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Host demography can alter the dynamics of infectious disease. In the case of per-

fectly immunizing infections, observations of strong sensitivity to demographic

variation have been mechanistically explained through analysis of the

susceptible–infected–recovered (SIR) model that assumes lifelong immunity

following recovery from infection. When imperfect immunity is incorporated

into this framework via the susceptible–infected–recovered–susceptible

(SIRS) model, with individuals regaining full susceptibility following recovery,

we show that rapid loss of immunity is predicted to buffer populations against

the effects of demographic change. However, this buffering is contrary to the

dependence on demography recently observed for partially immunizing infec-

tions such as rotavirus and respiratory syncytial virus. We show that this

discrepancy arises from a key simplification embedded in the SIR(S) framework,

namely that the potential for differential immune responses to repeat exposures

is ignored. We explore the minimum additional immunological information that

must be included to reflect the range of observed dependencies on demography.

We show that including partial protection and lower transmission following pri-

mary infection is sufficient to capture more realistic reduced levels of buffering,

in addition to changes in epidemic timing, across a range of partially and fully

immunizing infections. Furthermore, our results identify key variables in this

relationship, including R0.
1. Introduction
There is great diversity in the mechanisms by which pathogens interact with

host immune systems and cause disease [1]. In the simplest cases, such as the

childhood infections measles, mumps and rubella, infection is acute and a

single exposure event is sufficient to confer lifelong immunity against the dis-

ease (and generally prevent further transmission) [2,3]. However, for most

pathogens the outcome is complex, as immunity can wane over time or provide

only partial protection against reinfection [2,4]. One of the major challenges of

applying theoretical disease models to these real dynamical systems is in incor-

porating sufficient biological information while retaining a parsimonious

modelling framework [5].

Two of the most basic mathematical frameworks are the susceptible–infected–

recovered (SIR) and susceptible–infected–recovered–susceptible (SIRS) models,

which have been extensively studied in the epidemiological literature and pro-

vided many insights into the underlying dynamics of infectious diseases [6,7].

The SIR model assumes immunity is lifelong and the SIRS model assumes that

once immunity has waned, individuals become entirely susceptible to reinfection
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and, if reinfected, will be equally infectious as an individual

exposed for the first time. These simple frameworks have been

applied to a wide range of pathogens, from perfectly immuniz-

ing infections such as measles and rubella in the case of the SIR

framework, to imperfectly immunizing infections such as influ-

enza and syphilis in the case of the SIRS [7–10]. However, the

assumptions of these standard models represent two extremes

of the spectrum of possible immunological dynamics within

the host and do not capture the biology of many infectious

diseases [4,7].

For many imperfectly immunizing pathogens, primary

infection has been shown to have a significant impact on

the outcome of subsequent host exposures to infection. In

the case of rotavirus, respiratory syncytial virus (RSV) and

Bordetella pertussis (pertussis), previously exposed individuals

are partially protected against reinfection, and those individ-

uals that are reinfected may be less infectious and experience

reduced severity of disease [11–16]. Consequently, variations

on the standard SIR(S) framework have been applied in certain

contexts, for example with the incorporation of waning of

immunity and immunological boosting following re-exposure

to pertussis [17,18]; the distinction between primary, second-

ary and asymptomatic rotavirus infections [19]; and the

inclusion of partial immunity to RSV reinfection [20]. Account-

ing for different immune dynamics can increase the biological

realism of the standard models and enhance our ability to

capture and understand the observed epidemiological patterns

of real systems.

A key probe for understanding infectious disease

dynamics is the impact of demography on population-level

patterns of incidence [21,22]. In the case of immunizing infec-

tions, long-term changes in demographic parameters of the

host community, such as birth and immigration rates, can

have a direct impact on the recruitment rate of susceptible

individuals and thus on the overall infection dynamics. In

particular, disease dynamics have been shown to be highly

sensitive to varying birth rates, as models allowing changes

in birth rate and vaccination levels can account for the com-

plex switching from annual epidemics to irregular and

multiennial cycles in measles incidence [22]. By contrast,

the loss of immunity of previously infected individuals

provides an additional source of susceptibles for imperfec-

tly immunizing infections that can, in turn, lead to more

frequent epidemics [2]. This can be seen in the dynamics of

influenza A, where annual epidemics are fuelled by the

rapid replenishment of susceptible individuals as novel

strains evade the acquired immunity of previously infected

hosts [23,24]. However, the sensitivity of such systems to

demographic changes, in particular, the role of imperfect

immunity in modulating the response to birth rate variations,

is poorly understood.

Here we use the term ‘buffering’ as a measure of the

sensitivity of disease dynamics to changes in demographic

parameters: if demographic changes have a negligible

impact on the patterns of disease spread, there is high buffer-

ing (or the host population has been ‘buffered’ against the

effects of demographic variation), whereas low buffering

arises when disease dynamics and demographic changes

are highly correlated. We first analyse the buffering patterns

predicted by the SIR(S) framework and show that as the dur-

ation of immunity decreases, these standard models predict

that disease dynamics should become less sensitive to vari-

ations in birth rate, so that the level of buffering increases.
We then compare these predictions to observed epidemic

dynamics and find discrepancies for a number of partially

immunizing infections, suggesting that an alternative frame-

work is necessary. To address this discrepancy, we introduce

a refined mathematical framework that provides a link

between the SIR and SIRS models and accounts for the

waning of host immunity, and reduced susceptibility and

infectiousness following primary exposure to a pathogen.

We show that this modified model predicts a range of buffer-

ing patterns that are not only qualitatively different from

those of the standard models, but also better capture the

patterns observed in reality for a number of acute infections.
2. Preliminary model and analyses
2.1. SIR(S) model
The SIRS model with constant population size is given by

equations (2.1) [7,25], where S denotes the number of suscep-

tible individuals, I the number infected, R the number

immune and N the total population

dS
dt
¼ mN � bSI

N
� mSþ dR,

dI
dt
¼ bSI

N
� gI � mI

and
dR
dt
¼ gI � dR� mR:

9>>>>>>>=
>>>>>>>;

(2:1)

We define m as the birth (and death) rate, b the effective trans-

mission rate, g the rate of recovery from infection and d the

rate at which individuals lose immunity. The SIR model is a

special case of the SIRS model in which d ¼ 0 (i.e. individuals

never lose immunity). The term bI/N represents frequency-

dependent transmission, which assumes the rate of infection

is independent of population density [25]. For a constant popu-

lation, this is equivalent to density-dependent transmission,

which alternately assumes infection rate scales with population

density [25]. However, when the population size is changing

these two frameworks are no longer equivalent, and we con-

sider such cases in our simulations below. A summary of all

parameters, and the values assigned for these parameters in

simulations, are provided in table 1.

If we assume the infection is acute so that g� m, then the

endemic equilibrium of infected individuals (I*
= 0) [6] is

I� ¼ (mþ d)N
(mþ dþ g)

1� (mþ g)

b

� �
� (mþ d)N

(gþ d)
1� g

b

� �
: (2:2)

The basic reproductive number, R0 ¼ b/(g þ m), is the

average number of secondary infections generated by an

infectious individual in an entirely susceptible population

[5,25]. For a given value of R0, the proportion infected at

equilibrium increases with increasing d, whereas the propor-

tion susceptible remains essentially unchanged (electronic

supplementary material, figure S1).

2.2. Theoretical analysis
Using equation (2.2), we explore the impact of a change in

birth rate on disease incidence. Suppose the new birth rate

is given by m̂ ¼ am, then the new endemic equilibrium is

Î� � (m̂ þ d)N
(gþ d)

1� g

b

� �
¼ (amþ d)N

(gþ d)
1� g

b

� �
:



Table 1. Model parameters: values of all parameters used in simulations for the standard SIR(S) and the modified model, unless stated otherwise. Ranges
indicate parameters that are varied across simulations as part of model analyses.

parameter symbol value

reproductive number R0 10 – 25

recovery rate g 1/4 week21

population size N 10 000

birth rate m 0.01 – 0.02 yr21

rate of loss of immunity d 0 – 1 yr21

average transmission rate b0 (m þ g)R0

seasonal transmission rate b b0(1 þ 0.175 cos(2pt))a

relative infectiousness of subsequent infections a 0 – 1

relative susceptibility of subsequent infections e 0 – 1

proportion of subsequent infections that are reported r 0 – 1
aTime is represented by the variable t and is measured in years so that the function governing the seasonal transmission rate has annual periodicity.
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And the proportional change in equilibrium disease

incidence induced by this demographic change is

Î�

I�
¼ amþ d

mþ d
¼ abþ (1� b)

and b ¼ m

mþ d
:

9>>>=
>>>;

(2:3)

The change in birth rate is m̂=m ¼ a. Hence, b is the slope of the

regression line of change in birth rate against change in disease

incidence (equation (2.3)) and indicates the extent of buffering

resulting from changes in the population demographics. For

example, if d ¼ 0, then b ¼ 1 and Î*/I* ¼ a, and so the SIR

model predicts that a change in birth rate will lead to a

proportional change in disease incidence. However, as d!1,

b! 0 and Î*/I*! 1. Thus, the SIRS model predicts that increas-

ing the rate of loss of immunity will buffer the population

against changes in disease incidence that would otherwise be

induced by changes in the population birth rate.

2.3. Simulations
We simulate the effect of a change in birth rate on seasonally

forced SIR(S) dynamics for a range of values of loss of immunity

(figure 1). The resulting buffering levels with respect to disease

incidence are compared using the measure b (equation (2.3)),

and the change in timing of seasonal epidemics are compared

using two measures: (i) the mean timing, or centre of mass, of

the epidemic and (ii) the timing of the peak in number of infected

individuals (see the electronic supplementary material, §S2, for

further details). The functions representing the changing birth

rate are depicted in figure 1a(i) and all parameter values are

given in table 1.

As predicted above, there is no buffering when d ¼ 0.

However, as the rate of loss of immunity increases, there is a

sharp decrease in the slope of the regression line indicating an

increase in the extent of buffering (figure 1a(ii)). Alternatively,

the average duration of immunity is 1/d, and so the extent of

buffering decreases as the duration of immunity increases

(figure 1b(ii)). Moreover, the analytic prediction of equation

(2.3) and the simulated results in figure 1 are in extremely

close agreement, and this agreement is robust to the following

changes to the model: (i) relaxing the constraint of constant

population size (i.e. allowing different birth and death rates),
(ii) defining transmission as density-dependent instead of

frequency-dependent, and (iii) assuming ‘relapse’ dynamics as

in the SIRI model [2], where individuals move straight into

the infected class after losing immunity (results not shown).

Thus, the phenomenon of buffering is consistently predicted

across a range of variations of these standard models, and

equally at equilibrium (as in the theoretical analysis) or with

seasonally forced temporal dynamics (as in the simulations).

The change in mean timing of the epidemic in response

to increasing birth rates also depends on the rate of loss of

immunity (figure 1a(iii), b(iii)). The greatest decreases in

mean timing of the seasonal oscillations (indicating earlier

epidemics) occur at intermediate durations of immunity.

Otherwise, there is no change in mean timing for shorter dur-

ations of immunity and a slight increase for longer durations

of immunity. The SIRS model thus predicts that for diseases

with high rates of loss of immunity, a change in birth rate will

have negligible impact on the timing of epidemics, indicating

another form of buffering. Using the change in peak timing

as an alternative measurement gave qualitatively similar

results, although the model predictions had a larger range

of magnitude (results not shown).
2.4. Matching observed patterns
The SIR(S) framework predicts that the dynamics of pathogens

conferring protective immunity for up to a decade will remain

relatively unaffected in the face of substantial demographic

change. In other words, strong buffering should manifest

above a relatively low threshold for the rate of loss of immunity.

Comparing these predictions to our current understanding for

particular pathogens suggests that although the SIR(S) model

may sufficiently capture patterns for diseases such as measles,

influenza and pertussis, it is inadequate for partially immuniz-

ing infections such as rotavirus and RSV (figure 2, see the

electronic supplementary material, table S1, for pathogen-

specific parameters).
2.4.1. Comparing observations to model predictions
Measles dynamics have indeed been shown to be highly sen-

sitive to changes in population birth and vaccination rates

[22], and previous work has demonstrated a significant but
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Figure 1. (a(i)) Functional forms of the birth rate used to investigate the extent of buffering in relation to changes in disease incidence (black solid line) and
epidemic timing (dashed blue line) for both the standard and modified models. (b(i)) Comparing the proportional change in incidence for the SIR (lifelong immu-
nity) and SIRS models with different durations of immunity in response to a change in birth rate. The plotted results represent the proportional changes in incidence
(solid lines) and birth rate (dashed line) for the period immediately following the initiation of the birth pulse. (a(ii), b(ii)) Plotting the slope of the regression line of
change in birth rate against change in disease incidence gives a measure of the extent of buffering in response to demographic variation. The red line is the result of
simulations for the SIRS model (where d ¼ 0 corresponds to the SIR model) and the dashed black line corresponds to the theoretical prediction, b ¼ m/(m þ d).
Results are plotted as a function of rate of loss of immunity (a) and duration of immunity (b). (a(iii), b(iii)) Change in mean timing (days) induced by a linear
increase in birth rate. The change is the difference between the mean day of the epidemic during the final year of the simulation and the year immediately prior to
the change in birth rate (as discussed in §2). Again, results are plotted as a function of rate of loss of immunity (a) and duration of immunity (b). The reproductive
number, R0, is 17 and all other parameters for the SIRS model are as defined in table 1.
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weak correlation between birth rate and pertussis dynamics

that supports model predictions of moderate to high buffer-

ing [21]. Studies explicitly linking influenza dynamics to

population birth rates are lacking; however, rich data from

France and The Netherlands spanning the last 30 years

suggests incidence has remained relatively stable despite

both increases and decreases in population birth rates

[26–28]. Thus, although demographic factors such as the

age structure of a population are thought to be important

modulators of influenza dynamics [29], model predictions

of high buffering in response to birth rate fluctuations may

still be a reasonable prediction.

By contrast, recent work suggests that partially immuniz-

ing infections such as rotavirus and RSV may be more
sensitive to population birth rates than predicted by the SIRS

model. It has been found that decreasing birth rates in certain

US states can account for rotavirus outbreaks appearing later

in the year [19]. This contradicts high buffering predictions

since the duration of immunity to reinfection with rotavirus

is short-lived (typically less than 1 year) [30]. Also, a shift in

seasonality and declining incidence of rotavirus cases in

Japan from 1985 to 1990 coincided with significant decreases

in the population birth rate that could not be explained by cli-

matic factors or the prevalent virus serotype [31,32]. Although

no causal relationship between birth rate and disease incidence

has been established, this supports the idea that variations in

demographic parameters may be more significant than the

standard SIRS model predicts. In the case of RSV, another
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pathogen with short-lived immunity [33], an increase in birth

rates in Sweden from 1983 to 1991 was followed by a repor-

ted increase in detected RSV cases in Stockholm from 1984

to 1992 [34]. In addition, recent modelling work suggests a

transition from biennial RSV epidemics in California in the

1990s to annual epidemics in the 2000s may be explained by

changes in the state birth rate, although further work is

needed to understand these patterns [35]. Again, although no

formal connection has been established, these observations

are inconsistent with the high level of buffering predicted by

the SIRS model.

2.4.2. Comparing observations to model assumptions
The SIR and SIRS models assume that after recovering from

infection, individuals have either lifelong immunity or are

only temporarily protected, and after losing that protection

will become entirely susceptible again. However, the dynamics

of immunity for many pathogens do not fit these two extreme

scenarios, and may be better described as lying somewhere

on a continuous spectrum between the SIR and SIRS frame-

works. In the case of rotavirus, previous work has shown

that individuals experience a relative risk of 34–62% of becom-

ing reinfected following one or more previous exposures, and

will be less infectious and experience reduced severity of dis-

ease upon reinfection [11–13]. Similarly, a relative reinfection

risk of 44–75% has been estimated in the case of RSV, again

with milder disease symptoms expressed during subsequent

exposures [14,15,36,37].

The recent resurgence of pertussis has also stimulated

great interest in the nature of host immunity in response to

pathogen infection [38]. Estimates for the duration of natural

immunity range between 7 and 20 years and re-exposures

have also been associated with reduced infectiousness and

severity of infection [16,39,40]. By contrast, although infection

with influenza A virus can provide lifelong protection against
the infecting strain and even partial protection against

other antigenically similar strains within the same subtype,

individuals can also rapidly regain susceptibility as novel

strains are introduced into the population via high rates of

viral mutation (i.e. antigenic drift) [24,41–43]. For example,

one study found that 90% of tested individuals infected

with influenza A H1N1 in 1978 were protected against

reinfection the following year, but by 1983 the number

protected against clinical disease dropped to 55% [44]. We

base our parameters on this previous study in order to

include influenza in our comparisons, but in general there

is much work still to be done on understanding the inter-

action between host immunity and strain evolution for this

particular pathogen.

2.4.3. Connecting assumptions and predictions
Although the different types of immunity outlined above are

defined by processes at the individual level, they can have a pro-

found impact on the patterns of infection seen at the population

level, and a greater understanding of the dynamics emerging

from these underlying mechanisms is needed. In particular,

why does the SIR(S) framework capture observed buffering pat-

terns relatively well for some partially immunizing infections

(such as pertussis and influenza) but not for others (such as rota-

virus and RSV)? And what additional biological processes

must be included in the model to improve predictions for

these latter pathogens? We now introduce a refined version of

the SIRS model that incorporates a greater range of the spectrum

of possible host immune responses by accounting for reduced

susceptibility and infectiousness following primary exposure

to the pathogen. We show that our mathematical framework

can capture the variation in buffering dynamics observed

across this range of different pathogens, and explore the relative

importance of the additional immune components in achieving

this better representation.
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3. Modified model
Here, we present a general framework that models partial

immunity by allowing individual infectiousness and sus-

ceptibility to change with infection status. We investigate

the range of dynamics that can be captured by varying the

parameters describing the nature of individual partial immu-

nity and population-level demographics. Our framework is

based on previous formulations of more specific models,

for example, those developed for capturing rotavirus and

RSV dynamics [19,20], and is given by the below equations,

where the subscripts P and S represent primary and

subsequent infections, respectively,

dSP

dt
¼ mN � bSP

(IP þ aIS)

N
� mSP,

dIP

dt
¼ bSP

(IP þ aIS)

N
� gIP � mIP,

dR
dt
¼ g(IP þ IS)� dR� mR,

dSS

dt
¼ dR� ebSS

(IP þ aIS)

N
� mSS

and
dIS

dt
¼ ebSS

(IP þ aIS)

N
� gIS � mIS:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(3:1)

These equations reflect two biological refinements com-

pared to the standard SIRS equations: (i) transmission in

the subsequent classes is now reduced by a factor e to

account for a reduced risk of reinfection (so the SS class can

effectively be thought of as a partially immune class) and

(ii) the contribution of individuals in the IS class to the overall
force of infection is reduced by a factor a to account for

reduced infectiousness. The SIRS model is a special case of

this general model with e,a ¼ 1, whereas e,a ¼ 0 corresponds

to the SIR model. Varying the parameters e and a between 0

and 1 thus provides a continuous link between these two

standard models along the spectrums of host susceptibility

and infectiousness. Similar models incorporating reduced

susceptibility and infectiousness following primary infections

have also been developed for pertussis and typhoid [18,45].
4. Results
Similar to §2.3, we simulate the effect of a change in birth rate

on seasonally forced disease dynamics for a range of values

of duration of immunity and reduced susceptibility and

infectiousness following primary infection. In addition to

comparing the resulting levels of buffering with respect to dis-

ease incidence and changes in epidemic timing, we also explore

the impact of R0 and the reporting levels of subsequent infec-

tions on the model predictions. The functions representing the

changing birth rate are depicted in figure 1a(i) and all parameter

values are given in table 1 (see §2 for further details).

4.1. Buffering of disease incidence
The extent of buffering of disease incidence in the modified

model decreases with increasing duration of immunity

(1/d), and decreasing susceptibility (e) and infectiousness (a)

following primary infection (figure 3). When relative sus-

ceptibility is varied continuously between 0 and 1, and
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relative infectiousness is fixed (at 0.1, 0.25, 0.5 and 1), the full

range of buffering levels is predicted across the region of par-

ameter space explored (i.e. b ranges from 0 to 1). By contrast,

varying relative infectiousness continuously between 0 and 1,

at fixed values of relative susceptibility (0.1, 0.25, 0.5 and 1),

does not produce the same amount of variation (electronic sup-

plementary material, figure S2). This suggests that buffering

patterns are more sensitive to changes in relative susceptibility

than infectiousness.

In addition, the buffering dynamics are less sensitive

to changes in the duration of immunity when there is a

large reduction in relative infectiousness or susceptibility

(i.e. when a or e are small). For example, when a ¼ 1 and

e . 0.2, the changes in buffering are largely due to changes

in duration of immunity (figure 3a). In fact, the buffering

levels across this region remain comparable to those pre-

dicted by the SIRS model at the boundary, where e ¼ 1.

However, when the relative susceptibility is below this

threshold, changes in buffering appear more correlated

with changing susceptibility than duration of immunity,

and there is a significant deviation from the SIRS model pre-

dictions. The threshold value of relative susceptibility at

which this qualitative change occurs also increases as relative

infectiousness decreases, such that deviations from the SIRS

model become more apparent (figure 3b–d).

We can predict buffering levels for a particular pathogen

using estimates for the duration of immunity, and relative

susceptibility and infectiousness following primary infection.

As an example, projected regions of the parameter space cor-

responding to rotavirus, pertussis, RSV, influenza and

measles are shown in figure 3 (estimates for a, e and d are

given in the electronic supplementary material, table S1).

The modified model predicts high levels of buffering for

influenza, moderate to high for pertussis and RSV and low

for rotavirus, in line with the biology of these respective

pathogens. This contrasts with the SIRS predictions of high

buffering for the latter two pathogens.

In the case of the models with changing population size,

the qualitative relationship between the parameters describ-

ing partial immunity and the extent of buffering are similar

to that of the model with constant population size. Higher

levels of buffering are seen in the frequency-dependent

model (electronic supplementary material, figure S3) than

in the density-dependent model (electronic supplementary

material, figure S4). However, this result is unsurprising as

transmission rates scale with population size in the density-

dependent model and so we would expect greater sensitivity

to demographic changes as a result.
4.1.1. Effects of the level of case reporting and R0
An additional degree of freedom can be incorporated by

varying the proportion of subsequent infections that are

observed. In the case of rotavirus and RSV, this captures

the fact that subsequent cases may be under-reported due

to reduced severity of infection [11,37]. This is included in

the modified model by defining the total number of observed

infections as IP þ rIS, where r [ [0, 1] is the proportion of

subsequent cases that are reported. As r decreases, the level

of buffering also decreases across given values of e, d and a

(electronic supplementary material, figure S5). Thus, incor-

porating r , 1 into the model produces larger regions of

parameter space in which observed incidence closely tracks
the birth pulse and in which the predictions of the modified

model differ from those of the SIRS model.

The SIRS model also predicts that, for any given duration

of immunity, the level of buffering does not change percepti-

vely with variations in R0 (e ¼ 1 in electronic supplementary

material, figure S6). However, for a given value of e , 1,

the modified model predicts that buffering increases with

increasing R0 (electronic supplementary material, figure S6).

Moreover, as e decreases towards 0, this sensitivity of buffering

to variations in R0 becomes greater. Decreasing a instead of e

produces similar patterns, although again there is less varia-

tion in the range of predicted buffering levels (electronic

supplementary material, figure S7).

4.2. Buffering and epidemic timing
Finally, assuming all cases are reported (r ¼ 1) and considering

the effect of changing birth rate on the timing of epidemics

demonstrates that as relative susceptibility (e) decreases, the

greatest shifts in mean timing (in absolute value) occur at

shorter durations of immunity compared with the SIRS

model (figure 4a). Furthermore, decreasing relative infectious-

ness (a) leads to a contraction in the region of parameter

space over which these greater changes are observed (figure

4b–d). Changing the value of r does not have a significant

effect on these overall patterns (electronic supplementary

material, figure S8), and using the timing of the epidemic

peaks as an alternative measurement also reveals similar quali-

tative dynamics (electronic supplementary material, figure S9).

Although the magnitude of the predicted changes is relatively

small, the density-dependent model with changing population

size does show significantly greater changes in timing (elec-

tronic supplementary material, figures S10 and S11) than both

the constant population model and the frequency-dependent

model (electronic supplementary material, figures S12 and

S13), again likely due to the greater sensitivity of the latter to

changes in population size (see the electronic supplementary

material, §S4.3, for further details).
5. Discussion
The underlying demography of a population has long been

recognized as having an influence on the spread of infectious dis-

eases [46–49]. Typically, changes in the population birth and

death rates cause the demographic structure to change over

long time scales, and so it is important to understand how vari-

ations in these parameters will affect the long-term dynamics of

disease. In addition, vaccination of infants at birth tunes suscep-

tible recruitment and is thus dynamically comparable to a

reduction in the population birth rate [19]. Previous studies

have shown that changes in birth and vaccination rates can

have a significant impact on the epidemic patterns of perfectly

immunizing infections [22,50,51], but the effect on imperfectly

immunizing infections is less well understood. Thus, exploring

the interactions of individual-level immunity parameters and

demographic factors, and the comparative impact of imperfectly

immunizing vaccination, could yield important insights into the

drivers of epidemic patterns observed at the population level.

5.1. Matching observed patterns
We have shown that the SIRS model predicts the extent of buf-

fering will increase as the duration of immunity decreases, with
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almost no change in disease incidence for pathogens with short

durations of immunity such as rotavirus and RSV. However,

changes in birth rates in Japan, Sweden and the USA have

coincided with a notable change in incidence for both of

these pathogens that has not been definitively explained by

variations in other extrinsic variables [32,34,35]. In contrast to

the SIRS framework, the modified model predicts lower

levels of buffering for both rotavirus and RSV, and thus

better captures the patterns observed in reality.

We also demonstrated that the SIRS model predicts changes

in birth rates and will have a negligible effect on the timing of

epidemics for pathogens conferring particularly short durations

of immunity. However, Pitzer et al. [19] found that variation in

birth rates in the USA during 1990–2006 caused differences of

up to three months in the mean timing of rotavirus epidemics.

This study assumed that transmission was density-dependent,

an assumption that has been used in other rotavirus models

[52,53] and is commonly recognized for directly transmitted

pathogens [54,55]. Although the results from our modified

model with constant population size do not fit the patterns

observed in this study, our density-dependent model with

changing population size does predict greater changes in

timing that are in closer agreement with the observed rotavirus

dynamics than the standard models.

It is also clear that the SIRS framework can sufficiently

capture observed patterns for influenza and pertussis,

because these pathogens lie above the threshold of relative

susceptibility and infectiousness that indicates when buffer-

ing levels are more sensitive to changes in duration of

immunity than relative infectiousness or susceptibility. In
other words, the reduced susceptibility and infectiousness

following primary exposure to these pathogens are not sig-

nificant enough to strongly deviate buffering dynamics

away from those of the SIRS model.
5.2. Mechanisms driving model predictions
In contrast to the standard framework, our modified model

allows a greater range of biologically relevant system dyna-

mics to be modelled through tuning of the additional

parameters describing partial immunity (e , a and r). Recruit-

ment into the primary susceptible class occurs via births into

the population, whereas recruitment into the subsequent sus-

ceptible class results from the loss of immunity of individuals

recovered from either primary or subsequent infections. This

replenishment of the subsequent classes is one of the main

drivers of the buffering dynamics. The greater the replenish-

ment of susceptibles into the subsequent class relative to that

of the primary class, the less impact we would expect chan-

ging birth rates to have on the epidemic dynamics, and

hence the more buffering we would expect to see. For a

given duration of immunity, however, decreases in the rela-

tive susceptibility and infectiousness of reinfections lead to

a reduction in the proportion of individuals in both infectious

classes. Consequently, the rate of recruitment into the sub-

sequent susceptible class is reduced and so the level of

buffering decreases. Furthermore, if only a proportion of sub-

sequent infections are reported then the observed ratio of

primary to subsequent cases will be greater than the actual

ratio, also causing the observed dynamics to appear more
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sensitive to changes in the birth rate. Thus, for any given dur-

ation of immunity, by distinguishing between primary and

subsequent infections, the rate at which individuals enter

these classes, and the level at which infections in these classes

are reported, the modified model can capture a range of

different buffering scenarios that the SIRS model cannot.

In general, the greatest changes in epidemic timing are seen

in the regions of parameter space associated with moderate to

high levels of buffering, which is likely to be due to a complex

interaction between competing elements of the system

dynamics. On the one hand, higher levels of buffering indicate

less sensitivity of the system to changes in the birth rate and

suggest changes in the timing of epidemics should be less

likely. However, greater levels of buffering are correlated

with higher values of d, e and a, which in turn are associated

with higher proportions of the population infected at any

given time. Although increasing the rate of primary susceptible

recruitment will have less of an impact on the proportional

change in the number of new infections occurring in this

region of parameter space, it may still impact the rate at

which new infections occur and thus have a more significant

effect on the timing of the epidemic oscillations.

Another important epidemiological measure is the repro-

ductive number, R0, which encapsulates key characteristics of

a particular pathogen such as the infectious period and infec-

tiousness of an infected host [5]. Estimated R0 values can vary

across geographical regions. For example, the range of R0 esti-

mates for measles include 12.5 in North America, 13.7–18 in

England and Wales, and 4.7–15.7 in Niamey, Niger [56,57].

The SIRS model predicts that buffering does not vary with

changing R0, whereas the modified model demonstrates a posi-

tive relationship between these two quantities. Increasing the

value of R0 is equivalent to increasing the rate at which individ-

uals become infected. Thus, for a given duration of immunity,

higher R0 values lead to more rapid transition of individuals

into the subsequent classes, thereby resulting in more buffering

as described above. Areas with higher estimated R0 may there-

fore be prone to higher levels of buffering than those with lower

R0, contributing to regional differences in sensitivity to demo-

graphic changes that would not be captured by the standard

models [58]. However, more studies comparing the relationship

between patterns of disease incidence and changes in popu-

lation demography across different communities are needed

to investigate this idea further.

5.3. Caveats and future directions
The need for more data to explore and validate the predictions

of our general framework is one of the main caveats to this

study. Although we have shown that the modified model can

capture patterns of buffering observed for rotavirus in Japan

and RSV in Sweden, future modelling work is needed to estab-

lish a definite link between the changes in birth rates and

disease incidence recorded in these regions [32,34]. Further-

more, a more mechanistic understanding of the sensitivity of

pertussis and influenza dynamics to underlying population

demographics, similar to previous analysis of the SIR model

[22], is needed to fully explain the importance of immunologi-

cal dynamics in shaping emerging epidemic patterns.

5.3.1. Data
In general, more data and studies investigating the relationship

between extrinsic demographic parameters and population-
level disease dynamics are needed to verify our findings

across a wider range of pathogens and host communities.

Particular time periods of interest are those that coincide with

substantial demographic change, such as the post-World

War II ‘baby boom’ era in the UK [51,59] and the periods of

the so-called ‘demographic transition’ that a numberof develop-

ing countries have undergone in the past several decades [60].

Another period of significant birth rate variation, which

caused a shift in the spatial pattern of annual rotavirus epi-

demics, has occurred across the USA over the past 20 years

[19]. It would be interesting to explore in greater detail the rela-

tive impact of this demographic change on the dynamics of

other imperfectly immunizing infections such as influenza

and RSV, and test the predictions of our general model within

a spatial context.

Other valuable time series may be those that span the

introduction of mass vaccination campaigns for imperfectly

immunizing childhood diseases, such as rotavirus and pertussis,

for which vaccination may provide only partial immunity

[38,61–63]. Defining the success of a vaccination campaign as

the proportional reduction in disease incidence following the

implementation of the campaign is thus equivalent to describing

the extent of buffering in response to a reduction in susceptible

recruitment rate. This could provide an additional opportunity

to test our model and explore how imperfect immunity con-

ferred by vaccination may contribute to the strength of

buffering, and thus the overall success of various immunization

programmes. Our prediction that buffering levels are more sen-

sitive to changes in relative susceptibility of reinfections rather

than infectiousness could also be explored further in relation

to the question of which immune mechanisms should be tar-

geted by imperfect vaccines for control programmes to have

optimal impact (e.g. transmission-blocking vaccines versus

those that decrease the probability of infection) [64].
5.3.2. Model refinements
Although the model we present here captures a greater degree

of host immune responses than the standard models, it still

represents a simplification of the full scope of possible host–

pathogen interactions and thus may be insufficient to model

diseases with more complex immune dynamics. Moreover,

our model does not account for the changing genetic structures

of different pathogens. For example, infection with measles

results in strong lifelong cross-protection against all virus

strains [23], and so new invading strains are unlikely to

change the susceptible profile of the population. Exposure

against influenza, however, only generates partial cross-protec-

tion against other circulating strains within the same subtype

[41]. In turn, there is strong selection pressure on the virus for

rapid mutation, or antigenic drift, that increases the likelihood

that previously infected individuals will become susceptible

to new, invading strains [23]. The relative contribution of

waning host immunity and viral evolution to the recruitment

rate of susceptible individuals, and thus to the overall strength

of buffering in response to demographic variation, is an interest-

ing question for future work.

Finally, future analysis could also explore the impact of

immigration on buffering dynamics and incorporate age

structure into the refined model. Age structure is crudely

incorporated in the current framework as individuals must

first pass through the primary classes after birth, before enter-

ing the subsequent classes. An interesting avenue for future
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work would be to explicitly include age structure, in particular

when the partial immunity parameters defined here vary sig-

nificantly with age, as has been suggested for RSV [14,36,65].

Changes in the immigration rate are expected to have a differ-

ent impact on disease dynamics from changes in the birth rate

depending on the relationships between age, immunity and

transmission rates. For example, one reason for increased

incidence of typhoid fever in Kathmandu, Nepal, may be the

immigration of susceptible migrant male works from rural

areas [66]. Conversely, immigration has been found to have

a negligible effect on measles dynamics once the initial epi-

demic growth phase has started [67], and so may be less

important for acute childhood infections. Since the overall

importance of immigration is likely to depend on the age

demographics of both the migrant and source populations,

this could be integrated into future models with explicit age

structure as discussed above.
 2:20141245
6. Conclusion
In this work, we have presented a general framework to

model the dynamics of partially immunizing infections and

shown that with just a few additional parameters we can
capture a range of responses to demographic variation that

would not be possible with the standard SIR and SIRS

models more commonly used in the literature. Empirical

estimates of the extra parameters that describe the dynamics

of partial immunity have been explored for a number of

diseases, such as rotavirus and RSV, through both exper-

imental and modelling studies. For other pathogens,

experimental studies or inferential methods applying this

modified framework to time-series incidence data may pro-

vide insight into these relevant epidemiological parameters.

This could, in turn, allow the use of models that can more

accurately capture the population-level impact of the inter-

play between immunity and host demographics that we

have described here.
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