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Abstract: Spray drying of emulsions is a promising way of increasing their durability, offering the
possibility of reconstitution, with the addition of water. The present study aimed to examine the
properties of flaxseed oil cake extract (FOCE) as an emulsifying and stabilizing agent for spray-dried
reconstituted oil-in-water emulsions. Maltodextrin: starch: flaxseed oil emulsions with FOCE or
distilled water as liquid phases, and 10% and 20% of oil were spray-dried at 180 ◦C. The solubility,
flowability, cohesiveness, bulk, and tapped densities of the spray-dried powders were analyzed.
Additionally, the characteristics of initial and reconstituted emulsions, such as stability, creaming
index, color, particle size, and rheological properties were evaluated. Results showed that FOCE
could be an adequate emulsifier for spray-dried emulsions with a high oil content providing high
stability after reconstitution, when compared to emulsions based only on maltodextrin–starch wall
material with water as the liquid phase. This study showed an encouraging way for producing
natural and plant-based spray-dried oil-loaded emulsions for food applications.

Keywords: flaxseed oil cake; flaxseed oil; spray drying; emulsions; stability; reconstitution

1. Introduction

Spray drying is one of the most approachable techniques of microencapsulation,
which is prized, simple, and flexible because many parameters (such as inlet and outlet
temperature, nozzle size, etc.) could be adjusted. Microencapsulation is described as
coating individual particles or droplets with a continuous phase, to obtain capsules in a
micrometer to millimeter in size [1]. Spray drying is defined as transformation of a feed
from liquid state to a powder by spraying into a hot drying gas [2]. Spray drying process
conditions should be well chosen because they affect the physical properties of the powders,
obtained over the experiment. For example, process yield, moisture content, particles size,
bulk density, color, solubility, and ability for reconstitution. Due to the notable benefits, the
spray drying technology finds wide applications in various sectors, such as food, chemical,
pharmaceutical, nutraceutical, cosmetic, and biomedical industries.

The fast-growing demand for plant-based foods and food additives, and the current
rapid lifestyles resulted in changes of dietary habits that have notably impacted on the
growth of interest in powdered food and spray drying technology. Numerous food ingre-
dients and food mixtures could be encapsulated, such as flavors, oils, lipids, emulsions,
acidulants, antioxidants, vitamins, minerals, sweeteners, preservatives, colorants, proteins,
peptides, and probiotics [3]. The emulsions are spray-dried to extend the period of sta-
bility and durability of vegetable and animal oils, preventing against oxidation caused
by deteriorating factors (such as humidity, light, and temperature) and destabilization.
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Destabilization can be the result of a variety of physicochemical mechanisms, such as
gravitational separation, flocculation, coalescence, and Ostwald ripening [4]. An emulsion
is a thermodynamically unstable complex system. To increase the stability of emulsions,
various emulsifiers are applied [5]. In case of the emulsions spray drying process, one
of the pivotal factors is the type of wall material. It embraces the core material to pro-
tect valuable and bioactive compounds, such as polyunsaturated fatty acids (PUFA) or
polyphenols. Moreover, the type of wall material influences flowability, bulk and tapped
densities, powder solubility, and their redispersion ability. The production of oil-in-water
emulsions is necessary to disperse the PUFA-rich oils in an aqueous phase, to be fed into the
spray-drying equipment [6]. Encapsulated emulsions with valuable oils, such a flaxseed
oil, could be exploited to fill theω-3 fatty acids gap in vegetarian diet. The food industries
are constantly exploring various raw materials, new technologies, and processes, to evolve
innovative functional products. Animal-derived ingredients are widely exploited, although
they are considered less environment-friendly, as compared to plant-based ingredients [5].
Additionally, the management of the oil industry by-products that meet the criteria of
“zero waste” economy is very important, because a substantial quantities of press cakes
and residues are available. Based on the reports of the U.S. Department of Agriculture
(USDA), the world production of oilseeds in 2018/2019 was 600.47 million metric tons [7].
According to Ancut,a and Sonia, the utilization of oil cakes can be a sustainable way to
reduce waste production, as well as contribute to the development of new, cheap, and
nutrient-rich products [8].

The aim of emulsifiers addition (such as proteins, polysaccharides, etc.) to emulsion
systems is to form interfacial surfaces, due to their capability to adsorb onto oil–water
interfaces [9,10]. The emulsifying properties of flaxseed proteins (FP) were already re-
ported [5,11–13]. Other essential constituents of the flaxseed are polysaccharides—called
flaxseed gum (FG). This gum is also used in emulsion preparation in order to enhance
the emulsion stability [5,14]. The mechanism of emulsion stabilization by flaxseed gum is
based on increasing the viscosity and decreasing the interfacial tension [15]. The valoriza-
tion of FOCE (flaxseed oil cake extract, which is a mixed liquid matrix of flaxseed protein
and flaxseed gum) in terms of food science is not yet a deeply explored issue. However,
there are reports about its technological applications, including stabilization of emulsion
systems. Available reports indicate that this valuable agro-industrial by-product fits the
idea of circular economy and “zero waste” trends [5,11,12]. In previous works it was
demonstrated that FOCE can be applied as an emulsifying agent for stable emulsions with
flaxseed oil, due to strong FG and FP synergistic oil binding and water holding abilities [5].
Moreover, it was reported that the spray drying process has a positive influence on the
emulsifying properties of FOCE-based spray-dried powders [12].

However, there are no studies available concerning the application of spray-drying
FOCE-based emulsions and evaluation of their stability after reconstitution. In this study,
our aim was to use the aqueous extract from flaxseed oil cake to obtain spray-dried powders
from emulsions, with a 10% and 20% content of FO. Additionally, we also examined their
stability after reconstitution.

2. Materials and Methods
2.1. Materials

The residue from cold pressing of flaxseed oil—flaxseed oil cake (FOC) was donated by
the company ACS Sp. z o.o. (Bydgoszcz, Poland). Starch Capsul® (National Starch & Chem-
ical, Bridgewater, Westport, CT, USA) and maltodextrin (PEPEES S.A., Łomża, Poland)
were also used. Flaxseed oil (FO) was purchased from Olandia (Prusim, Poland), whereas
sodium dodecyl sulphate (SDS) and Sudan III were purchased from Merck Chemical (Saint
Louis, MO, USA). All reagents were of the analytical grade.
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2.2. Emulsions Preparation

The processing of FOC into Flaxseed Oil Cake Extract (FOCE) (used as a liquid phase)
was carried out following the procedure described elsewhere [5]. Starch Capsul® and
maltodextrin were used as a wall material in the ratio 1:1 (8.5 g of each per 100 mL of
FOCE). The wall components were added to the liquid phase at 25 ◦C and the mixture was
stirred (250 rpm) until completely dissolved (approximately 15 min). FO was then added
to the solution at a concentration of 10% and 20%, with respect to the total solids content
of mixture. The model emulsions were prepared in two steps. First, the mixtures were
mixed with FO for 5 min (500 rpm) using a magnetic stirrer (IKA, Staufen, Germany). Then,
the mixtures were homogenized for 5 min at 1500 rpm (Magic LAB UTC, IKA, Staufen,
Germany). The reference samples (used distilled water as a liquid phase), which served
for comparison, were treated in the same way. The obtained variants are summarized in
Table 1.

Table 1. Composition of the model emulsions.

Sample Name Maltodextrin: Starch Ratio Liquid Phase Oil Content *

FOCE-MS-10% 1:1 FOCE 10%
FOCE-MS-20% 1:1 FOCE 20%

MS-10% 1:1 Distilled Water 10%
MS-20% 1:1 Distilled Water 20%

* The total solids concentration refers to the (wall material + oil) ratios in the emulsion calculated and represented
on a dry basis. FOCE—flaxseed oil cake extract, MS—maltodextrin: starch.

2.3. Spray Drying Protocol

Flaxseed oil emulsions powders were obtained by spray-drying, using a lab-scale
spray dryer (Büchi B-290, Büchi Labortechnik AGT, Flawill, Switzerland). The drying
air inlet temperature of 180 ◦C was chosen, based on the results described in previous
study [12]. The air flow was 40 m3/h. The drying air outlet temperature was maintained at
55 ± 5 ◦C. Dried powders were collected in a collection vessel and stored in darkness at
4 ◦C. The yield of the spray drying process was calculated according to the Formula (1):

Yield (%) =
mas of powder (g)

dry matter of emulsion (g)
× 100% (1)

2.4. Powders Characterization
2.4.1. Solubility and Total Solid Content

Total solid content of the powders was analyzed based on the methodology of AOAC
(Association of Official Agricultural Chemists) standard method (no. 968.11) [16]. To
determine the solubility, 1 g of the spray dried powders (W1) were weighed into Falcon
tubes (W0), to which 10 mL of distilled water was then added. Subsequently, the samples
were centrifuged (700× g) for 2 min. The supernatants were decanted, and tubes were
dried for 24 h at 50 ◦C. After drying, the tubes’ weight was determined again (W2). The
solubility was calculated according to Equation (2) [17]:

Solublity =
W2 − W0

W1
× 100 (2)

2.4.2. Bulk and Tapped Densities

Bulk (ρb) and tapped (ρt) densities were evaluated with a slightly modified procedures
of Jinapong et al. [18]. For the ρb measurements, 5 g of each spray-dried powder sample
was gently loaded into 25 mL glass cylinders and the filled volume was read. To determine
ρt, cylinders with powders used for the determination of ρb were tapped for 2 min using the
automated tap density analyzer (Autotap, Quantachrome GmbH and Co. KG, Odelzhausen,
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Germany). The bulk and tapped densities were calculated according to the Formulas (3)
and (4):

ρb =
powder weight (g)

powder volume before tapping (cm3)
(3)

ρt =
powder weight (g)

powder volume after tapping (cm3)
(4)

2.4.3. Flowability and Cohesiveness of Powders

The flowability and cohesiveness of the powders were expressed using Carr’s index (C)
and the Hausner ratio (HR), based on methodology proposed by Carr [19] and Hausner [20],
respectively. The scale according to Reddy et al. (presented in Table 2) was used to characterize
the powders’ flowability (C) and cohesiveness (HR) [21]. The indices were calculated from
the bulk (ρb) and tapped (ρt) densities, according to the Formulas (5) and (6):

C(%) =
ρt − ρb
ρt

× 100 (5)

HR =
ρt
ρb

(6)

Table 2. Specifications for the Carr’s index and the Hausner ratio.

Carr’s Index Hausner Ratio

Excellent 0–10% 1.00–1.11
Good 10–15% 1.12–1.18
Fair 16–20% 1.19–1.25

Possible 21–25% 1.26–1.34
Poor 26–31% 1.35–1.45

Very poor 32–37% 1.46–1.59
Very very poor >38% >1.60

2.5. Emulsions Reconstitution and Characterization

To obtain the reconstituted emulsions, the individual powders were added to distilled
water to obtain a starting dry matter content in the emulsions, taking into account the total
solids content of the powders, and were mixed for 15 min (200 rpm). All measurements
were carried out for the initial (freshly prepared) and reconstituted emulsions, in triplicates.

2.5.1. Determination of Particle Size Changes in the Emulsion Samples and Optical
Microscope Observations of Emulsions

The particle size distribution of emulsions was performed using a Mastersizer 2000
(Malvern Instrument Ltd., Worcestershire, UK). The initial and reconstituted emulsion
samples were gently diluted with 0.1% SDS solution, then dispersed in distilled water
(stirred speed—2000 rpm) to obtain an obscuration rate of 10%. The optical properties of
the sample were defined as follows—refractive index 1500 and absorption 1.00. Droplet size
measurements were described as the volume-weighted mean diameter d4,3 = ∑nid4i/∑nidi3
and d3,2 = ∑nid3i/∑nidi2, where ni is the number of droplets of diameter di [5].

Samples of initial and reconstituted emulsions were mixed in the ratio 1:1 with 0.5%
SDS. The Sudan III was added as an oil dye to obtain a contrast. The initial and reconstituted
emulsions were observed at 25 ◦C, using a digital camera connected to a microscope
(OptaTech, Warsaw, Poland) at a magnification of ×10.

2.5.2. Emulsions Stability

Emulsions stability was evaluated as the Emulsion Stability Index (ESI) and Creaming
Index (CI), in the case of the initial and reconstructed emulsions. Immediately after the
emulsions preparation, 25 mL of each emulsion were transferred to Egertz tubes and stored
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in refrigerator at 4 ◦C, and the volume of the upper phase was measured after 24, 48, and
168 h. The stability was measured by % of separation and expressed as Formula (7):

CI(%) = 100 −
(

H1

H0
× 100

)
(7)

where H0 represents the emulsion initial height and H1 is the upper phase height [22,23].
To determine ESI, 20 µL of each emulsion were mixed with 5 mL of 0.1% SDS solution

and vortexed. The absorbance was measured at 500 nm immediately and after 10 min
(UV-VIS Evolution 220 spectrophotometer, Thermo-Scientific, Waltham, MA, USA). The
stability of emulsions was expressed as ESI, based on the Equation (8):

ESI(min) =
A0

A0 − A10
× t (8)

where A0 is the initial absorbance (0 min), A10 is the absorbance after 10 min, and t is the
time between measurements (10 min) [24].

2.5.3. Emulsion Color Measurements

The color of initial and reconstituted emulsions was determined by a Konica Minolta
CR-5 colorimeter (Konica Minolta, Osaka, Japan). The values measured were L* (white
100/black 0), a* values (red positive/green negative), and b* values (yellow positive/blue
negative). The Whiteness Index (WI), Yellowness Index (YI), and total color difference (∆E)
were calculated using the following Formulas (9)–(11) [11]:

WI = 100 −
[
(100 − L∗) + a2 + b2

]0.5
(9)

YI = 142.86 × b × L−1 (10)

∆E =

[(
Lstandard − Lsample

)2
+
(

astandard − asample

)2
+
(

bstandard − bsample

)2
]0.5

(11)

2.5.4. Emulsions Rheological Measurements

The viscosity of the samples was analyzed using a rheometer (AR G2, TA Instruments
Ltd., New Castle, DE, USA) with a stainless-steel cone plate geometry of 62 mm diameter
and 1◦ cone angle. The steady-state flow procedure was performed in the range of 0.1 to
100 s−1, in triplicates at 20 ◦C. The TA Rheology Advantage Data Analysis V 5.4.7 software
was used to record and analyze the rheological data. The Herschel-Bulkley model was
applied to describe the rheological behavior of the initial and reconstituted emulsions as
Formula (12):

τ = τ0 + k
.
γ

n (12)

where τ—the shear stress (Pa), τ0—the yield stress (Pa),
.
γ—the shear rate (s−1), k—the

consistency index (Pa·sn), and n—the flow index.

2.6. Statistical Analyses

All results are presented as mean ± standard deviation. All data were subjected to
a one-way analysis of variance (ANOVA) test using the Statistica 13.0 software (StatSoft,
Kraków, Poland). Significant differences between means were determined by Fisher’s LSD
(Least Significant Difference) NIR multiple comparison tests at p < 0.05. All experiments
were replicated three times.
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3. Results and Discussion
3.1. Powders Characteristics

The characteristics of spray-dried emulsions powders are shown in Tables 3 and 4.
One of the most pivotal physical parameters evaluated in case of powders are bulk and
tapped densities. It was noticed that the application of FOCE as an emulsifying agent (and
partially as a carrier) employed in the presented study was a factor that mostly caused the
noticed differences for the bulk and tapped densities of the powders. The highest tapped
density (0.432 ± 0.001 g/cm3) was observed for the powder, with 20% of FO containing
FOCE (FOCE-MS-20%), in contrary to the lowest (0.347 ± 0.017 g/cm3), which was noticed
for the sample without FOCE and the same content of oil (MS-20%) (p < 0.05). Similarly, this
powder exhibited the lowest bulk density (0.306 ± 0.015 g/cm3). This observation indicated
that FOCE could be a good carrier and emulsifying agent for spray-dried emulsions with
a high oil content. The obtained result for FOCE-based powders were in contrast to
the samples with distilled water used as the emulsion liquid phase, where a decrease
of bulk and tapped densities with the increase of oil volume were observed (p < 0.05).
Based on the bulk and tapped densities, the Carr index (C) and Hausner ratio (HR) were
calculated. These parameters give an indication of the flowability and cohesiveness of
the powders, respectively. Specifically, the Carr index describes the compressibility of a
powder. The highest C and HR were observed for samples FOCE-MS-10% (C-25.54 ± 0.49
and HR-1.29 ± 0.01) and MS-20% (C-18.01 ± 0.78 and HR-1.23 ± 0.12). These results were
comparable for the chitosan-based powders [25]. Based on the scale presented in Table 2,
the best properties were exhibited by powder FOCE-MS-20% and was classified as “good”.
One of the most reliable criterion to evaluate the behavior of powder in an aqueous solution
is solubility. This process is attained after the powder undergoes dissolution and consists
of the steps—sinkability, dispersibility, and wettability [17]. Additionally, a good solubility
is important to obtain a redispersibility of spray-dried emulsion. The powder solubility
is often correlated with the type of wall material. Maltodextrin is the one of the most
popular polysaccharides used for purposes of the spray-drying microencapsulation. It is
characterized by good solubility, and additionally low viscosity at high concentrations, and
a neutral aroma and taste [25]. As shown in Table 4, all powders showed high solubility
and a statistical important difference was observed only between samples FOCE-MS-10%
and MS-20% (p < 0.05). In the case of sample MS-20%, it could be an effect of the higher
concentration of maltodextrin in the dry matter of powder, and a lower viscosity of this
emulsion. The highest yield was noted for sample MS-10% (57.98 ± 0.53%) and the lowest
was observed for FOCE-MS-10% (44.26 ± 0.10%). According to Tonon et al., increasing
carrier concentration decreases the process yield [26]. This might be an explanation for the
decreased yield in this study, which is observed for samples with FOCE. The dry matter
content of FOCE was reported at approximately 3% and consists of flaxseed proteins,
polysaccharides (flaxseed gum), and another extractable compounds [5]. In the presented
study, FOCE was used as a liquid phase and its components played the role of emulsifying
agents, but should also be calculated for the total solids concentration. The addition of
FOCE caused the higher total solids content in the initial emulsions and influenced the
process yield, as shown in Table 4.

Table 3. Bulk density, tapped density, Hausner ratio (HR), and Carr index (C) of the spray-dried
emulsion powders.

Powder Sample ρb (g/cm3) ρt (g/cm3) HR C (%)

FOCE-MS-10% 0.313 ± 0.001 b 0.405 ± 0.004 c 1.29 ± 0.01 a 25.54 ± 0.49 a

FOCE-MS-20% 0.370 ± 0.001 a 0.432 ± 0.001 a 1.17 ± 0.00 d 14.29 ± 0.00 d

MS-10% 0.351 ± 0.018 a 0.424 ± 0.001 b 1.21 ± 0.06 c 17.14 ± 0.41 c

MS-20% 0.306 ± 0.015 b 0.347 ± 0.017 d 1.23 ± 0.12 b 18.01 ± 0.78 b

Values are means ± standard deviation of the triplicate determinations. Means with different letters in the same
column are significantly different at p < 0.05. ρb—bulk density; ρt—tapped density; HR—Hausner ratio; C—Carr
index; FOCE—flaxseed oil cake extract; MS—maltodextrin: starch.
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Table 4. Solubility, yield, and total solids content (TSC) of the spray-dried emulsion powders.

Powder Sample Solubility (%) Yield (%) TSC (%)

FOCE-MS-10% 94.71 ± 2.47 a 44.26 ± 0.10 c 98.11 ± 0.57 a

FOCE-MS-20% 98.71 ± 1.87 ab 46.58 ± 0.82 d 98.68 ± 1.00 a

MS-10% 98.61 ± 1.05 ab 57.98 ± 0.53 a 95.15 ± 0.15 b

MS-20% 96.67 ± 2.00 b 54.98 ± 0.42 b 96.76 ± 1.00 b

Values are means ± standard deviation of triplicate determinations. Means with different letters in the same
column are significantly different at p < 0.05. FOCE—flaxseed oil cake extract; MS—maltodextrin: starch.

3.2. Emulsion Characteristics
3.2.1. Emulsion Particles Size Changes

The particles size distribution changes in the emulsion samples before and after re-
constitution are presented in Table 5 and Figure 1. The droplet size was essential for the
stability of the emulsion, as emulsions with a controlled particle size exhibited greater
stability. Moreover, it was suggested that the smaller the droplets, the higher was the emul-
sion stability [5]. In fact, the lowest D4,3 (2.693 ± 0.00 µm) and D3,2 (2.166 ± 0.01 µm) after
reconstitution were observed for the sample FOCE-MS-20%. As could be seen, the results
of the emulsions stability were in line with the decreasing particle size distribution. It
was observed that the surface area (D3.2) decreased after reconstitution in the FOCE-based
emulsions (p < 0.05). On the contrary, for samples MS-10% and MS-20%, an increase was no-
ticed (p < 0.05). The obtained results were supported by the captures presented in Figure 1.
Emulsions with FOCE were more concentrated before spray drying, which presumably
influenced their stability after reconstitution. Additionally, it could be observed that the
spray drying process caused a higher concentration of emulsions in samples without FOCE.
Sample MS-20% exhibited exceptionally low stability, as previously described. A tendency
of agglomeration for the particles, before and after spray drying, was observed. These
results were in line with the creaming index of the sample. In samples with FOCE, the
observed distribution was similar before and after spray drying, therefore, it could also
be concluded that the spray drying only decreased the particle size and surface area and
did not cause a negative reaction such as flocculation or Ostwald ripening. According
to Koç et al. [1], the increase of surface area was a negative phenomenon because the oil
droplets might not be effectively covered by wall materials, and finally the stability of
emulsions could be lower. Thus, the maltodextrin–starch mix used as a wall material
should be additionally supported by some emulsifying agent for spray drying, and FOCE
could be useful for this process, as demonstrated in the case of FOCE-based emulsions. The
particle size in emulsions had a significant influence on their long-term stability, because
the creaming velocity of an individual droplet was directly proportional to the square of its
radius and to the density difference between the dispersed and the continuous phase [27].
It is recommended that the emulsion stability be evaluated with several indicators, because
the stability effect is a synergy of oil binding, water holding, the rheological properties,
and particle adhesion. According to Aizawa [28], turbidity measurements such as ESI are
related to the size and number of oil droplets present in the emulsion. Thus, the variation
in emulsion turbidity could indicate the changes of particles size and dispersity. In unstable
emulsions, several changes could be observed, especially in the increasing particle size and
concentrations, due to the coagulation and coalescence of particles. An observed increase
in particle size of samples without FOCE, after the spray drying process could indicate
emulsion stability disturbances.
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Table 5. Particle size distribution of samples.

Sample FOCE-MS-10% FOCE-MS-20% MS-10% MS-20%

D4.3 (µm)

A 3.225 ± 0.05 Aa 2.700 ± 0.01 Ba 3.206 ± 0.12 Cb 3.045 ± 0.00 Db

B 3.065 ± 0.01 Ab 2.693 ± 0.00 Bb 3.342 ± 0.00 Ca 3.069 ± 0.01 Da

D3.2 (µm)

A 2.327 ± 0.02 Aa 2.445 ± 0.02 Ba 2.206 ± 0.05 Cb 2.256 ± 0.01 Db

B 2.271 ± 0.02 Ab 2.166 ± 0.01 Bb 2.280 ± 0.00 Ca 2.305 ± 0.00 Da

A Samples before spray drying; and B samples after reconstitution. Values are means ± standard deviation
of triplicate determinations. Means with different lowercase in the same column are significantly different at
p < 0.05. Means with different uppercase in the same raw are significantly different at p < 0.05. FOCE—flaxseed
oil cake extract; MS—maltodextrin: starch; FOCE-MS-10%—FOCE-based emulsion with 10% of flaxseed oil;
FOCE-MS-20%—FOCE-based emulsion with 20% of flaxseed oil; MS-10%—emulsion without FOCE with 10% of
flaxseed oil; MS-20%—emulsion without FOCE with 20% of flaxseed oil; D4.3—volume-weighted mean diameter;
D3.2—volume/surface mean diameter.

3.2.2. Emulsion Stability

Figures 2 and 3 present the stability of the initial (A) and reconstituted (B) emulsions,
expressed as ESI and CI. The emulsions based on FOCE showed significantly higher ESI
than the emulsions where distilled water was used as the liquid phase (p < 0.05). However,
for all samples, a significant decrease of ESI after reconstitution was noticed (p < 0.05).
The highest ESI was noticed for the initial FOCE-MS-20% sample (2970.00 ± 0.00 min).
Moreover, it could be observed that emulsions with FOCE showed a significantly higher
ESI in case of samples with a 20% content of oil (A—2970.00 ± 0.00 min; B—1465.50 ±
0.50 min) than with 10% (A—1201.25 ± 0.52 min; B—566.67 ± 0.00 min) (p < 0.05). These
results were opposite to samples without FOCE. Emulsions with distilled water as a liquid
phase represented lower ESI values when the oil fraction increased. Maltodextrin and
starch exhibited emulsifying properties, but these mechanisms were quite different than
that for the protein and polysaccharides included in FOCE. As previously reported, the
FOCE emulsifying activity is a result of synergistic action of its two main fractions—protein
and gum [5]. Flaxseed protein adsorbs onto the oil–water surface over the emulsification
process. Due to the presence of polysaccharides such as flaxseed gum steric and mechanical
effects, the emulsion system could be stabilized by the highly branched polysaccharide
structure. Additionally, flaxseed gum and flaxseed protein have the ability to reduce the
surface tension [25,26,29]. Presumably maltodextrin and starch influenced the stability of
emulsions, by increasing the viscosity and ability to gelation of the aqueous continuous
phase surrounding the oil droplets [3,18]. Thus, the use of various combinations of mal-
todextrin and other compounds such as proteins and polysaccharides for the purpose of
microencapsulation is suggested [4]. Modified starches exhibited the ability of formation of
less porous materials [30]. Starches such as OSA or Capsul® were selected as wall materials,
due to their amphiphilic nature and the consequent biosafety of their derivatives [31].
Capsul® used in this study was a chemically modified starch, produced by incorporating a
lipophilic component (using octenyl succinic anhydride), aimed at conferring emulsifying
properties [32]. As a result of this modification, hydrophilic starch gains hydrophobic
octenyl groups, resulting in molecules of an amphiphilic nature [29].

The aim of this modification was giving the material a capacity for retaining volatiles
during atomization in a spray-dryer [32].

As shown in Figure 3, the emulsions without FOCE represented higher CI and
started creaming after 24 h (p < 0.05). Moreover, for these samples, the creaming in-
dex increased with an increased oil volume. These emulsions (initial and reconstituted)
exhibited very high differences after 168 h, especially in the case of a sample with 10% oil
(A—47.50 ± 0.71% and B—76.00 ± 1.41%). On the other hand, the creaming of samples
with FOCE started after 48 h (p < 0.05). In the case of samples with FOCE after 24 h, the
creaming index was 0% and the sample was stable (p > 0.05). Based on this observation, it
is reasonable to conclude that FOCE has the ability to prevent emulsion creaming during
storage, both before and after reconstitution from spray-dried powders.
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Figure 1. Optical microscopic images of emulsions (×10). A Samples before spray drying; and B samples after reconstitution.
FOCE-MS-10%—FOCE-based emulsion with 10% of flaxseed oil; FOCE-MS-20%—FOCE-based emulsion with 20% of
flaxseed oil; MS-10%—emulsion without FOCE with 10% of flaxseed oil; MS-20%—emulsion without FOCE with 20% of
flaxseed oil.
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 Figure 2. Emulsion Stability Index (ESI) of emulsions before spray drying A and after reconstitution B. FOCE-MS-
10%—FOCE-based emulsion with 10% of flaxseed oil; FOCE-MS-20%—FOCE-based emulsion with 20% of flaxseed oil;
MS-10%—emulsion without FOCE with 10% of flaxseed oil; MS-20%—emulsion without FOCE with 20% of flaxseed oil.
Means with different lowercase are significantly different at p < 0.05.
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Figure 3. Creaming Index (CI) values of samples. (X) FOCE-based emulsions before spray drying A and after reconstitution
B. Means with different lowercase are significantly different at p < 0.05. (Y) Emulsions without FOCE before spray drying A
and after reconstitution B. Means with different letters are significantly different at p < 0.05.

Creaming is one of the most common mechanism of emulsion instability, causing
macroscopic phase separation into cream and serum layers [29]. Creaming index pro-
vides information about the extent and viscosity of droplet aggregation in an emulsion.
Emulsions with a low creaming index and a low creaming rate present a good creaming
behavior, resulting in a good emulsion stability. Additionally, the CI rate influences a rheo-
logical behavior and is an indicator of the quality of the emulsion [33]. It is very important
to choose an accurate ration of the wall material, especially in the case of maltodextrin.
Rapid creaming could be an effect of exceeding a critical maltodextrin concentration.
Many authors suggest that the high concentration of maltodextrin might cause the floc-
culation of droplets by unabsorbed maltodextrin molecules in the aqueous phase of the
emulsion [30–32]. Klinkesorn et al. [23] observed that non-adsorbed polymers generate an
osmotic force between droplets, which increases with growing polymer concentration. Fi-
nally, it becomes large enough to overcome the repulsive forces acting between the droplets.
The better creaming stability of FOCE-based emulsions could be explained as the ratio of
bound biopolymer concentration and type. According to Chanamai and McClements [34],
the increase of biopolymers such as starch or maltodextrin in the aqueous phase caused
higher viscosity and slowed down the upward movements in emulsions.

3.2.3. Color of Emulsions

Table 6 summarizes the results of color measurements of emulsions before spray
drying and after reconstruction. It could be observed that emulsions without FOCE
exhibited higher differences of lightness (L*) as compared to the FOCE-based emulsions
(p < 0.05). A similar tendency was noticed in the case of whiteness and yellowness indices
(p < 0.05). The high decrease of lightness in the case samples without FOCE, might be
caused by aggregation and destabilization [27,35]. It is known that the color of an oil-in-
water emulsion is changed appreciably over time, due to the droplet growth caused by
Ostwald ripening [27]. Changes of lightness were in line with the results for ESI and CI.
The highest L* decrease was observed for the samples MS-10% and MS-20% and these
emulsions exhibited the lowest ESI and the highest differences in creaming indices during
storage, between variants A and B. In the case of the sample with FOCE, the lower initial
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lightness was affected by many factors. Flaxseed oil and FOCE exhibited more yellowness,
as previously reported [5]. Additionally, maltodextrin is bright white in natural form
and could exhibit higher lightness than FOCE [36]. According to Câmara et al. [37], in
the case of more concentrated emulsions, a significant part of the fraction of the incident
light could be propagated back to the surface. The observed increase of the b* value in
the reconstituted emulsions might be linked to the Maillard reactions during the spray
drying process [12]. This observation was in line with results reported for the spray-dried
FOCE powders [12]. Moreover, a similar effect was observed by Verruck et al. [38] for goat
milk spray dried with inulin. Indeed, a significant increase of the yellowness index of all
samples after reconstitution was observed (p < 0.05). In contrast, Pham et al. [39] suggested
that b* increase might be an effect of the formation of phenolics–protein complexes. The
∆E of each samples was higher than 1 and the statistical differences between samples were
noticed (p < 0.05). The highest ∆E (14.68 ± 0.01) was observed for the sample MS-10%
and the lowest was noticed for FOCE-MS-20% (1.61 ± 0.07). When ∆E was higher than
1, the difference was considered perceptible to the human eye [12]. This parameter was
a visualization of all changes in sample. Significantly lower values of ∆E were observed
for the FOCE-based reconstituted emulsions, as compared to the initial emulsions with
water as the liquid phase. Gu et al. [4] suggested that, in addition to color, emulsions
formed by combining protein and polysaccharides are highly stable and resistant to a
broad range of environmental stresses. The stress factor in the present study was the spray
drying and reconstitution process. Thus, it is reasonable to conclude that FOCE not only
played the role of emulsifier, but additionally prevented emulsion destabilization caused
by stress factors.

Table 6. Color of emulsions before spray drying (A) and after reconstitution (B).

Sample FOCE-MS-10% FOCE-MS-20% MS-10% MS-20%

L*

A 86.99 ± 0.00 Aa 87.07 ± 0.00 Aa 97.06 ± 0.00 Ca 96.69 ± 0.00 Da

B 84.42 ± 0.01 Ab 86.92 ± 0.01 Bb 83.28 ± 0.00 Cb 87.70 ± 0.00 Db

a*

A −1.83 ± 0.01 Aa −1.06 ± 0.01 Ba −0.17 ± 0.01 Ca −0.07 ± 0.01 Da

B −2.33 ± 0.01 Ab −1.64 ± 0.01 Bb −1.81 ± 0.01 Cb −1.18 ± 0.01 Db

b*

A 16.92 ± 0.01 Ab 15.88 ± 0.02 Bb 4.32 ± 0.02 Cb 5.48 ± 0.02 Db

B 19.91 ± 0.02 Aa 17.37 ± 0.01 Ba 9.08 ± 0.02 Ca 15.54 ± 0.02 Da

YI

A 28.63 ± 0.01 Ab 26.06 ± 0.12 Bb 6.36 ± 0.01 Cb 8.10 ± 0.01 Db

B 32.70 ± 0.04 Aa 28.55 ± 0.01 Ba 15.58 ± 0.01 Ca 25.31 ± 0.01 Da

WI

A 76.14 ± 0.02 Ab 79.49 ± 0.02 Ba 94.77 ± 0.00 Ca 93.59 ± 0.00 Da

B 76.88 ± 0.00 Aa 78.19 ± 0.00 Bb 80.88 ± 0.00 Cb 80.15 ± 0.00 Db

∆E

A Used as
standard

Used as
standard

Used as
standard

Used as
standard

B 3.98 ± 0.01 A 1.61 ± 0.07 B 14.68 ± 0.01 C 13.53 ± 0.01 D

FOCE-MS-10%—FOCE-based emulsion with 10% of flaxseed oil; FOCE-MS-20%—FOCE-based emulsion with
20% of flaxseed oil; MS-10%—emulsion without FOCE with 10% of flaxseed oil; MS-20%—emulsion without
FOCE with 20% of flaxseed oil; L*—lightness; a*—redness/greenness; b*—yellowness/blueness; YI—yellowness
index; WI—whiteness index; ∆E—total color difference. Values are means ± standard deviation of triplicate
determinations. Means with different lowercase in the same column are significantly different at p < 0.05. Means
with different uppercase in the same raw are significantly different at p < 0.05.
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3.2.4. Emulsion Rheological Characteristics

The rheological parameters of the initial (A) and reconstituted emulsions (B) based on
the Hershel–Bulkey model are presented in Table 7, and their flow curves are illustrated
in Figures 4 and 5. Based on the flow curves and n value a mixed rheological character
of the emulsions was noticed. The n less than 1 indicated that the emulsion exhibited
Newtonian character [22]. In the case of the initial FOCE-MS-10%, MS-10%, and MS-
20%, a non-Newtonian character of the samples was observed. It could be observed
that these samples exhibited an n value indicated by a nearly Newtonian character, after
the reconstitution process. A similar flow behavior was reported for the flaxseed oil-in-
water emulsions stabilized with whey protein isolate (WPI) [40], as well as for avocado
oil-in-water emulsions stabilized by WPI/maltodextrin [41]. Based on the results of the
emulsions flow behavior after reconstitution, it could be concluded that all samples had
a nearly shear thinning behavior. A similar observation was reported by Kumar et al. in
case of emulsions with chitozan as a wall material [25]. After the spray drying process,
each emulsion exhibited a lower yield stress value and a lower viscosity (p < 0.05), only
sample MS-20% was an exception. The viscosity of the initial emulsions decreased with
the increase of oil volume. The same observations were made by Kurek and Pratap-Singh
in case of emulsions with various plant protein (hemp, pea, and rice), in combination
with maltodextrin [42]. Additionally, this trend was observed by Di Giorgio et al. [43] for
emulsions with soya protein, which are often compared to flaxseed protein due to their
similarity [13]. The observed higher viscosity of the samples with FOCE after reconstitution,
was in line with this effect described by Boonalao et al. [44], in the case of xanthan gum.
The addition of polysaccharides such as xanthan gum, which is often compared to flaxseed
gum, increases the viscosity of aqueous solutions, enhancing their stability, because it
prevents the movement of droplets, which causes creaming. In terms of consistency index,
the samples with FOCE indicated the tendency of an increase in K with an increase in oil
volume, which was contrary to the samples without FOCE (p < 0.05). Results obtained
for the MS-10% and MS-20% samples were in agreement with the results reported by
Kumar et al. [25], who observed that the consistency index had a lower value in emulsions
(stabilized by hemp, rice, and pea protein), with a 20% oil content, than in emulsions with
a lower oil content.

Table 7. Rheological parameters of emulsions before spray drying (A) and after reconstitution (B),
based on Hershel–Bulkey.

Sample FOCE-MS-10% FOCE-MS-20% MS-10% MS-20%

τy (Pa)

A 0.0534 ± 0.000 Aa 0.0520 ± 0.001 Ba 0.0090 ± 0.003 Ca 0.0026 ± 0.004 Da

B 0.0225 ± 0.001 Ab 0.0255 ± 0.000 Bb 0.0030 ± 0.002 Cb 0.0032 ± 0.002 Ca

Viscosity (Pa·s)

A 0.2710 ± 0.001 Aa 0.2350 ± 0.001 Ba 0.0450 ± 0.000 Ca 0.0130 ± 0.001 Da

B 0.0197 ± 0.002 Ab 0.0248 ± 0.000 Bb 0.0057 ± 0.001 Cb 0.0145 ± 0.000 Db

k (Pa·sn)

A 0.1638 ± 0.005 Aa 0.3310 ± 0.010 Ba 0.0150 ± 0.002 Ca 0.0141 ± 0.001 Da

B 0.0204 ± 0.001 Ab 0.0263 ± 0.005 Bb 0.0057 ± 0.001 Cb 0.0138 ± 0.003 Db

n (–)

A 0.48 ± 0.02 Ab 0.95 ± 0.01 Bb 0.78 ± 0.00 Cb 0.85 ± 0.02 Db

B 1.00 ± 0.00 Aa 0.98 ± 0.02 Ba 1.00 ± 0.00 Aa 1.00 ± 0.00 Aa

FOCE-MS-10%—FOCE-based emulsion with 10% of flaxseed oil; FOCE-MS-20%—FOCE-based emulsion with
20% of flaxseed oil; MS-10%—emulsion without FOCE with 10% of flaxseed oil; MS-20%—emulsion without FOCE
with 20% of flaxseed oil; τy—yield stress; k—consistency index; n—flow index. Values are means ± standard
deviation of triplicate determinations. Means with different lowercase in the same column are significantly
different at p < 0.05. Means with different uppercase in the same raw are significantly different at p < 0.05.
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Figure 4. The flow curves of emulsions with FOCE before spray drying A and after reconstitution B. (a) FOCE-MS-10%—
FOCE-based emulsion with 10% of flaxseed oil; (b) FOCE-MS-20%—FOCE-based emulsion with 20% of flaxseed oil.



Foods 2021, 10, 256 15 of 17
Foods 2021, 10, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 5. The flow curves of emulsions without FOCE before spray drying A and after reconstitution B. (a) MS-10%—
emulsion without FOCE with 10% of flaxseed oil; (b) MS-20%—emulsion without FOCE with 20% of flaxseed oil. 
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Figure 5. The flow curves of emulsions without FOCE before spray drying A and after reconstitution B. (a) MS-10%—
emulsion without FOCE with 10% of flaxseed oil; (b) MS-20%—emulsion without FOCE with 20% of flaxseed oil.

4. Conclusions

This study concluded that FOCE might be applied to stabilize spray-dried flaxseed
oil-in-water reconstructable emulsions, which are not described so far. Despite the ability
of starch and maltodextrin for emulsion stabilization, these mechanisms were insufficient
to obtain long-term stable emulsions. Thus, maltodextrin and starch could have only
played the role of wall material. FOCE could be an adequate emulsifier for the spray-
dried emulsions, with a high oil content providing their high stability, after reconstitution,
when compared to emulsions based only on a maltodextrin–starch wall material, with
water as the liquid phase. Based on our findings, it is reasonable to conclude that FOCE
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could be an alternative bio-based emulsifier used for microencapsulated functional foods.
Furthermore, powdered flaxseed oil emulsions with FOCE could also be applied as a raw
material during the production of processed food and as fat bases for the dairy and meat
industries. Moreover, there is a potential for these products to be used in pharmaceutical,
nutraceutical, and cosmetical applications, where nature-based solutions are desired. The
proposed solution fits the rules of the circular economy and the idea of zero-waste.
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