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a b s t r a c t

In an ever-growing need for data storage capacity, the Deoxyribonucleic Acid (DNA) molecule gains traction 
as a new storage medium with a larger capacity, higher density, and a longer lifespan over conventional 
storage media. To effectively use DNA for data storage, it is important to understand the different methods 
of encoding information in DNA and compare their effectiveness. This requires evaluating which decoded 
DNA sequences carry the most encoded information based on various attributes. However, navigating the 
field of coding theory requires years of experience and domain expertise. For instance, domain experts rely 
on various mathematical functions and attributes to score and evaluate their encodings. To enable such 
analytical tasks, we provide an interactive and visual analytical framework for multi-attribute ranking in 
DNA storage systems. Our framework follows a three-step view with user-settable parameters. It enables 
users to find the optimal en-/de-coding approaches by setting different weights and combining multiple 
attributes. We assess the validity of our work through a task-specific user study on domain experts by 
relying on three tasks. Results indicate that all participants completed their tasks successfully under two 
minutes, then rated the framework for design choices, perceived usefulness, and intuitiveness. In addition, 
two real-world use cases are shared and analyzed as direct applications of the proposed tool. DNAsmart 
enables the ranking of decoded sequences based on multiple attributes. In sum, this work unveils the 
evaluation of en-/de-coding approaches accessible and tractable through visualization and interactivity to 
solve comparison and ranking tasks.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Existing data storage technologies cannot keep up with the ex-
ponential growth of modern data [1]. With advances in digital data 
storage, researchers have been seeking out alternative means to 
store more information in smaller media to bridge the gap between 
conventional storage media and the future data storage demands of 
mankind [2]. The uniqueness of DNA molecules as information car-
riers make them highly advantageous. When used as a data storage 
device, DNA as a molecular medium offers the benefits of high sto-
rage density, low maintenance costs, energy efficiency, and a long 
shelf-life. Compared to conventional storage media, these char-
acteristics make DNA an up-and-coming storage medium for data 

storage and long-term archiving [3–6]. Thanks to rapid advances in 
synthetic biology and next-generation sequencing (NGS), writing 
(synthesis) and reading (sequencing) have placed synthetic DNA in 
the lead position of alternative and novel storage media. When 
considering DNA for data storage, coding theorems for transmitting 
information from one source to a receiver over a channel becomes 
essential. These theorems model and evaluate the properties of one 
or more channels and their suitability to a specific en-/de-coding 
approach. The DNA data storage channel consists of three funda-
mental steps: 

1. Synthesis consists of producing short synthetic DNA sequences, 
or oligonucleotides, that contain the data as payload.

2. Storage consists of a solution in which the synthetic DNA is 
stored.

3. Sequencing, to read the short DNA sequences from storage.

Once sequencing is completed, the goal is to retrieve the original 
(encoded) sequence from the sequencing output using the decoder. 
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Thanks to NGS technologies, these strands contain hundreds of 
characters [7]. However, DNA synthesis, storage, and sequencing 
may lead to errors in the resulting nucleotide sequence. The errors 
adhere to the following typology: insertion, deletion, and substitu-
tion of nucleotides. For example, when the GC content is lower than 
40% and higher than 60%, the probability of synthesis and sequen-
cing errors increases. Among many criteria, this motivates encoding 
the strands in a fashion that satisfies different conditions and con-
straints to optimize DNA storage.

Several researchers have demonstrated the feasibility of storing 
digital information and correcting errors in DNA molecules. Early 
works by Church et al. [8] and Goldman et al. [9] brought DNA sto-
rage to limelight. Alongside the development of DNA synthesis and 
sequencing technologies, newer and better methodologies for using 
DNA as a storage medium are published, which brought DNA storage 
to practical applications [10,11,49]. Aside from promises of a larger 
capacity and a longer lifespan, several efforts have been made to 
address the information and coding theoretic aspects of DNA data 
storage. These aspects specifically target the capacity of the storage 
channel [12,13] and the design of error correction codes (ECC) [14,15]
for the specific errors [16] that arise inside a DNA data storage 
system. Additionally, in the field of ECC development, efforts have 
been made to provide solutions for other areas of DNA data storage, 
for example, constrained coding for DNA data storage [17], random 
access in DNA storage systems [18] and image storage solutions for 
DNA [19,20]. Although ECCs have different approaches to correct 
information loss, one, if not the most important characteristic of an 
ECC is the ability to successfully recover the input data from the 
channel output. Traditionally, domain experts rely on time-con-
suming and non-visual approaches to evaluate and compare codes 
according to metrics to decide which sequences carry most of the 
encoded information. Navigating such a space takes years of ex-
perience and domain expertise.

Many approaches are concerned with reordering sequences. A 
noteworthy mention is for a specific scenario where sequences are 
reordered based upon the metric distances between every pair of 
decoded sequences [21]. The solution of the problem in this scenario 
is considered NP-hard [22]. There is no exact general solution; 
however, there are approximations. A naive approach to identifying 
similar sequences is not scalable, requiring every sequence to be 
tested against all other sequences. However, the related work has 
not yet considered relying on the interactive analysis or the visual 
exploration of such data, let alone combining multiple attributes and 
their weights. On the one hand, visually ranking the decoded se-
quences could speed up the time to determine the best encoding 
approach. On the other hand, visually finding out how much the 
ranking changes based on an attribute may shed further light on the 
robustness of one attribute to another.

To help domain experts navigate the parameter space, track po-
tential errors, error sources, and evaluate the en-/de-coding ap-
proaches, we developed a visual analytical tool to rank the 
considered sequences by relying on information and coding theo-
retic metrics or attributes. We propose to employ a three-step 
workflow capable of handling multiple scenarios. Possible optimi-
zation scenarios in which the results of DNAsmart can be used 

comprise a combination of (a) the stored information, (b) the en-/de- 
coding approach(es) or code(s), (c) the parameter space of one code, 
(d) the ability of codes to adhere to DNA data storage specific 
characteristics (GC content, clustering of redundant sequencing 
output) and (e) other medium-based properties (e.g., lifespan). Three 
example scenarios are detailed. First, a comparative evaluation of 
aged synthetic DNA molecules pooled and stored in different con-
ditions and locations. Recovering all information corresponds to 
finding the optimal (in the sense of lowest probability) subset of 
synthetic DNA molecules in a given sequencing pool. Second, a 
sensitivity analysis of the parameter space of a single coding ap-
proach results in a different set of synthetic DNAs. The recovery of all 
information corresponds to the search for the optimal parameter set. 
In both scenarios, all-information recovery is defined as minimizing 
the distance between a set of unordered sequences and a target 
reference. Finally, an indirect comparison of different ECC is made 
possible by considering user-specific attributes such as mutual in-
formation, which maximizes information recovery.

Motivated by creating better and more efficient DNA data storage 
systems and addressing these practical scenarios, the unordered 
nature of a set of decoded sequences, and the absence of a visuali-
zation method to rank such sequences, DNAsmart interactively 
evaluates DNA (s)torage sequences using (m)ultiple (a)ttributes and 
a (r)anking paradigm (t)ool. It leverages LineUp while adapting its 
main functionalities to the domain knowledge and specificity of DNA 
data storage [23]. To prioritize an attribute with a certain weight or 
multiple attributes with their corresponding weights over all other 
attributes, a set of decoded sequences is used as input data, and a 
ranking is provided by interactive sorting and grouping. Users have 
complete control over selecting attributes, sorting, merging, and 
adding weights to the chosen attributes. This flexibility is required to 
fit specific task requirements. Modifications are displayed live, in 
turn changing the ranking of a set of DNA sequences used in a data 
storage system. To evaluate DNAsmart, we performed a qualitative 
assessment with domain experts. We structured the visual analytical 
tasks by focusing on filling gaps related to the understanding and 
easy transition of the modules and the domain adaptability. We 
report the Top 3 decoded sequences based on three tasks, namely: 

1. when unsorted
2. when sorted by a single attribute
3. when merged and sorted by two or more attributes

Our results demonstrate that DNAsmart could leverage the subject- 
specific ranking task by allowing experts to interactively select at-
tributes and rank the decoded sequences from DNA data storage 
systems.

The remaining sections of this paper discuss related work on the 
DNA storage and visual ranking system, domain characterization for 
multi-attribute selection, explain the three DNAsmart workflows, 
show the usability of DNAsmart through use cases, and discuss the 
results.

2. Related work

This section reviews related work on DNA-based data storage, 
error-correcting codes, and interactive sorting techniques that aid in 
ranking and analytical systems to make sense of multi-attri-
bute data.

2.1. DNA data storage

A representation of information into DNA is focused on storage 
and error-free retrieval of data encoded in the four DNA nucleotides. 
In recent years, considerable efforts have been invested in demon-
strating the potential of using DNA as a storage system [24]. DNA has 

Nomenclature

DNA: Deoxyribonucleic Acid.
ECC: Error Correction Code.
PCR: Polymerase Chain Reaction.
NGS: Next Generation Sequence.
MOSLA: Molecular Storage for Long Term Archiving.
SUS: System Usability Scale.
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already been used as an information carrier in recent decades 
[25,26]. However, the first large-scale attempts of encoding in-
formation into a synthetic DNA molecule were recorded in 2012 
[8,9], after which then emerged the usage of an Error-Correcting 
Code (ECC) for storing more significant amounts of data and more 
efficiently [5,11,14,27].

With the rise of reasonably practical solutions that employ DNA 
as a storage medium, information-theoretic aspects were con-
sidered. A recent comprehensive survey outlined design considera-
tions for advancing data storage using DNA. Furthermore, 
information theory measures, as well as distance measures, were 
presented as evaluation metrics. These evaluation metrics provide 
sufficient knowledge and techniques to identify and compare several 
coding systems [28]. However, most of the attention was directed to 
error correction and how the DNA channel should be modeled. 
Furthermore, different distance measures in information theory 
were used to design ECCs for the DNA storage channel, and different 
coding models have been derived [29,30]. An erroneous collection of 
sub-strings of the original sequence using ECCs was obtained [31]. A 
particular focus was directed to the impact of insertions, deletions 
and substitution errors which affect, if not impair the whole data 
storage process [32,33].

Additional research on information encoding into the DNA pro-
vides sufficient knowledge and techniques for identifying and 
grouping these unordered sets of sequences based on a single at-
tribute. This fact has been explored for capacity analysis where the 
Shannon entropy helps users establish the upper limit on the 
amount of information that can be reliably stored in DNA under a 
given error rate [34,35]. Also, techniques based on the Hamming 
distance have been employed to ensure sequence differences be-
tween DNA used for sequence identification (DNA barcodes). This 
work is established by preserving minimal distance and error-cor-
recting properties among the barcodes [26,36]. Furthermore, the fact 
of grouping unordered sets of sequences have been employed in the 
DNA reconstruction problem; where the goal is to minimize the 
Levenshtein distance between the original sequence and decoded 
sequences [37].

However, these methods do not address how to order these se-
quences based on multiple attributes. Rankings are popular for 
structuring unordered items by computing each item based on the 
value of one or more attributes. In addition, domain experts must 
compare and rank codes for specific tasks in the domain knowledge 
of coding theory. It is even more complicated to do so without a good 
command of mathematical concepts applied in coding theory. For 
example, finding the optimal code for a given task in a given scenario 
is time-consuming and difficult. The rationale of this work is to 
adapt the visual ranking paradigm presented by previous work to 
the specificity of the coding theory domain. While visualization of a 
ranking is straightforward, its interpretation is not because the rank 
of an item is only a summary of a complicated relationship between 
its attributes and those of other items. Therefore, this work aims to 
visually represent, analyze, and rank these sets of unordered se-
quences based on multiple attributes.

2.2. Visual ranking system

Interactive ranking and sorting is an active research area. Many 
systems exist for the visualization of multi-attribute rankings [38]. 
These systems focus on providing capabilities to generate, modify, 
and present tabular data and are not intended solely for ranking. For 
example, rows (data points) can be sorted by some column (attri-
bute), but such systems do not natively support sorting based on 
combinations of columns or attributes. Consequently, these systems 
require a high level of formalism to define a ranking. Our system is 
built upon LineUp [23], a visual analytic system that performs 
ranking visualization of multi-attribute data and allows users to 

flexibly adjust weights to identify potential relationships. LineUp 
uses bar charts to facilitate ranking comparison while relying on 
tabular layouts to compare data attributes. It allows users to create 
custom rankings by clicking and dragging columns to adjust inter-
actively the attribute weights used for the ranking. Users can see 
how changing the attribute weights affects the ranking of the data 
points. Additionally, DNAsmart allows users to select attributes of 
their choice by directly leveraging domain-specific knowledge for 
ranking tasks. DNAsmart is designed for information theory-specific 
tasks, requiring users to have a good knowledge of the attributes. 
The latter should be chosen with care as their integration sig-
nificantly affects the ranking results of the set of sequences decoded 
from a DNA data storage system.

3. Domain characterization

In data storage, DNA as a storage medium comes with many 
challenges during synthesis, storage, and sequencing. One challenge 
is determining whether the complete reconstruction of the original 
data is possible from the given set of decoded sequences after sto-
rage. This task poses the coded string reconstruction problem, which 
requires reconstructing strings from their substrings satisfying pre-
defined constraints. We describe our method based on: (a) trans-
forming a set of decoded sequences into descriptors and (b) 
transforming information-theoretic metrics to qualitative measure-
ments of attributes. To demonstrate the data extraction stage, we 
use the information-theoretic perspective of DNA storage as an ex-
ample and detail our choice of multi-attributes. The encoding and 
decoding stages are external to the storage that even in the presence 
of error, it is possible to reconstruct the original data. The input 
sequences for the decoding entail processing short DNA molecules 
from the solution in which the DNA medium is held, then sequen-
cing them.

3.1. Multi-Attributes

An important parameter, which could affect the final decoding 
result, is the choice of an attribute for the ranking of decoded se-
quences. Applying a default ranking attribute may lead to poor re-
sults. Assessing one sequence from a set of sequences that involves 
considering and integrating multiple attributes could enable accu-
rate comparisons among the given sequences. The latter assumes 
user knowledge of good practices to choose said attributes. For in-
stance, combining the mutual information and the entropy in one 
column is wrong. Example combinations are reported in Table 1. To 
satisfy the diverse requirements of different en-/de-coding ap-
proaches and user preferences, we implement and integrate ex-
tendable attributes for users to dynamically choose their preferred 
attributes with their preferred weights. By default, all attributes are 
given no weight. Choosing the suitable attribute is often challenging; 
such an analytical choice is specifically carried out depending on the 
en-/de-coding approach and the task. We integrate six domain- 
specific attributes and propose a new one by weighing in the do-
main-specific knowledge for DNA data storage and information 
theory. We identify and borrow specific attributes from distance- 
based, information theory, and biological domain namely: 

Table 1 
Possible attribute-based combinations. Two types exist to optimize the re-
sults; either minimization or maximization. 

Minimization Maximization

Hamming Mutual Information
Levenshtein Number of errors
Damerau-Levenshtein –
Conditional entropy –
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1. Hamming
2. Levenshtein
3. Damerau-Levenshtein
4. Conditional entropy
5. Mutual information
6. GC content

Additionally, the related work in question designed source codes 
for DNA storage to include attributes [10,21,29].

First, Entropy leads to considering the essential function of 
coding theory for the transmission of information from one source to 
another over a given channel. That is to say, a DNA molecule con-
ceptually corresponds to an information carrier in a channel. Since 
more than one decoded sequence is involved, we define the concept 
of conditional entropy which measures the amount of information 
that exists in the decoded sequences given that the encoded se-
quence is known.

Second, the shared or mutual information among channels is 
essential for determining the information capacity [39]. Mutual in-
formation measures the accuracy with which the outputs of the 
channel, i.e., decoding sequence, represent the input of the channel 
or the preset DNA sequence.

3.2. Cumulative-based error weight

Analyzing the number of errors present in DNA data storage is an 
essential step in assessing the reliability and accuracy of the stored 
information. It can aid in identifying specific issues with the storage 
methods and techniques, allowing adjustments to improve the 
overall storage process. Furthermore, knowledge of error rates can 
help ensure data integrity and security and inform future DNA data 
storage technology advancements.

Therefore, the cumulative-based error weight further supports 
sequence-based errors. The weight is defined as identifying the 
number of local regions that differ in a yet-to-be-decoded DNA se-
quence compared to an encoded one. The attribute is derived using a 
dynamic programming approach where the length of the decoded 
sequence is amplified against a reference sequence. To calculate an 
overall number of errors for each decoded sequence, we use a linear 
weighted sum model according to: ∑n=1ne; with e denoting an error 
region of size n for a pair of sequences. The three types of sequence- 
based errors are substitution, insertion, and deletion. Error regions 
for each sequence are computed according to its overall score. The 
score is the weighted sum of each error type based on its occurrence. 
To facilitate the interpretation of the error type and the overall 
number of errors, we constrain the normalization of the error type 
weights according to: n n ni d s

i d s
i d s, , 0

, ,
= ; denoting the occurrence of i 

insertions, d deletions, and s substitutions in a given sequence, re-
spectively. DNAsmart employs the metrics mentioned above as 
multi-attributes to enable visual analysis and ranking of an un-
ordered set of sequences. The framework transforms these multi- 
attributes into quantitative measurements to which weights are 
assigned. End-users provide further weight adjustments.

4. Workflow

DNAsmart is a visual analytical method that combines light-
weight data analytic and a visual technique to assist users with 
ranking tasks by weighing multiple attributes. The web-based im-
plementation takes as input a multi-FASTA file type that accom-
modates sequences from either the synthesis or sequencing process. 
Fig. 1 shows the flexible use of DNAsmart in different steps of the 
DNA data storage process. A keyword extraction module analyzes all 
sequences and outputs a set of objects for the reference and each 
sequence, respectively. The User interface (UI) allows users to 

explore the sequences. As the user selects attributes of interest, the 
ranking view is displayed. Applying analytical tasks brings related 
sequences to the top and pushes down the less relevant ones. The 
layout of the framework is arranged in a step-wise fashion with 
three views: sequence, selection, and ranking.

4.1. Sequence view

DNAsmart automatically extracts sequences from a multi-FASTA 
file uploaded by the user with a two-fold purpose. It provides ma-
nipulable elements that serve as input for the ranking view. Upon 
uploading a file, the entire set of sequences is represented as a key 
and value pair.

4.2. Selection view

DNAsmart allows a flexible choice of attributes according to user 
task requirements. The Selection view lists different attributes with 
individual check-boxes for selection. The seven attributes are 
Hamming distance, Levenshtein distance, Damerau-Levenshtein 
distance, GC content, Conditional Entropy, Mutual Information, and 
Number of errors. Conditions are placed on the Hamming distance 
attribute as shown in Fig. 2 when the length of the sequences up-
loaded from the sequence view is not equal, prompting the user to 
upload sequences of equal length or to refrain from selecting this 
attribute. Users can select specific or all attributes based on their 
task requirements.

4.3. Ranking view

DNAsmart allows the interactive exploration of rankings based 
on multiple attributes computed for a given data set. As represented 

Fig. 1. Overview process of DNA data storage system with positions where DNAsmart 
can be used. DNAsmart accommodates sequences from either the synthesis or se-
quencing process.

Fig. 2. The selection view. The second step of the workflow. Attribute selection 
consists of selecting the right attributes for the right domain task.
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in Fig. 3, it shows a table where each row is a decoded sequence 
represented with its name, and each column represents an attribute. 
Their ranking orders the data and the rank scores are initially 
computed based on the arrangement of the given sequences. Users 
can interact with the tabular data by clicking and selecting the sort 
button for every relevant attribute. This corresponds to having an 
active sort functionality. Users may also implement weights on the 
attributes, which prompts the system to derive a new set of attribute 
weights based on the user interaction with the columns in said table.

Clicking and dragging these columns merges two or more attri-
butes, then automatically sets equal weights to the sequences in the 
data set. Thus, ranking all the rows in the table according to their re-
sulting rank scores. Specific weight adjustments are possible thanks to 

user-settable functionalities specific to attribute weights. As presented 
in the LineUp API, DNAsmart inherits the full interactive functionalities 
to explore the unordered set of sequences. Ranking enables sorting 
sequences by each attribute in the columns or by user-defined com-
binations of attributes. Filtering is possible for one or a combination of 
columns. In addition, regular expressions may be used for advanced 
filtering. Grouping and aggregating enable a display mode where the 
height of each row is reduced to a minimum height of a single pixel. 
Our tool also inherits all interaction and encoding idioms. We decided 
to mention only the idioms that we have changed. Moreover, since the 
default API does not use a colorblind-friendly scheme for the ranking 
visualization, we replaced the default with the Tableau10 colorblind- 
safe palette. This renders the color encoding more accessible [40,41].

Fig. 3. The ranking view. The third and last step of the workflow. Area-based visual idioms provided by the bar charts effectively depict larger and smaller values and enable 
interactive functionalities. (a) Screenshot overview. (b) Detail from left to right: The Hamming column with an active sort functionality, the Damerau-Levenshtein column with a 
highlighted value for the selected sequence, and the sidebar.
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4.4. Design considerations

DNAsmart is built around five fundamental design considera-
tions. First, DNAsmart supports decision-making and provides the 
optimal set of sequences and the ranking system that benefits users 
by allowing them to navigate through the sequences or even dif-
ferent separate attributes. Second, the tool allows low computational 
overhead. DNAsmart uses a randomized approach to determine the 
similarity between sequences based on multi-attributes. Third, 
DNAsmart supports the traditional minimization problem when 
comparing a set of sequences. That is to say, minimizing the com-
putational expense of calculating different metrics between all input 
sequences. Fourth, although assumptions are considered for the 
input format, the input can be arbitrary and does not necessarily 
belong to a particular error-correction code. The input format fol-
lows multiple sequences in one FASTA file format. Fifth and last, the 
workflow does not presuppose a definite number of sequences in 
one given set.

5. Results

To demonstrate the usability of DNAsmart, we show several 
features of DNAsmart with two exemplary use cases - (I) barcode 
validation and selection and (II) parameter space of an encoding 
scheme.

The case study overview can be seen in Figs. 4, 5, 6, 7, 8 and 9.

5.1. Use case 1: barcode validation and selection

To demonstrate the function and utility of DNAsmart in vali-
dating the conformance of these barcodes, we uploaded the in-
dependent FASTA files containing barcodes for each of the sets of 
codes, respectively. We visualized the set of codes using DNAsmart 
based on three attributes- Hamming distance, Levenshtein distance, 
and GC content.

We validated five sets of pre-existing barcodes to ensure that all 
pairwise comparisons within these barcodes were greater than the 
minimum expected Levenshtein or Hamming distance. A summary 

of the sets of barcodes is detailed in Table 2. We also validated that 
the barcodes conform to constraints such as GC content. GC content 
of <  40% and >  60% can be problematic during their synthesis and 
sequencing process.

To ascertain barcode conformance, we appropriately formatted 
an input file for these barcodes and uploaded the file to DNAsmart 
using the sequence view. Then in the selection view, we selected the 
Hamming distance, Levenshtein distance, and GC content, respec-
tively. We used these attributes to test and validate the barcodes. 
Then we visualized our data using the ranking view to provide an 
interactive exploration of rankings of the barcodes based on the 
three attributes we selected.

For barcodes designed based on Levenshtein distance, we used 
DNAsmart to interact with the barcodes by clicking and selecting 
the sort button for the Levenshtein attribute. Only those barcodes 
provided by Faircloth et al [43] maintained a minimum Le-
venshtein distance sufficient to correct one error (Levenshtein 
distance ≥3) across all pairwise comparisons. As shown in Fig. 4, 
the barcodes also conformed to appropriate GC content con-
straints within the range of 40% and 60%. However, the barcodes 
provided by Adey et al. [44] and Meyer et al. [42] contained 
pairwise comparisons below the minimum expected Levenshtein 
distance reported as shown in Figs. 5 and 6. The minimum Le-
venshtein distance reported for the barcodes was 4 for Adey et al. 
[44] and 3 for Meyer et al. [42], respectively. Using the ranking 
view of DNAsmart, we clicked and selected the Levenshtein dis-
tance for both sets of barcodes and observed a minimum distance 
of 2 for each set of barcodes. This is shown in Figs. 5 and Figs. 6a. 
Additionally, we evaluated the barcodes based on GC content, and 
we found that the barcodes from Adey et al. conformed to ap-
propriate GC content compatible for synthesis and sequencing 
with an exact GC content of 44.44% as also shown in Fig. 5. 
However, we found that some barcodes did not satisfy the con-
straints for the barcodes from Meyer et al., using DNAsmart and 
ranking based on GC content. As shown in Fig. 6b, some barcodes 
from this set had GC content as low as 16.67% and as high as 
83.33%. These barcodes would be problematic for the synthesis 
and sequencing technology.

Fig. 4. Barcodes from Faircloth et al [43] with an active sort functionality on the Levenshtein column depicting the minimum distance and GC content. 
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For barcodes designed based on Hamming distance, only sub-
stitution errors can be corrected by constructing codes with a larger 
minimum distance between barcodes. The minimum Hamming 
distance between barcodes needs to be at least 2k+ 1 to correct K 
errors, as this significantly reduces the probability of reading errors 
interfering with accurate barcode identification. To ascertain whe-
ther barcodes satisfy the constraints of minimum Hamming distance 
and GC content, we selected the input file for barcodes designed 
based on Hamming distance. Using the ranking view from 
DNAsmart, we found that the observed minimum Hamming distance 
of 3 shown in Fig. 7a is the same as the expected Hamming distance 
for the barcodes provided by Meyer et al. [45]. However, the GC 
content in Fig. 7b of the barcodes do not conform to the appropriate 
GC content as the set of barcodes contains GC content as low as 
28.57% and as high as 71.43%. For barcodes from Hamady et al. [46], 
the observed minimum Hamming distance of 2 conformed to their 
expected Hamming distance, and the barcodes satisfy the GC con-
tent constraint.

Barcodes aid in information indexing when the quantity of digital 
information surpasses the capacity of a single storage pool. Barcodes 
can be randomly generated, yet selecting and validating them re-
quires avoiding sequences that do not conform to established con-
straints. DNAsmart provide visual feedback on how these constraints 
affects the ranking of the barcodes. Additionally, DNAsmart also 
supports merging two or more attributes, which could affect the 
resulting rank of barcodes. For the sake of brevity, we did not show 
this option for this use case.

5.2. Use case 2: parameter space of an encoding scheme

To ensure proper information retrieval, one requires that se-
quences at minimum Hamming or Levenshtein distance be avoided 
in the information string. Furthermore, due to synthesis and se-
quencing constraints, sequences with improper GC content are to be 
avoided. This poses a challenging question of combining relevant 
distance attributes with GC content and other relevant attributes. 

For that purpose, we visually explored data using DNAsmart based 
on five attributes- Hamming, Levenshtein, Damerau-Levenshtein, GC 
content, and Number of errors. The dataset considered for this use 
case was derived using the Grass encoding scheme [5] and the 
Fountain encoding scheme [11] containing about 713 and 1000 se-
quences respectively.

For the sequences from the Grass encoding, we uploaded the 
FASTA file of the encoding scheme and selected the five attributes. 
Then we visualized the dataset using the ranking view of DNAsmart 
to provide an interactive exploration for combining and ranking of 
the sequences based on the attributes we selected. When sorted by 
the GC content as shown in 8a, we found that the dataset contains 
inappropriate GC content as low as 37.61% and as high as 63.25%. 
However, since DNAsmart supports merging two or more attributes, 
we prioritized and merged the Hamming and GC content attributes 
with a corresponding equal weight of 50% for each attribute. We 
clicked and sorted the sequences based on this combination. We 
found that sequences with maximum Hamming distance also have 
appropriate GC content, thus satisfying the GC content constraints 
and leading to proper information retrieval. This is shown in Fig. 8b.

For the sequences from the Fountain encoding, we performed an 
ordering task based on the Levenshtein attributes. We selected five 
attributes, as earlier mentioned, and interactively explored the da-
taset using DNAsmart. We confirmed that the encoding scheme sa-
tisfies the appropriate GC content constraints as it contains GC 
content within 40% and 60%. Additionally, sorting and ranking the 
dataset based on Levenshtein distance result in a significant ordering 
of the sequences that are well separated in the distance metric space 
as shown in Fig. 9.

In summary, using DNAsmart, the recovery of information cor-
responds to overviewing and finding an optimal set of DNA se-
quences which could provide knowledge for further domain-specific 
analysis. The information provided from these explorations can lead 
to further clustering tasks in the domain. DNAsmart allows the ex-
ploration of any dataset that satisfies several properties, such as 
those coming from DNA data storage systems.

Fig. 5. Barcodes from Adey et al. [44] with an active sort functionality on the Levenshtein column depicting the minimum distance and GC content. 
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6. User evaluation

DNAsmart enables the influential ranking of an unordered set of 
sequences by exploring multi-attributes derived from digitized data 
(quantitative and qualitative improvement of decoded information).

6.1. Analytical tasks

We have structured the visual analysis tasks we want to address 
with the ranking framework to be based on a single attribute or set 
of attributes. The goal of each task is to find the TOP 3 ranking of the 

Fig. 6. Barcodes from Meyer et al. [42] with a selected sequence. (a) Active sort functionality on the Levenshtein column showing the minimum distance within the barcodes. (b) 
Active sort functionality on the GC content showing the lowest value.
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decoded sequences: 1. when unsorted (default view, no interaction 
needed), 2. when sorted by a single attribute (one interaction 
needed), and 3. when three attributes are merged and sorted by 
specific weights (three interactions needed).

6.2. User study

A user study was performed to investigate the effectiveness of 
the tool. Nine participants (3 female and 6 male) were recruited 
from the Molecular Storage for Long-Term Archiving (MOSLA) 

consortium. More than half of them indicated that they have ex-
perience with information visualization, and the rest of them had 
considerable experience in data storage. Eight participants indicated 
having experience with DNA Storage systems, and only one reported 
having none. To train the domain experts to use the tool, a randomly 
generated set of sequences was used as a toy example data set. The 
second data set was derived from simulation using an error simu-
lation tool that simulates errors during synthesis, Polymerase Chain 
Reaction (PCR), storage, and sequencing [16]. The user evaluation 
started with a written description and instructions to proceed. The 

Fig. 7. Barcodes from Meyer et al. [45] based on Hamming distance with a selected sequence. (a) Active sort functionality on the Hamming column ranking the barcodes from 
smallest to largest. (b) Active sort functionality on the GC content showing the least GC content value.
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evaluation was divided into two steps: the training step and the 
testing step. For each step, there were a series of questions regarding 
the use of the tool. The questions were divided into two training 
questions and three testing questions. There was no time limit for 
both steps. The training involved selecting the Top 3 decoded se-
quences in two instances when sorted by one attribute and when 
merged and sorted by two attributes, respectively. Participants were 
provided with hints on how to sort, drag and merge attributes. 
Participants were given the correct answer to both training ques-
tions. Testing involved selecting the Top 3 decoded sequences in 
three instances when unsorted, sorted by one attribute, merged, and 
sorted by three attributes, respectively. Participants answer these 
questions using the previously learned interactive features (e.g., 
sorting) to visualize the desired ranking. At the end of the study, 
participants were required to fill out a post-hoc questionnaire 

comprising: a demographic form, an experience form, and a system 
usability scale or SUS form.

6.3. Findings

We outlined 3 tasks that the participants had to perform using 
DNAsmart. The findings covered the three views of the tool: se-
quence, selection, and ranking. The tasks had slightly different levels 
of complexity. We measured task completion times to approximate 
the time it took each participant to complete a task. All participants 
completed the training. In testing, 7 out of 9 participants provided 
correct answers. Training and testing took about 4 min 
(μ = 240, σ = 15.5) and 2 min (μ = 113, σ = 49.6), respectively.

We found that participants spent more time in task 3 because 
they were required to use more than one interaction. They had to 

Fig. 8. Sequences from Grass encoding scheme. (a) Active sort functionality on the GC content column showing the least GC content value. (b) Two merged attributes (Hamming 
and GC content) of equal weight with an active sort functionality. Selected sequences depicting sequences with maximum hamming distance and values that conform to GC 
content constraints.
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recall different functionalities to merge, add weights and sort results 
and use 3 attributes. In the post-hoc questionnaire, the 5-point 
based Likert scale results were categorized into three main sections: 

design choices, usefulness, and intuitiveness as shown in Tables 3, 4, 
5, respectively.

Results indicated that participants rated the tool as intuitive, easy 
to use (μ = 3.7, σ = 0.71), useful for ranking a set of unordered se-
quences from a DNA data storage system (μ = 3.7, σ = 0.5), and that 
the workflow was not complex (μ = 2.8, σ = 0.83). All participants 
indicated that the step-wise transitions were very well integrated 
and that they are willing to use the tool frequently. However, two 
participants indicated that they will need to learn or need some 
assistance before using the tool; hence they were neutral on its 
frequent use.

7. Discussion and future work

Selecting DNA sequences, or a set of DNA sequences that satisfy 
combinatorial constraints, is motivated by the tasks of storing in-
formation in DNA sequences used for data storage, computation, or 
as molecular barcodes in chemical libraries [22]. The selection of an 
optimal set of sequences is important to minimize errors due to 
cross-hybridization between different barcodes and their 

Fig. 9. Sequences from Fountain encoding scheme. Active sort functionality on the Levenshtein column. Selected sequences depict the ordering of sequences based on 
Levenshtein distance that is separated in the distance metric space.

Table 2 
Summary of barcodes designed based on three attributes. The values are the observed minimum distance and GC content percentage using DNAsmart. Meyer et al.* [42] barcodes 
were designed based on Levenshtein distance. 

Barcodes Number of barcodes Hamming distance Levenshtein distance GC content

Adey et al. 96 – 2 40–60%
Hamady et al. 80 2 – 50%
Meyer et al. 52 3 – <  40% –  >  60%
Meyer et al.* 75 – 2 <  40% –  >  60%
Faircloth et al. 211 – 3 40–60%

Table 3 
Questionnaire results showing how the participants rated the tool for intuitiveness. 

Description Strongly 
Agree

Agree Neutral Disagree Strongly 
Disagree

add weights 3 2 2 2 0
upload data 5 4 0 0 0
select attributes 5 2 0 2 0
how item are 

ranked
5 2 0 2 0

learn before 
using

3 5 0 1 0

confident 1 3 2 2 1
merge attributes 5 2 0 2 0
transition 5 1 3 0 0
need assistance 2 1 0 4 2
learn to use 

quickly
2 0 1 2 4

Table 4 
Questionnaire results showing how the participants rated the tool for design choices. 

Description Strongly 
Agree

Agree Neutral Disagree Strongly 
Disagree

complex workflow 1 1 2 4 1
well integrated 2 5 2 0 0
inconsistency 0 1 2 2 4

Table 5 
Questionnaire results showing how the participants rated the tool for usefulness. 

Description Strongly 
Agree

Agree Neutral Disagree Strongly 
Disagree

useful for DNA 3 5 1 0 0
will use frequently 1 2 4 2 0
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complements, to achieve higher information density for encoding 
algorithms, and to obtain large sets of barcodes for large-scale ap-
plications.

The global exploration of different sets of sequences using 
DNAsmart allows us to discover the discrepancies in the sequences, 
whether in the selection of the barcode, in the implicit comparison 
of the encoding scheme, or in the validation of the sequences able to 
resist aging. This further leads us to suggest that researchers eval-
uate sequences in use or before using them to ensure that they sa-
tisfy constraints based on multiple attributes, are valid across sets, 
and are robust to the suite of substitution, insertion, and deletion 
errors affecting massively parallel sequencing technologies.

This work opens the way for further discussion on integrating 
information visualization for a domain task such as the reconstruc-
tion of coded sequence, where experts rely exclusively on data 
analysis without visualization. This would provide a more detailed 
understanding of coded sequences, and a visual way to verify the 
integrity and accuracy of error-correcting codes. Moreover, there are 
known sources of noise present in various steps. For future work, we 
plan to address issues related to uncertainty visualization. 
Visualization of such uncertainties as part of our design is para-
mount to better assess, understand, and potentially mitigate the 
effects of strong noise.

Future use of DNAsmart in other areas may include evolutionary 
analysis of sequences (e.g., non-coding sequences for non-mem-
brane folding), quality control, and validation of synthesis and se-
quencing methods (e.g., validation of synthetic DNA synthesized 
using the enzymatic synthesis method), and estimation of the mu-
tual relationship between two positions in a protein family. 
Moreover, our tool may be extended with the addition of more at-
tributes to benefit further domain-specific questions. The latter 
prompts the use of different visual encoding considerations.

8. Conclusions

In this work, first, we showed how stacked bar charts can be 
leveraged to guide the scientific exploration of decoded information 
from a DNA data storage system by ranking the set of decoded se-
quences. Second, The user study has shown that DNAsmart offers an 
intuitive way to visually understand multi-attribute rankings of a set 
of sequences that are not possible to know without a visual analy-
tical tool. Third, although the number of participants was not high 
enough to conduct statistical analyses, we plan to share our tool 
with more domain experts to collect further feedback and data. In 
sum, our tool, DNAsmart, supported users in the customization of 
the ranking view by integrating a selection view to dynamically 
choose preferred attributes based on their needs and quickly learn 
how to use the interactive functionalities. To the best of our 
knowledge, this tool is the first application of visual techniques to 
the domain of DNA data storage.
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