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Systemic Lupus Eritematosus (SLE) is a systemic inflammatory disease often treated with the

agent cyclophosphamide (CY), known by provoking important adverse reactions to the

organism. Ader and Cohen have demonstrated an alternative way of administrating this agent

based on pavlovian conditioning, in order to reduce the aggression caused by CY. Considering

the influence of the temporal organization on learning and memory processes, the purpose of

this study was to understand the temporal aspects involved in the conditioned immunomo-

dulation. In a search for circadian modulation, we selected NZB/W (F1) female mice, a strain

that spontaneously develop SLE. Divided into twomajor groups, the animals were submitted, in

different phases of day, to a classical conditioning immunomodulation protocol, consisting in

weekly parings of saccharin solution and CY injections. The success of the paradigm was

evaluated by comparing lifespan among the groups. Simultaneously, it was monitored the

water intake behavior, in order to correlate the stability of two rhythmic parameters, amplitude

and spectral power density of the 24-h rhythm, with the progression of SLE. Our results indicate

that mice could benefit from the conditioning task performed either in the light phase or in the

dark phase of the LD cycle, as expressed by an increased lifespan. Concerning the rhythmic

parameters, there was evidence of association between the rhythmic stability and the evolution

of SLE, demonstrated by themaintenance of healthy levels of amplitude and spectral potency of

the 24-h rhythm in animals exposed to the conditioning paradigm.

& 2015 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since Metalnikov and Chorine [1], pioneers who described

the relationship between the central nervous system

(CNS) and the immune processes in the 1920's,
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neuroimmunomodulation has been extensively explored by

different research groups aiming to unveil how the immune

system interacts with the CNS, from cellular [2] to behavioral

[3] levels. Particularly, It has been found that cellular and

humoral immunity may be influenced by Pavlovian
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conditioning. Pairing a novel drinking solution (conditioned
stimulus-CS) with an immunomodulatory drug (uncondi-
tioned stimulus-US) results in a modulation of the immune
function. Findings in conditioned immunosuppression [4]
raised the question of whether the development of an
immune disorder could be delayed by the classical condition-
ing paradigm. To answer this question, Ader and Cohen [5]
investigated the progression of proteinuria and the lifespan of
spontaneous lupus prone mice under a classical conditioning
paradigm in which a saccharin-flavored drink is paired with
the injection of an effective immune-suppressing drug cyclo-
phosphamide. The results were consistent with their hypoth-
esis, confirming the biological impact of conditioned
immunomodulation revealed by the modulation of the
lifespan.

Although immune system conditioning has been exten-
sively studied, the temporal aspect of this form of associative
learning has been widely overlooked. A growing body of
evidence indicates daily modulation in learning and states
that both morphological and physiological integrity of circa-
dian timekeeping system are critical for learning and mem-
ory processes [6–9]. Davies et al. [10] demonstrated a 24-h
rhythm in passive avoidance behavior. Rats trained and
tested with a 4-h interval throughout a 24-h cycle exhibited
more pronounced memory retention during the light phase of
the LD cycle than during the dark phase. Moreover, the “time-
stamp” phenomenon, which comprises the strong relation-
ship between the performance in a learning task and the
circadian phase of prior training, has been reported both for
reward-conditioned place preference and for avoidance-
based place leaning in hamsters [11,12] even for animals
carrying the Tau mutation and displaying a short 20 h-period
of rest-activity rhythm [13].

In addition to the interaction between learning and the
circadian timekeeping system, immune function has also
been found to be sensitive to daily temporal modulation.
Daily physiological variations in circulating B and T cells [14],
cell migration [15] and response of T cells to antigen [16] are
examples of essential immune functions under the control of
the circadian system. Macrophages and monocytes have been
extensively studied due to their robust intrinsic clock
machinery and high amplitude circadian output, leading to
excellent time givers to peripheral tissues [17]. Moreover,
recruitment of macrophages and monocytes during infection
is based on the expression of adhesion molecules whose
activity of under the control of the circadian timekeeping
system [18]. However, possible effects of immune functions
on circadian system have not received the same attention. In
an effort to study such interaction, Marpegan et al. [19] found
that Escherichia coli lipopolysaccharide (LPS) significantly
altered the pattern of activity of mice by promoting a delay
in the rest-activity cycle and, specifically, inducing a different
cell expression in the core site of the circadian timekeeping
system, the suprachiasmatic nuclei.

Taking into account the already described influence of the
circadian timekeeping system on learning processes and the
clear interface between immune function and the circadian
timekeeping system, it would be important to address
the significance of the circadian organization in the progres-
sion of immune diseases. For instance, Systemic lupus
erythematosus (SLE) is an autoimmune disease that describes
a whole range of systemic affections, including skin, joints,
central nervous system and kidney. A recent British cohort
study stated that although incidence presented an annual
1.8% decrease, prevalence changed from 64.99/100.000 to
97.04/100.00, from 1999 to 2012 [20]. In addition, despite
substantial advances in the therapeutic approaches of this
autoimmune disease, the mean age of death of patients with
systemic lupus erythematosus is 44 y [21], thus representing
a life threatening condition that impacts people during their
high productive working-age.

Besides the well established kidney and vascular diseases
associated with SLE, it is considered poorly understood its
relationship with the circadian timekeeping system. Melato-
nin daily pattern, a well stablished and gold marker of the
circadian phase, seems to be affected by SLE, as patients
show significantly lower daily melatonin levels in compar-
ison to healthy women during short photoperiod [22]. It is a
significant finding since melatonin is considered one of the
most prominent endogenous synchronizer needed to main-
tain the stability of phase relationship and reinforce the
different circadian rhythms in the whole organism [23].
Moreover, the prevalence of sleep disorders in SLE as well
as the contributing factors to their occurrence remain poorly
understood, despite its prevalence rates ranging between
noteworthy 55% and 85% according to distinct study
approaches [24].

NZB/W (F1) mice offers a well-established mouse model of
SLE since mice develop, spontaneously, the disease that
resembles human SLE, including antinuclear antibodies,
hemolytic anemia, proteinuria and a fatal progressive glo-
merulonephritis [25]. This model has also been submitted to
classical conditioning immunosuppression protocols [5] and
to different regimes of administration of immunosuppression
drugs, including Cyclophosphamide (CY), a chemotherapeu-
tic agent that exhibits a notably diurnal rhythm in toxicity
[26]. All these features of the animal model and of the
therapeutic agent open a wide range of opportunity to the
study of a possible diurnal modulation in conditioned immu-
nosuppression in a murine model of the Human Lupus
Disease.

Therefore, our objective is to evaluate the interaction
between the circadian organization and the survival of the
NZB/W(F1) mice, as well as to search for a distinct effect of
the conditioned immunosuppression according to the time of
the day the protocol is administered, regarding both the
progression of renal commitment and lifespan.
2. Materials and methods

2.1. Animals

Female New Zealand mice (NZBx NZW F1) were 6 months old
at the beginning of the experiment. They were housed
individually in standard polypropylene cages and were kept
in an air-conditioned, soundproof holding room, at an ambi-
ent temperature of 2272 1C and under a 12:12 h light-dark
cycle (LD 12:12, lights on at 07:00 h). Food and water were
available ad libitum. All experiments were performed in
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accordance with the guidelines of the Brazilian National
Board for handling and care of laboratory Animals. Our study
protocol was approved by local ethics committee (Instituto de
Ciências Biomédicas – Universidade de São Paulo, Brazil).

2.2. Experimental procedures

2.2.1. Animals selection and proteinuria
Animals were tested for proteinuria using Multistix™ reagent
strips (Bayer Diagnostics) at eight months of age, based on
the findings of clear dichotomy in the development of renal
disease, as proposed by Daikh and Wofsy [27]. Animals
displaying proteinuria levels of 100 mg/dl or below (mild
renal disease) were excluded from the experiment. Protei-
nuria was measured on freshly expressed urine samples of
the remaining animals (N¼42) fortnightly, throughout the
experiment.

2.2.2. Drinking behavior apparatus
During the entire experiment, drinking behavior was
recorded with “The Mouse Watcher” TMW10 equipment
(Consultoria Eletronica, Brazil). Each touch on the sipper tube
surface activated an electronic microswitch and was recorded
as one pulse of drinking. Data were collected continuously in
5-min bins and transmitted to a computer for further
analysis.

2.2.3. The conditioning paradigm
Animals were assigned to two major groups: The morning
group “M” (subjected to the procedure two hours after lights
on) and the night group “N” (subjected to the procedure two
hours after light off).

Each major group was divided into 4 groups, according to
Ader and Cohen Protocol [5]. Table 1 clarifies the group
division and the protocol for each group.

The behaviorally conditioned immunosupression para-
digm consists of 6 pairings, on a weekly basis, of a saccharin
solution and an intraperitoneal injection of cyclophospha-
mide or saline solution under a specific physical context
(black chamber and menthol odor).

C100 groups (M and N), or standard treatment groups,
were subjected on a weekly basis for 6 weeks, to an intraper-
itoneal injection of cyclophosphamide (30 mg/kg) (CY) imme-
diately after a saccharin solution (SAC). By the end of the
experiment, animals from C100 groups have received a total
amount of 180 mg/kg each. In turn, conditioned groups (C50M
Table 1 – Characterization of the eight groups of mice.
1Sac (saccharin solution). 2Cyclophosphamide (30 mg/kg)
i.p. 3Saline solution.

Groups M Groups N Pairings (n) Protocol

C100M C100N 6 6X Sac1þCY2

C50M C50N 6 3X Sac1þCY2 and 3X Sac1þSal3

(random)
NC50M NC50N 3þ3 3X Sac1þCY2 and 3X Sac1þSal3

(not paired)
CTLM CTLN 6 6X Sac1þSal3
and C50N) received SAC solution on 3 times in 6 weeks, in
random order, followed by an intraperitoneal injection of
cyclophosphamide (30 mg/kg). On the other 3 occasions that
the animals were not subjected to the drug, they received an
intraperitoneal injection of saline after SAC. Consistently, by
the end of the experiment, animals from C50 groups have
received a total amount of 90 mg/kg each, or 50% the amount
of each animal from C100 groups.

Animals from NC50 groups (non-conditioned groups
NC50M and NC50N) were also submitted to CY injections
following SAC presentations once every 2 weeks, but on a
noncontingent basis (the SAC and the drug injections were
not paired). Thus, by the end of the experiment, despite the
fact that each animal from NC50 groups have received the
same amount of drug that C50 groups received, there was no
regular temporal relationship between SAC and CY (pairings).
Control groups (CTLM and CTLN) were not subjected to
cyclophosphamide, at all. Actually, they only received SAC
solution followed by saline injections, on a weekly and
noncontingent basis.

2.3. Statistical analyses

Following the conditioning paradigm, drinking behavior data
were extracted 5 times at week 1, 3, 5, 7 and 9, each contain-
ing a time series of 10 days. Drinking behavior was analyzed
using the integrated package for chronobiology ‘‘El Temps”
v.251 (A. Díez-Noguera, Universitat de Barcelona, 2011). Time
series were submitted to the Cosinor method of cosine curve
adjustment [28], for the detection of circadian rhythmicity.
Moreover, in order to search for periodic patterns and to
determine spectral power density, Sokolove–Bushell Period-
ograms were used. For intergroup comparison (at weeks 1, 3,
5, 7 and 9), Kruskal–Wallis ANOVA was performed. The
significance level was set at (Po0.05). Log-rank test was used
to compare survival rates between groups for lifespan
analysis.
3. Results

3.1. Lifespan

Chemotherapeutic regimens extended the lifespan of ani-
mals subjected to 6 administrations of cyclophosphamide, for
both morning (C100M) and night (C100N) groups, when
compared to their respective controls (log-rank test, P¼0.03
and P¼0.05, respectively). Precisely, mice from groups C100M
and C100N began to die at week 9, whereas mice from control
groups (CTLM and CTLN) began to die at week 5.

On the other hand, lifespan of animals from both groups
NC50M and NC50N, who received half of the drug in a non-
contingent, unpaired basis, was not statistically different
from control animals (log-rank test, P¼0.7 and P¼0.9, respec-
tively). At week 9, only 20% of the total number of animals
from NC50 (M and N) and CTL (M and N) groups were alive.

Additionally, besides being subjected to the same amount
of drug, when compared with NC50M and NC50N groups,
animals from the conditioned groups C50M and C50N sur-
vived significantly longer than their respective controls (log-
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Fig. 1 – Survival Profiles of NZB/W (F1) mice. Log-rank test
used to compare survival rates between groups for lifespan
analysis. A. Comparison of groups submitted to procedures
during the light phase of LD cycle. B. Comparison of groups
submitted to procedures during the dark phase of LD cycle.
Extended lifespan of animals subjected to 6 administrations
of cyclophosphamide, for both morning (C100M) and night
(C100N) groups, when compared to their respective controls
(log-rank test, P¼0.03 and P¼0.05, respectively). No
difference found for both groups NC50M and NC50N, when
compared to control animals (log-rank test, P¼0.7 and
P¼0.9, respectively). Animals from the conditioned groups
C50M and C50N survived significantly longer than their
respective controls (log-rank test, P¼0.04 and P¼0.05,
respectively).
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rank test, P¼0.04 and P¼0.05, respectively). Survival rate was
higher for those submitted to the conditioning protocol and
66.66% of animals of C50 groups were still alive by week 9.

Fig. 1 summarizes the results from log-rank test and respec-
tive survival curves for all groups.

Therefore, no differences regarding time of day – ZT02 and
ZT14, were found for animals that received the total amount
or 50% of CY under the conditioned protocol.
3.2. Drinking behavior

All mice presented daily rhythm of drinking behavior at the
beginning of the conditioning protocol with a dominant 24-h
periodicity (Sokolove–Bushell periodogram) and a significant
24-h rhythm identified by Cosinor analysis. Our hypothesis
was confirmed, animals not submitted to the total amount of

drug or not conditioned (NC50 and CTL groups) would
demonstrate earlier decreases in rhythmic parameters of
the drinking behavior rhythm along the lifespan, when
compared to animals from the C50 or C100 groups. Fig. 2
shows an example of distinct water consumption pattern
from week 1, 3, 5, 7, 9 and over time, including spectral power

density as graphic matrix of the 1st harmonic analysis (24 h).
Intergroup comparison of spectral power density in the
circadian range showed no difference among all groups at
week 1 (Kruskal–Wallis test, H¼7.7, df¼7, P¼0.35). At week
3 spectral power density remained unchanged among all
groups (Kruskal–Wallis test, H¼6.2, df¼7, P¼0.51). At week
5 the comparison revealed a significant reduction in spectral
power density for the 24-h component only for CTL (M and N)
and NC50 (M and N) groups (Kruskal–Wallis test, H¼16.9,
df¼7, Po0.05). In addition to the reduced spectral power
density, we found a statistical significant decline in the
amplitude of the circadian rhythm of drinking for CTL (CTLM
and CTLN) and NC50 (NC50M and NC50N) groups at week 5
(Kruskal–Wallis, H¼11.8, df¼7, Po0.05) using the best-fit
sinusoidal curve by the Cosinor method. At week 7, both
spectral power density and amplitude displayed the same
level of expression for each group, adding support to the
reductions observed at week 5 for CTL and NC50 groups.

None of the animals from CTL and NC50 groups expressed
statistically significant 24-h rhythms with the Cosinor analy-
sis during week 9, which made the comparison impossible.
Nevertheless, for the groups of animals that received all six
administrations of cyclophosphamide (C100M and C100N) or
received half of the total amount in the conditioning protocol
(C50M and C50N), neither spectral power density nor ampli-
tude levels were different among them (Kruskal–Wallis test,
H¼1.69, df¼3, P¼0.63).
4. Discussion

To our knowledge, this is the first effort to search for a diurnal
variation in conditioned immunosuppression, linking
together apparent distinct fields of research, such as the need
for a proper output from the circadian timekeeping system,
the diurnal variation of immunomodulation and toxicity, the
conditioned immunosuppression, and the interaction
between the progression of an autoimmune disease and the
circadian timekeeping system.

The chemotherapeutic agent cyclophosphamide exhibits a
notably diurnal rhythm in toxicity. Scheving et al. [26]
demonstrated that in mice with leukemia, administration of
this agent during the light phase of the light-dark (LD) cycle
resulted in a success rate of 44%, compared to 94% of success
when administered during the dark phase.

Since the circadian timekeeping system interacts with
both the effectiveness of the cyclophosphamide and primary
learning faculties11, [29], we find it necessary to study the
effect of cyclophosphamide on immunosupression using a
conditioning paradigm that incorporates the concept of
diurnal variation.

Despite the lack of exact comparative literature on diurnal
variations in conditioned immunomodulation, we expected
performance of nocturnal rodents (such as mice) to be better
only during their active phase (i.e. the dark phase during LD
cycle). The behavioral literature provides vast evidence for
diurnal and circadian modulation in learned behaviors
[7,8,30]. For instance, Chaudhury and Colwell [9] found intri-
guing results in a fear conditioning task and suggested that
this apparent phase dependency may be a special feature of
aversive (or fear) conditioning. Moreover, they concluded that



Fig. 2 – Representative data of conditioned group mice and control group. Profile of water consumption of a mouse from C50M
group, submitted to the conditioning protocol during the light phase of LD cycle raw data throughout the experiment (A).
Profile of water consumption of a mouse from CTLM group, submitted to saline during the light phase of LD cycle. Raw data
throughout the experiment (B). Detail for external bars indicating the graphic matrix of the 24-h 1st harmonic power spectral
serial analysis. Gray levels ranging 0.00 (extreme light) to 10.0 (extreme dark) arbitrary units. The darkest, the more significant
circadian rhythmicity.
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the light phase was a fearful time for nocturnal animals and

this phase dependency could lead to improved performance

in aversive conditioning. However, other studies have shown

better performance in nocturnal animals during the dark

phase of the LD cycle in different protocols learning [31,32].

These findings demonstrated possible species–specific differ-

ences and variation in training protocol and behavioral

paradigms, possibly explaining our results and the conflicting

reports and lack of consensus in the literature. Therefore,

contrary to our expectations, the results indicated that mice

could benefit from the conditioning task performed either in

the light phase or in the dark phase of the LD cycle, being the

success represented by an increased lifespan.
Concerning the interaction between the progression of an

autoimmune disease and the circadian timekeeping system,

the disruption of the circadian system may occur in tumor

tissue, tumor-bearing animals, and terminal cancer patients.

Such rhythmic disruption includes decrease in amplitude,

phase shifts, period changes, and erratic peaks and troughs in
endocrine, metabolic, immunological, and rest-activity cycles

[33]. Experimental challenging of the circadian timekeeping

system leading to Chronodisruption due to chronic phase

shifts of the light-dark (LD) cycle [34] or short 20-h LD cycle

[35] have also been proved to adversely affects immune

function. Additionally, changes in daily rhythms of heart

rate, heart rate variability and blood pressure [36], as well as

rhythmic expression of corticosterone, leptin and clock genes

[37] were detected during the course of autoimmune disease

progression in an animal model of multiple sclerosis, experi-

mental autoimmune encephalomyelitis (EAE).
In this study we observed that animals from the groups

that received the entire amount of immunosupression drug,

as well as those subjected to 50% of cyclophosphamide under

the conditioning protocol, expressed stability in daily rhythm

of drinking behavior throughout the experiment, in contrast

with the decrease in both amplitude from the adjusted 24-h

cosine curve and 24-h rhythm spectral power density shown

by animals from control and non-conditioned groups.
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Finally, to keep the proper functioning of the circadian

system throughout life seems to be imperative for the

ordinary physiological expression of multiple functions, from
lifespan to memory acquisition and consolidation. Disruption

of rhythmicity reduces lifespan and suprachiasmatic

implants from young animals restores higher amplitude
rhythms in old rodents [38]. Moreover, animals exposed to

chronic phase shifts, which has been previously to lead to
circadian dysfunction, exhibit learning and memory dysfunc-

tion [39].
In conclusion, our results indicate that mice could benefit

from the conditioning task performed either in the light

phase or in the dark phase of the LD cycle, as expressed by
an increased lifespan. Concerning the rhythmic parameters,

there was evidence of association between the stability of the
signal from the circadian timekeeping system and the evolu-

tion of SLE, demonstrated by the maintenance of healthy

levels of amplitude and spectral power density of the 24 h
rhythm in animals exposed to the conditioning paradigm.

Some limitations should be stressed. In spite of our results
in terms of the proteinuria, a marker of the success of the

pavlovian conditioning paradigm, one limitation of the pre-
sent research was the lack of histopathological observations

of renal tissue and blood analysis, the standard measure of

Lupus progression. It is noteworthy, however, that our
approach was intended to be as non-invasive as possible,

privileging the behavioral data instead of such markers of

disease progression. In addition, we only tested animals in
two different phases of day, making it impossible to general-

ize our results to the other phases of the day.
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