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Abstract

Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11–18
million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies
have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved
chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose
critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune
system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are
currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular
dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation
and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified
transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of
the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy
adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-
cell response of TcPR and provide new insights for future structure-based drug discovery.
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Introduction

The protozoan diseases African sleeping sickness, leishmaniasis

and Chagas’ disease are responsible for substantial human su-

ffering and death. Caused by parasites from the genus Trypanosoma

these insect spread diseases mainly affect the underprivileged in

tropical regions [1]. Limited drug therapies, human migration and

environmental changes have contributed to the increasing spread of

these traditionally neglected diseases. Chagas’ disease, caused by the

Trypanosoma cruzi parasite (T. cruzi), threatens the lives of millions of

people from southern USA to southern Argentina [1,2]. The need

for new drugs is urgent with current treatments having poor efficacy

and safety profiles, particularly in the late stage of the disease when

the parasite has infected critical organs.

Recent studies have revealed an essential T. cruzi proline

racemase enzyme (TcPR) as an attractive new candidate for

chemotherapeutic intervention [3]. TcPR catalyzes the reversible

stereoinversion of L- and D-proline [4]. Tonelli et al. showed that

L-proline is essential for the intracellular differentiation of T. cruzi.

[5]. Later, Chamond et al. demonstrated that over-expression of

TcPR increases parasite differentiation into infective forms and its

subsequent penetration into host cells [6]. In another study,

Coatnoan et al. observed that, in addition to free D-amino acids,

parasite extracts contain peptides composed of D-proline;

indicating a possible mechanism used by the parasite to confer

resistance against host proteolytic mechanisms [7].

TcPR has also been characterized as a potent host B-cell

mitogen that sustains parasite evasion of specific host immune

responses [3,8]. B-cell proliferation and polyclonal antibody

activation constitute a widespread mechanism of immune evasion

shared by many pathogens. This process compromises immune

response activation through generation of non-pathogen-specific

B-cells that effectively mask specific reactions against the invading

pathogen. In Chagas’ disease, B-cell proliferation has also been

linked with resistance to infection, disease progression and the

pathology associated with its chronic form [3]. Taken together,

these data provide strong evidence that TcPR represents a

promising target for therapies that may more efficiently combat

Chagas’ disease.

Emerging crystallographic and mutagenesis data indicate that

ligand-induced conformational changes in TcPR modulate the

exposure of critical residues that elicit a host mitogenic B-cell

response [3,9]. Two crystal structures of TcPR are currently

available (Figure 1). Each structure was solved with the transition

state analog pyrrole-2-carboxylic acid (PYC) bound to either one

or both monomers. In the presence of PYC monomers display a
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common closed conformation. In contrast a semi-open conforma-

tion is apparent for the ligand-free monomer (Figure 1). Together

with calorimetric studies, these results indicate that a large inter-

and intra- domain closure movement is coincident with ligand

binding [9]. Although enzymatic inhibition by PYC abolishes

mitogenic activity, point mutations of the catalytic cysteine

residues (C130S and C300S) have little or no effect. Therefore,

these studies not only showed that the mitogenic and enzymatic

activity of TcPR are decoupled, but also strongly indicate that

ligand-induced conformational changes upon binding prevent the

interaction of TcPR with B-cell receptors.

Here we show for the first time a model for the open form of

TcPR. Characterization of the opening transition required the

application of state of art accelerated molecular dynamics

simulations, which extends the effective simulation time scale of

conventional molecular dynamics. When combined with sequence

conservation and small molecule fragment mapping analyses our

results indicate that the mitogenic properties of TcPR are likely

associated with the exposure of conserved conformational epitopes

located around previously unidentified binding pockets. This work

represents an important step toward the rationalization of the

molecular basis of TcPR initiated B-cell response and provides a

basis for future structure-based drug discovery.

Results/Discussion

Characterization of the opening movement of TcPR requires

access to long-time scale, inter-domain motions that are currently

inaccessible by conventional molecular dynamics (MD) simula-

tions [10]. To overcome this limitation, we applied an enhanced

sampling technique developed in our group, called accelerated

molecular dynamics (aMD), which extends the effective simulation

time scale. In aMD, a continuous non-negative boost potential

function, DV(r), is added the original potential surface (V(r)) such

that regions around the energy minima are raised and those near

the barriers or saddle points are left unaffected. DV(r) is defined

according to DV(r) = (E2V(r))2/(a+E2V(r)). Whenever V(r) is

below a chosen threshold boost energy, E, the simulation is

performed on the modified potential V*(r) = V(r)+DV(r), otherwise

sampling is performed on the original potential V*(r) = V(r). The

parameter a modulates roughness and the depth of the energy

minima on the modified surface, as previously shown (see

materials and methods for details) [11–17].

The closed crystal structure of TcPR in complex with two

transition-state analog inhibitors (PDB code: 1W61) was used to

build our initial model. Atomic coordinates of bound PYC were

removed from the active site of each monomer resulting in a

ligand-free closed system that underwent 100 ns of aMD

simulation. To characterize dominant conformational states, along

with inter- and intra-domain opening motions, the final aMD

trajectory was subjected to principal component analysis (PCA)

[14,18]. Figure 2 displays the two-dimensional representation of

the structural dataset as a projection of the distribution onto the

subspace defined by the first and second principal components.

Large-scale opening motions of TcPR were well characterized and

captured by PC1 and PC2 (which together with PC3 accounted

for over 70% of the variance in the original distribution: see Figure

S1). Clustering of trajectory conformers was used to visualize the

dominant conformations sampled by the simulation (Figures 2 and

Figure S2). Two major clusters, encompassing the closed and open

conformational states, are clearly identified in the ensemble of

conformers. Six representative structures, which include closed

and open cluster representatives of TcPR, are displayed in

Figure 2. The TcPR structures are shown in molecular surface

representation colored according to the level of residue conserva-

tion within the proline racemase family (with blue and red

representing low and highly conserved residues respectively, see

materials and methods for details).

Projection of the two available crystal structures onto the PCs

obtained from the aMD trajectory reveals that both closed and

semi-open forms of TcPR are well characterized by the

conformers sampled in the vicinity of state 1 (Figure 2), indicating

that significantly larger opening motions are observed in the

trajectory. Projection of TcPR aMD trajectory onto PC sub-space

characterized two dominant global motions: (a) A large-scale inter-

Figure 1. Available structures of TcPR indicate the occurrence
of a closure movement induced by inhibitor binding. The
homodimeric structures (PDB codes: 1W61 and 1W62) are superposed
on monomers with a common closed conformation (dark blue and light
gray chains, right of figure). Note the presence of a bound PYC inhibitor
(spheres). A semi-open conformation is apparent in the absence of
bound ligand (light blue monomer, left of figure).
doi:10.1371/journal.pcbi.1002178.g001

Author Summary

There is an urgent need for the development of better
drug therapies for tropical diseases, including Chagas’
disease, sleeping sickness and leishmaniasis. Known
collectively as the human trypanosomiases, these tradi-
tionally neglected diseases are responsible for substantial
human suffering and death in Latin America and sub-
Saharan Africa. Current chemotherapy for Chagas’ disease
is particularly unsatisfactory, with available drug treat-
ments displaying poor efficacy and undesirable toxic side
effects. Recent developments in the study of the basic
biochemistry of the causative Trypanosoma cruzi parasite
and its host infection mechanism have identified an
essential proline racemase enzyme (TcPR) as a novel target
for chemotherapeutic intervention for Chagas’ disease.
Conformational changes associated with substrate binding
to TcPR are believed to expose critical residues that elicit a
host mitogenic B-cell response, a process contributing to
parasite persistence and the undermining of host immu-
nity against T. cruzi. Here we describe advanced acceler-
ated molecular dynamics simulations that capture previ-
ously uncharacterized large-scale motions of TcPR. These
motions reveal new conformational epitopes of potential
importance for the mitogenic B-cell response. Further-
more, knowledge of the conformational interconversion
mechanism and corresponding transient binding pockets
will greatly aid future structure-based drug discovery
efforts.

Accelerated MD Simulation of Proline Racemase
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domain motion that exposes several conserved residues located in

the monomer-monomer interface, and that is observed when the

conformer population shifts from state 1 to states 15, 16 or 17
(moving along PC1) and (b) a large-scale intra-domain opening

movement that exposes highly conserved segments around the

active site region of TcPR, and that is observed when the system

shifts population from state 1 to 7 (moving along PC2). Combination

of these two global motions leads TcPR to regions around states 18,

19 and 20. These states represent some of the most open structures

accessed by aMD and display the newly identified and highly solvent

exposed regions at both monomer-monomer interface and in the

surrounds of the active site (see Video S1). As shown in Figure 3, the

surface area exposed by states 1 to 20 is dramatically larger than the

one presented by the semi-open crystallographic structure 1W62. For

instance, the large conformational change involved in the formation

of the bound complex from open states 6, 17, 18 or 20 buries an area

of ,6000 Å2; corresponding to approximately four times the buried

area observed in crystal structures 1W61 and 1W62 (,1500 Å2) [9].

To better visualize the magnitude of the long-time large-scale

conformational changes, states 1 (closed) and 19 (open) were

compared to the superimposed crystal structures (See Videos S2

and S3). It is worth noting that the amplitude of the motion associated

with the experimentally observed conformational change is signifi-

cantly smaller than the ones associated with the inter- and intra-

domain motions obtained in our aMD simulation.

To further understand the physical basis of the observed

opening motions, we analyzed the available structures with a

simplified elastic-network normal mode method [19]. In the elastic

network approach, a single model (expressed in terms of Ca
coordinates) leads to an objective expression of possible protein

dynamics in terms of a superposition of collective normal mode

coordinates [20]. The structural mobility predicted by Normal

Modes Analysis (NMA) performed on the semi-open structure

(PDB ID 1W62) revealed a high overlap between the lowest three

modes and the eigenvectors obtained from aMD simulations (0.6

for mode 1 to PC1, see Figure S3). This result indicates that the

dominant collective motions during aMD simulation, that capture

the TcPR opening movement, are indeed low-frequency motions

intrinsic to the structure.

As previously noted, in vitro assays of B-cell proliferation

together with structural information strongly indicate that the

closure movement induced by ligand binding prevents the

interaction of TcPR with B-cell receptor molecules [3,9].

Activation of B-cell polyclonal response is likely to be associated

with the occurrence of transient binding pockets, along with

conformational epitopes, in the open ligand-free form of TcPR. In

order to identify potential B cell binding sites in the newly

identified open states, we used a fragment-based approach

(FTMAP) to map binding hot spots on each of the twenty

dominant trajectory conformers [21]. Based on the ideas behind

screening small organic fragments by NMR and X-ray crystallog-

raphy, FTMAP correlates pocket druggability with their propen-

sity to bind clusters of small organic compounds. Figure 4 displays

the mapping results for states 1 to 20. To further characterize the

location of each hot spot, probe occupancy was calculated and

assigned to each residue of TcPR (see materials and methods for

details). Figure 5a displays the final probe occupancy values

obtained after combining and normalizing the results from all

twenty conformational states.

As expected, high probe occupancy values were obtained for

sites around the catalytic cysteines (residues 130 and 300),

consistent with the existence of this binding site in all states, 1 to

20. Several additional pockets, displaying low and high occupan-

cies, were also identified. It is worth mentioning that the large

variation in probe occupancies reveals the intrinsic dynamic

nature of these binding pockets. Nevertheless, residues showing

Figure 2. Principal component analysis characterizes large-
scale inter- and intra-domain opening motions of apo TcPR.
Projection of instantaneous aMD trajectory conformers on their first and
second principal components. The distribution of MD conformers is
depicted with density-shaded blue points (dark: high density, light: low
density). The available crystal structures (1W61: red and 1W62: orange)
along with central members of dominant conformational clusters are
numbered (from 1 to 20) along with selected molecular surface
representations colored by sequence conservation (red: high, blue: low,
see also Video S1).
doi:10.1371/journal.pcbi.1002178.g002

Figure 3. Exposed Surface Area. Exposed surface calculated as the
difference between the solvent accessible surface of trajectory
representative states (1 to 20), and the closed form of TcPR (1W61).
doi:10.1371/journal.pcbi.1002178.g003

Accelerated MD Simulation of Proline Racemase
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low probe occupancy values identify regions on the protein surface

where potential interaction sites are exposed only in the open form

of TcPR, (this includes interaction sites in the vicinity of residues

186–191, 217–218 and 288–291). In order to quantify the exposed

surface area of each residue associated with the opening move-

ment, the percentage exposure was calculated based on the per

residue solvent accessible surface area of each state and the closed

form of the TcPR (1W61). As can be seen in Figure 3c, the newly

identified binding pockets are indeed sites that become consider-

ably more exposed in the open states (Figure 3c, light grey).

Moreover, sequence conservation analysis shows that these

binding pockets are also highly conserved in all proline racemases

(Figure 3b).

X-ray crystallography and mutagenesis studies indicate that

interaction with B-cell receptors is likely to be associated with the

presence of transient binding pockets that are fully formed only in

the ligand-free open TcPR. In this work, we show for the first time

a model for the open form of this important drug target obtained

through the application of state of the art molecular dynamic

simulation. Additionally, our results indicate that the mitogenic

properties of TcPR may be associated with the exposure of

conformational epitopes located around the newly identified

binding pockets. Experimental mutagenesis studies of these sites

is required to verify their potential role in eliciting host B-cell

responses. In summary, the strategy adopted in this work allowed

the characterization of large-scale conformational changes associ-

ated with the dynamic formation of potential interaction sites

coupled with the exposure of highly conserved regions of the

protein surface (Figure 5). Furthermore, the results presented in

this work represent the first attempt to rationalize the molecular

basis of the mitogenic B-cell response to TcPR and provide a basis

for future structure-based drug discovery.

Materials and Methods

All simulations were performed with the AMBER10 package

[22] and corresponding all- atom potential function ff99SB [23].

Unless otherwise noted, all additional analyses were performed

with the Bio3D package (available from http://mccammon.ucsd.

edu/,bgrant/bio3d/) [18].

Molecular dynamics
The crystal structure of Trypanosoma cruzi proline racemase

(TcPR) in complex with 2 molecules of pyrrole-carboxilic acid

Figure 4. Potential B-cell interaction sites identified through
fragment mapping analysis (probe molecules shown in green).
Representative conformers from cluster 1 to 20 are shown in molecular
surface representation and colored by sequence conservation (red:
high, blue: low).
doi:10.1371/journal.pcbi.1002178.g004

Figure 5. Probe binding occupancy, sequence conservation
and solvent exposure per reside in TcPR. (a) Potential probe
binding site, or ‘‘hot-spot’’, residues across trajectory conformers (b)
Sequence entropy scores for both a 21-letter alphabet (20 amino acids
and a gap) and 7- letter alphabet (where amino acids are grouped into
6 classes based on their physicochemical properties) are plotted per
position in dark gray and light gray, respectively. (c) The mean and
maximum solvent exposure per position in all trajectory structures (in
dark and light gray respectively). The major elements of secondary
structure (shaded rectangles) and positions with a high degree of
sequence conservation (red ticks) are indicated in the marginal areas of
each plot to facilitate comparison.
doi:10.1371/journal.pcbi.1002178.g005

Accelerated MD Simulation of Proline Racemase
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(PDB code 1W61) was used to build our model. Initial atomic

coordinates build of the apo form of TcPR was obtained by

removing both inhibitors molecules from 1W61. In our model,

basic residues like Arg and Lys are protonated, and acidic residues

like Asp and Glu are deprotonated. Due to its normal pKa, the His

residues were assumed to be neutral at physiological pH.

Initial energy minimization was performed by applying 500

steps of steepest descent followed by 500 steps of conjugate

gradient minimization. The relaxed structures were then solvated

in a truncated cubic box of pre-equilibrated TIP3P water

molecules, which extended 10 Å further than the protein atoms.

To neutralize the systems, sodium counterions (Na+) were added

to balance the charge of the protein. The system was then energy

minimized for 500 steps of steepest descent followed by 500 steps

of conjugate gradient minimization using constant volume

periodic boundaries. We kept the protein atoms and the ions

fixed throughout the whole preparation process. In order to relax

the protein in the solvent environment, all coordinates were

optimized by employing 1000 steps of steepest descent followed by

1500 steps of conjugate gradient. After that, a 1 ns molecular

dynamics (MD) simulation was preformed to heat the system from

0 K to 300 K, for which we applied the NVT ensemble

(T = 298 K). To bring the systems to the correct density, we

carried out a 100 ps MD simulation on which NPT ensemble

(T = 298 K, P = 1 bar) was applied. For the production runs, we

performed an additional Accelerated MD simulation (aMD) of

100 ns. The equations of motion were integrated every 2.0 fs using

the Verlet Leapfrog algorithm. For analysis, the trajectory was

sampled every 1.0 ps. During the MD runs, temperature and

pressure were controlled via a weak coupling to external bath with

a coupling constants of 0.5 and 1.0 ps, respectively. The center-of-

mass motion was removed at regular intervals of 500 fs. The PME

summation method was used to treat the long-range electrostatic

interactions in the minimization and simulation steps of the

solvated systems. The short-range nonbonded interactions were

truncated using an 8 Å cutoff and the nonbonded pair list was

updated every 20 steps. All calculations, conventional and

accelerated MD simulations, were performed using an in-house

modified version of AMBER10 package.

Accelerated molecular dynamics
Accelerated MD approach modifies the energy landscape by

adding a boost potential, DV(r), to the original potential surface

every time V(r) is below a pre-defined energy level E [16], as

DV (r)~

0, V (r)§E

(E{V (r)2

az(E{V (r))
V (r)vE

8<
: ð1Þ

where a modulates the depth and the local roughness of the energy

basins in the modified potential. In principle, this approach also

allows the correct canonical averages of an observable, calculated

from configurations sampled on the modified potential energy

surface, to be fully recovered from the accelerated MD simu-

lations. In order to simultaneously enhance the sampling of

internal and diffusive degrees of freedom a dual boosting approach

was employed, based on separate torsional and total boost

potentials as [15]

V (r)~V0(r)zVt(r)

V�(r)~ V0(r)z Vt(r)zDVt(r)½ �f gzVT (r)
ð2Þ

where Vt(r) is the total potential of the torsional terms, DVt(r) and

DVT(r) are the boost potentials applied to the torsional terms Vt(r)

and the total potential energy VT(r), respectively. The parameters

were set as follows. Et = Et~1:3 SVt rð ÞTð Þ, i.e. 30% higher than

the ensemble-averaged torsional potential energy from conven-

tional MD simulation. at<500 kcal mol21 chosen based on

previous work by de Oliveira [11]. ET = 0.2 kcal mol21 (nr.

atoms)21 plus the ensemble-averaged total potential energy from

conventional MD simulation. aT<0.2 kcal mol21 (nr. atoms)21

[11]. These ET and aT values allow to reproduce the most relevant

structural and energetic properties of liquid water while increasing

the water self-diffusion coefficient by ,15% [11,15].

Principal component analysis
Prior to trajectory superposition and Principal component

analysis (PCA), iterated rounds of structural superposition were

used to identify the most structurally invariant region. This

procedure entailed excluding those residues with the largest

positional differences (measured as an ellipsoid of variance

determined from the Cartesian coordinates for equivalent Ca
atoms of each frame), before each round of superposition, until

only the invariant ‘‘core’’ residues remained [18]. This structurally

invariant core consists predominantly of residues within secondary

structure elements and was used as the reference frame for

superposition of both crystal structures and subsequent MD

trajectory snapshots. PCA was then employed to further examine

inter-conformer relationships. The application of PCA to MD

trajectories, along with its ability to provide considerable insight

into the nature of conformational differences in a range of protein

families has been previously discussed [14]. Briefly, PCA is based

on the diagonalization of the covariance matrix, C, with elements

Cij, built from the Ca atom Cartesian coordinates, r, of the

superposed trajectory frames:

Cij~S ri{SriTð Þ. rj{SrjT
� �

T ð3Þ

where i and j represent all possible pairs of 3N Cartesian coor-

dinates, where N is the number of atoms being considered. The

highly mobile N and C-terminal residues (positions 42–43 and

380–398) were excluded from analysis as their high intrinsic

mobility was found to mask the separation of the more pertinent

open-to-closed domain displacements. The eigenvectors of the

covariance matrix correspond to a linear basis set of the

distribution of structures, referred to as principal components

(PCs), whereas the eigenvalues provide the variance of the

distribution along the corresponding eigenvectors. Projection of

the distribution onto the subspace defined by the largest principal

components results in a lower dimensional representation of the

structural dataset. The percentage of the total mean-square

displacement (or variance) of atom positional fluctuations captured

in each dimension is characterized by their corresponding

eigenvalue.

Conformer clustering
Clustering of trajectory conformers was used to visualize the

dominant conformations sampled by each simulation. Structures

from aMD simulations underwent average-linkage hierarchical

clustering according to the pairwise distances obtained from their

projection onto the first 3 principal components. Clustering based

on pairwise RMSD yielded similar major clusters. However, a

significantly larger number of small clusters were returned due the

influence of TcPRAC’s highly flexible termini that do not

contribute to the dominant principal components. Note that PCs

1–3 account for ,70% of the variance in the original distribution

Accelerated MD Simulation of Proline Racemase
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(Figure 6) and produce a more succinct distance measure than the

examination of average all-atom distances. This metric aids interpre-

tation of an otherwise noisy signal as it is derived primarily from the

concerted displacement of subdomains relative to one-another.

Inspection of the resulting dendogram was used to partition

structures into 20 dominant groups (ranked according to their

populations). The closest structure to the average structure from each

cluster, in terms of RMSD, was chosen as a representative for further

fragment mapping and virtual screening analysis described below.

Sequence conservation analysis
To assess the level of sequence conservation at each position in

the alignment, the similarity, identity, class identity and entropy

per position were calculated. The ‘‘similarity’’ was defined as the

average of the similarity scores of all pairwise residue comparisons

for that position in the alignment (where the similarity score

between any two residues is the score value between those residues

in the BLOSSUM 62 substitution matrix [24]). The ‘‘identity’’ (i.e.

the preference for a specific amino acid to be found at a certain

position) was assessed by averaging the identity scores resulting

from all possible pairwise comparisons at that position in the

alignment (where all identical residue comparisons are given a

score of 1 and all other comparisons are given a value of 0). The

‘‘class identity’’ was calculated in a similar manner to the

‘‘identity’’. The exception being that amino acids were considered

class identical (i.e. assigned a score of 1) if they possessed similar

physicochemical properties. For this analysis residues were

partitioned into three classes based on their relative hydrophobic-

ity and the extent to which they are distributed between the

surface and interior of known globular aqueously soluble protein

structures (see [25,26], and references therein). The first class

contains hydrophobic residues (C, V, L, I, M, F and W) that have

a high probability of residing within protein interiors. The second

class contains hydrophilic residues (R, K, E, D, Q and N) that are

most likely to be found on the surface of proteins. Finally, the third

class is comprised of neutral residues (P, H, Y, G, A, S and T) that

have a roughly equal chance of being on the surface or in the

interior. ‘‘Entropy’’ is based on Shannon’s information entropy for

both a 21-letter alphabet (20 amino acids and a gap character) and

a 7-letter alphabet (6 groups of amino acids and a gap character)

[27,28] (Equation 4):

S~{
XN

i

pilog2pi ð4Þ

where S is Shannon’s entropy, pi is the frequency of each

alphabet’s letter at position i and N is the alphabet’s size (7 or 21).

The six groups chosen were aliphatic (A, V, L, I, M and C),

aromatic (F, W, Y and H), polar (S, T, N and Q), positive (K and

R), negative (D and E), and finally special conformations (G and

P). Entropy scores plotted in Figure 3 are normalized so that

conserved (low entropy) columns score 1 and diverse (high

entropy) columns score 0 (Equation 5):

C~

{
PN

i

pilog2pi

log2 min Nseq,N
� �� � ð5Þ

where, C is the normalized entropy, pi is the frequency of each

alphabet’s letter at position i, N is the alphabet’s size and Nseq is the

length of the sequence. We define a position to be conserved if the

similarity, identity, class identity entropy 21 or entropy 7 at a

position is .0.6. Positions in which more than 30% of the sequences

had gaps were excluded from all sequence conservation analysis.

Exposed Surface Area
Percent solvent exposure per position was calculated with the

NACCESS program available at http://www.bioinf.manchester.ac.

uk/naccess/. A residue was considered exposed when the accessible

surface area (ASA) of the residue was more than 40% of the measured

ASA of that residue in an extended G-X-G tripeptide context.

Normal mode analysis
We employed the coarse-grained AD-ENM normal mode

analysis approach developed by Zheng et al. [19]. AD-ENM

implements a single-parameter Hookean potential, which has

previously been shown to yield low-frequency normal modes that

are in good agreement with those obtained from more detailed,

empirical, force fields. For further details see [19,20]

Fragment mapping
We used the FTMap method of Brenke and co-works to highlight

regions on the TcPR surface that have the potential to bind the highest

number of small molecular probes [21]. Both crystal structures and

each cluster representative form aMD were subject to fragment

mapping. Hot-spot residues (those that comprise prominent fragment

binding sites) were analyzed across all structures. A residue was

assumed to be in contact with a probe molecule if any two heavy atoms

from the probe and residue were closer than 5.0 Å.

Supporting Information

Figure S1 Results of PCA on the TcPR aMD trajectory.
(a–c) Conformer plots: Projection of trajectory structures onto the

Figure 6. Large-scale opening of apo TcPR characterized by
accelerated molecular dynamic simulation. Potential B-cell
interaction sites were identified through fragment mapping analysis
(probe molecules shown in green). Representative cluster 1 (closed
state) and cluster 19 (open state) conformers are shown in molecular
surface representation and colored by sequence conservation (red:
high, blue: low).
doi:10.1371/journal.pcbi.1002178.g006
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principal planes defined by the three most significant principal

components (termed PC1–3). Structures are colored by time

evolution (From blue to red). (d) Eigenvalue spectrum: Results

obtained from diagonalization of the atomic displacement

correlation matrix of Ca atom coordinates from the trajectory.

The magnitude of each eigenvalue is expressed as the percentage

of the total variance (mean-square fluctuation) captured by the

corresponding eigenvector. Labels beside each point indicate the

cumulative sum of the total variance accounted for in all preceding

eigenvectors.

(TIF)

Figure S2 Hierarchical clustering according to the pair-
wise distances obtained from the projection onto the first
three principal components. The color bars showed in the x and

y axes highlight sub-clusters of structures composing the two main

clusters representing the open and closed conformational states.

(TIF)

Figure S3 Normal mode analysis. Overlap between the lowest

three modes and the eigenvectors obtained from aMD simulations.

(TIF)

Video S1 Representative cluster conformers are shown in

molecular surface and protein cartoon representations and colored

by sequence conservation (red: high, blue: low, see text for details).

(MOV)

Video S2 Opening movement characterized by the superposi-

tion of the semi-open and closed crystal structures.

(MOV)

Video S3 Opening movement characterized by the superposi-

tion of states 1 (closed) and 19 (open).

(MOV)
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