variation varied from 57% to 86% of that
observed for HIV-1 (Fig. 5A). In contrast, nucleotide diversity in SARS-CoV and SARS-
CoV-2 was approximately 10% of that observed for HIV (Fig. 5A). Variation estimated
for all b-CoVs was higher than that of polioviruses (0.1%), known for being genetically
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stable (49). The wide range of genomic variation across b-CoV species may reflect a
bias in the source of the accessions, such as being obtained from genetically diverse
hosts. However, these results show that b-CoVs have the potential to be highly
variable.

The genome of b-CoVs consists of 11 to 14 open reading frames (ORFs). Coding
regions for accessory and structural proteins located 39 of the S proteins are not in syn-
teny (1, 50). After normalizing to their length, the most variable parts of the genome
were the S glycoprotein, followed by the E protein, protein 7, the M protein, and the N
protein (Fig. 5B). The lowest variation was detected in open reading frame 1b (Fig. 5B),
which codes for nonstructural proteins that mediate virus replication: RNA-dependent
RNA polymerase, RNA helicase, exonuclease, endoribonuclease, and methyltransferase.
Within the subgenus Sarbecovirus, the most variable part of the genome was the
S glycoprotein, followed by ORF8, accessory proteins 3a, 7a, and 7b, and N protein. The
lowest variation was detected in open reading frame 1b (Fig. 5C).

4000 80001 2000 6000 9181

5’ UTR

gag pol

3’ UTR

vif
env

nef

rev

tat

vpr
vpu

gp120 gp41

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5
SNPs Pi

S
N

P
s 

/ 5
0

P
i

B  Genome-wide variation

A  RNA variation

0

HIV-1 (100)

0.7

0

0.1 0.2 0.3 0.4 0.5 0.6

0.05 0.1 0.15 0.2 0.25
Nucleotide diversity (Pi)

Genomic variation 

C  Variation relative to the genome

0

0.001

0.002

0.003

0.004

0.005

5' UTR gag pol vif vpr tat rev vpu gp120 gp41 nef 3'UTR

  N
uc

le
ot

id
e 

di
ve

rs
ity

 / 
le

ng
th

 

FIG 6 Genomic variation in HIV-1. (A) Nucleotide diversity and genomic variation index (single-nucleotide polymorphisms relative to the
genome) estimated using 100 accessions. Bars represent the averages and standard errors. (B) Genome-wide nucleotide variation. Single-
nucleotide polymorphism (SNP) and nucleotide diversity (Pi) are plotted with respect to the genome. The average and 99% confidence
interval (P, 0.01) are indicated as a horizontal line for each parameter. Coordinates are based on accession no. NC_001802.1. (C) Nucleotide
diversity normalized to the length of the ORF or UTR.

LaTourrette et al. Journal of Virology

August 2021 Volume 95 Issue 15 e00496-21 jvi.asm.org 10

https://www.ncbi.nlm.nih.gov/nuccore/NC_001802.1
https://jvi.asm.org


Genome-wide maps illustrate the distribution of nucleotide variation (Fig. 7). In the
S glycoprotein, ORF8, and 3a, nucleotide polymorphisms were higher than the average
of the genome. In the two species infecting bats, variation was also detected in nsp1
(inhibits host gene expression) (51), nsp2 (inhibits cell signaling) (52), and nsp3 (papain-
like protease) (53). The lowest variation was detected in the 39 half of ORF1a and in ORF1b
(Fig. 7A). This pattern was observed in all species in the subgenus Sarbecovirus, including
SARS-CoV (Fig. 7A).

In the subgenera Merbecoviruses (Fig. 7B), Nobecovirus (Fig. 8A), and Embecovirus
(Fig. 8B), the S glycoprotein is the most variable part of the genome. Other areas of
hypervariation include nsp1, nsp2, and the nsp3 protease, and the lowest variation
was detected in the 39 half of ORF1a and in ORF1b (Fig. 8).

Collectively, genome-wide variation described above show that, in all members of
the genus Betacoronavirus, the S glycoprotein is the most variable part of the genome,
and replication proteins in ORF1b are the least variable (Fig. 5, 7, and 8).

Betacoronavirus differentiation into strains. The S glycoprotein mediates receptor
recognition and membrane fusion during viral entry into the cells (8–11). Consistent
with this role, ACE2 receptor binding is a determinant of host range in sarbecoviruses
(11, 54–57). For viruses in the subfamily Torovirinae within the family Coronaviridae,
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receptor binding is a determinant of host range (58). In the b-CoV genome, as described
above, the S glycoprotein is the most variable (Fig. 5B). These observations predict that
coronaviruses differentiate into strains based on selection pressure from the host. To test
this hypothesis, we generated a phylogeny based on the S glycoprotein for SARS-CoV,
MERS-CoV, and closely related species infecting bats. In SARS-CoV (Fig. 9A) and MERS-
CoV (Fig. 9B), accessions formed clusters that correlated with the country of origin and
host species. Accessions representing bat SARS coronavirus (Fig. 9C) and bat SARS-like
coronavirus (Fig. 9D) originated exclusively from China, and accessions clustered accord-
ing to the host.

These results support the model that, in b-CoVs, variation in the S glycoprotein sep-
arates isolates into strains and may reflect the effect of selection imposed by the host.
Consistent with this model, reinfection in humans has been confirmed (25, 27). In
Brazil, a case of reinfection occurred with a new strain containing an E484K mutation
in the S protein (27).

Amino acid variation in the S glycoprotein. Amino acid sequence in the S glyco-
protein is variable in all species of the subgenus Sarbecovirus (Fig. 10). Variation local-
izes to subunit S1, particularly to the receptor binding domain, which is predicted to
be intrinsically disordered for bat-SARS and bat-SARS-like coronaviruses (Fig. 10).
Intrinsically disordered proteins mediate functional diversity and interactions with
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multiple partners (59, 60). These observations support the model that, in b-CoVs, the S
glycoprotein is mutationally robust and contains disordered areas.

DISCUSSION

Host and viral factors contribute to virus evolution (38, 61). The starting material is
the introduction of mutations (nucleotide substitutions, insertions, or deletions) in the
genome through RNA-dependent RNA polymerase errors during replication, RNA
recombination, and reassortment (in segmented viruses) (39, 61). While they may occur
randomly, selection separates beneficial from detrimental and neutral mutations.
Selection is imposed by the host, the environment, and their interaction. Mutations

FIG 9 Phylogram based on the coding region for S protein in species closely related to SARS-CoV-2. Color-coded rings indicate hosts and
country of origin. (A) SARS-CoV phylogenetic tree based on S protein amino acid sequences. (B) MERS-CoV. (C) Bat SARS coronavirus. (D) Bat
SARS-like coronavirus.
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that provide a beneficial advantage are more likely to be fixed in the genome (37).
Under this scenario, the distributions of mutations in the viral genome are not random.
Instead, mutations accumulate to higher than random frequencies in areas of the
genome that contribute to fitness by enhancing stability, transmission, replication effi-
ciency, escape from immunity, suppression of immunity responses, or a combination
(37–39). The collective results of these effects may be evident through biological prop-
erties such as host adaptation, pathogenicity, or others.

The emergence of new species, such as SARS-CoV-2, and the rapid emergence of
new SARS-CoV-2 strains are an indication that b-CoVs evolve quickly and have a high
capacity to switch hosts and to adapt to new hosts. Results described here show that
b-CoVs are more variable than polioviruses (49). In some species, variation is close to
that observed for HIV-1 (Fig. 5 and 6). The wide host range observed across species
suggests that, in b-CoVs, genomic variation is related to the genetic diversity of the
host.

While mutations accumulate in the entire genome, they are not randomly or
equally distributed. Instead, preferential accumulation of mutations in the S glycopro-
tein is a general feature of all members of the genus Betacoronavirus (Fig. 5B). This was
particularly evident in SARS-CoV-2. Strains identified to date (16, 21) and isolates from
early and middle 2020 can be distinguished based on the S glycoprotein sequence
alone (Fig. 3).

In HIV-1, glycoproteins gp120 and gp41 are the most variable in the genome
(Fig. 6). Both b-CoV S glycoprotein and HIV gp120 and gp41 are envelope proteins and
mediate viral entry. The S glycoprotein binds to the ACE2 receptor (55), while gp120
binds to the CD4 receptor (62). Both the S glycoprotein and gp120 induced the forma-
tion of neutralizing antibodies. These features suggest several mechanisms driving
diversifying selection in envelope glycoproteins: cellular receptors, entry cofactors, and
antibodies.

Within the variety of coronavirus hosts, the cellular receptors, entry cofactors, and
cellular proteases that process the S1/S2 cleavage site and immunity responses are
likely diverse (12, 63). Results described here show that, for b-CoVs, the S glycoprotein
is variable and mutationally robust and contains intrinsically disordered areas (Fig. 4,
5B, and 9). Disordered proteins allow functionality with a diverse set of interaction
partners (44). These observations are consistent with a model in which host diversity
pushes diversifying selection in the S glycoprotein. Mutational and structural robust-
ness in the S glycoprotein provide a selection advantage, are major contributors to
b-CoV evolution, and may lead to the emergence of new strains and species.

In the reference sequence Wuhan-Hu-1 (NC_045512.2), the S glycoprotein contains
residues that are compatible, but not optimal, for binding human receptor ACE2 (55).
Accordingly, SARS-CoV-2 has the potential to accumulate mutations for more efficient
entry into human cells and to escape from neutralizing antibodies. Consistent with this
model, SARS-CoV-2 strains detected to date mainly differ in the S glycoprotein (Fig. 1A)
(16, 21). The D614G and Q677P mutations make the virus more transmissible and more
pathogenic to humans (24, 45) and have been detected in several parts of the world
(33, 64). Amino acids 614 and 677 are near hypervariable C-terminal domain 2 in subu-
nit S1 (Fig. 4C). Furthermore, the D614G mutation and others in the receptor binding
domain reduce affinity to monoclonal antibody CR3022 (64). In Mexico (65) and
Wisconsin (Fig. 3), the H49Y mutation in the S protein was the most frequent and
appears to have independent origins, suggesting convergent evolution.

In humans, the strength of the immune responses is not uniform, as indicated by
immunocompromised patients (2, 20), and immunity-driven selection in SARS-CoV-2
has been documented (66). The human population is genetically diverse enough to
select for variants in SARS-CoV and MERS-CoV (Fig. 9), and there is genetic variability in
human leukocyte antigen genes that affect susceptibility to SARS-CoV-2 and the sever-
ity of the disease (67). Thus, it is likely that SARS-CoV-2 will continue to accumulate
mutations for efficient transmission and genome replication and differentiate into
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biological strains as the virus faces selection pressure from genetically distinct human
populations or immunocompromised individuals. For example, a 27-amino-acid dele-
tion was detected in protein 7 in Arizona (68), new mutations formed sublineages in
the southwest (24), and SARS-CoV-2 populations were grouped into clades in Mexico
(65).

Our analysis identified proteins 3 and 7 and ORF8 as variable in SARS-CoV and bat
SARS (Fig. 5C). The 3b protein is an inhibitor of the interferon response, and a variant
with a longer 3b protein induces more severe symptoms and has enhanced ability to
suppress induction of type I interferon (69). The 7a protein antagonizes antiviral factor
BST-2 to enhance virion release (70). ORF8 is a cofactor of the RNA-dependent RNA
polymerase and an inhibitor of the type I interferon response (71–73). Further, a 29-nt
deletion in ORF8 attenuated SARS-CoV, and mutations or deletions in SARS-CoV-2
ORF8 caused attenuation. Although no difference was detected in vivo, higher replica-
tion was detected in vitro than in the wild-type virus (66, 74). ORF8 is different between
SARS-CoV and SARS-CoV-2 and does not include functional motifs (50). Because ORF8
induces a robust antibody response, deletions may reflect immunity-driven selection
(66). Due to their biological role in replication, suppression of antiviral defense, and
hypervariable nature (Fig. 5C), proteins 3 and 7 and ORF8 are likely contributors to
pathogenicity and host adaptation in sarbecoviruses.

Vaccines against SARS-CoV-2 induce neutralizing antibodies against the prefusion
conformation of the S glycoprotein (8, 75, 76). However, nonneutralizing antibodies
against subunit S2 are also developed (8). Variation within the S2 subunit is among the
highest in the genome (Fig. 4). Nonneutralizing antibodies may provide a mechanism
for the virus to escape from the immune response (77). Thus, variation in the S glyco-
protein provides b-CoVs a mechanism to escape the immune response and an impor-
tant selection advantage.

Vaccines and antiviral drugs might function as selection agents (36). In an infected
individual, new variants are generated (26) and may be selected to escape neutralizing
antibodies, which were developed against natural infection or triggered by a vaccine.
Indeed, in immunocompromised patients, recurrent deletions in the N-terminal domain
were detected, and these deletions mediate escape from neutralizing antibodies (20).

Factors contributing to b-CoV evolution include intrinsic properties of the S glyco-
protein (mutationally robust and intrinsically disordered), natural genetic diversity in
their hosts, and diversity in the strength of the immune response. Similarly, several
factors contribute to SARS-CoV-2 differentiation into strains, including natural genetic
diversity in the human population, diversity in the strength of the immune response,
and, possibly, selection imposed by vaccines. This represents a challenge for vaccine
development and deployment, because vaccines may only be efficient against closely
related strains, ineffective against diverse strains, and fail to prevent reinfection.

MATERIALS ANDMETHODS
All computational analyses were done on high-performance computing nodes. Custom scripts are

available upon request.
Genomic RNA sequences. All available genomic sequences for the genus Betacoronavirus were

obtained from NCBI (http://www.ncbi.nlm.nih.gov/) on 6 April 2020 using customized scripts based on
Entrez Programming Utilities (E-utilities; https://eutils.ncbi.nlm.nih.gov/entrez/eutils/). For SARS-CoV-2,
nucleotide accessions were redownloaded on 13 May 2020. For HIV-1, 100 random full-length sequences
were obtained from NCBI to provide a representative sample of HIV-1 variation on 19 February 2021.
Only accessions with at least 95% of the reference genome length were retained. For each species, the
reference accession describing a complete genome was identified (Table 1).

Genomic and amino acid variation. For each species, nucleotide and amino acid variation analyses
were conducted either on the entire genome or the spike S protein. Both were estimated in a 50-nt
window. Nucleotide substitutions on the genome were measured based on nucleotide diversity (48) and
genomic variation (40). Nucleotide diversity was calculated using TASSEL (https://www.maizegenetics
.net/tassel) (78). Amino acid substitutions were measured based on SAPs (40). SNPs or SAPs were identi-
fied and mapped using SNP-sites version 2.4.1 (https://github.com/sanger-pathogens/snp-sites) (79) and
VCFtools (80). The average and 99% confidence interval (P , 0.01) were estimated and plotted for each
species. For variation per ORF, only ORFs present in at least 25% of the b-CoVs were counted.
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Annotated phylogram for the S protein. Phylograms (40) were made using GraPhlAn (http://
segatalab.cibio.unitn.it/tools/graphlan/) to illustrate the geographical location, host, and variation in the
S protein (81).

Disorder of the S protein. Order/disorder was estimated using the Multilayered Fusion-based
Disorder predictor (MFDp) with a false-positive rate of 5% (82). For each species, the amino acid
sequence of the reference accession was used. Ordered and disordered areas are below and above the
0.5 threshold, respectively.

Annotated phylogram of U.S. species. All U.S. January sequences from the 23 March 2020 down-
load were included in the early (January) time period. Three random sequences were chosen from each
state with accessions from the late (July-August) time period to ensure a representative sample.
Neighbor-joining phylogenetic trees were created using MAFFT version 7.4 (https://mafft.cbrc.jp/
alignment/software/) with bootstrap values of 100. Accessions were aligned and mutations were identi-
fied using Geneious version 8.0 (https://www.geneious.com).

Data availability. All accession numbers used in this study were downloaded from GenBank (Table 1).
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