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Abstract

Skeletal muscle relies on an ingenious network of blood vessels, which ensures optimal 
oxygen and nutrient supply. An increase in muscle vascularization is an early adaptive 
event to exercise training, but the cellular and molecular mechanisms underlying 
exercise-induced blood vessel formation are not completely clear. In this review, we 
provide a concise overview on how exercise-induced alterations in muscle metabolism 
can evoke metabolic changes in endothelial cells (ECs) that drive muscle angiogenesis. In 
skeletal muscle, angiogenesis can occur via sprouting and splitting angiogenesis and is 
dependent on vascular endothelial growth factor (VEGF) signaling. In the resting muscle, 
VEGF levels are controlled by the estrogen-related receptor γ (ERRγ). Upon exercise, the 
transcriptional coactivator peroxisome-proliferator-activated receptor-γ coactivator-1α 
(PGC1α) orchestrates several adaptations to endurance exercise within muscle fibers 
and simultaneously promotes transcriptional activation of Vegf expression and increased 
muscle capillary density. While ECs are highly glycolytic and change their metabolism during 
sprouting angiogenesis in development and disease, a similar role for EC metabolism in 
exercise-induced angiogenesis in skeletal muscle remains to be elucidated. Nonetheless, 
recent studies have illustrated the importance of endothelial hydrogen sulfide and 
sirtuin 1 (SIRT1) activity for exercise-induced angiogenesis, suggesting that EC metabolic 
reprogramming may be fundamental in this process. We hypothesize that the exercise-
induced angiogenic response can also be modulated by metabolic crosstalk between 
muscle and the endothelium. Defining the underlying molecular mechanisms responsible 
for skeletal muscle angiogenesis in response to exercise will yield valuable insight into 
metabolic regulation as well as the determinants of exercise performance.

Introduction

Skeletal muscle is a highly plastic organ which ensures 
locomotion and is critical for the maintenance of whole 
body metabolic homeostasis (1, 2). Oxygen, glucose 
and other nutrients are delivered to the muscle via an 
ingenious network of blood vessels formed by neatly 
aligned endothelial cells (ECs). During exercise, the uptake 
of oxygen and nutrients needs to increase dramatically 

(3, 4), and for this reason, blood flow through the vessels 
surrounding the active muscle fibers increases within 
seconds (5, 6, 7). In response to repeated exercise bouts, 
the formation of new capillaries from existing ones, a 
highly dynamic and tightly controlled process termed 
angiogenesis, is initiated (8, 9). The increase in muscle 
vascularization is an early adaptive event to exercise 
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training, occurring before or simultaneously with the 
switch in fiber types (10) or the increase in activity of 
oxidative enzymes in the myofibers (11, 12). Exercise is 
also the most effective non-surgical therapy to increase 
muscle angiogenesis and to ameliorate the symptoms of 
ischemia in peripheral artery disease (13, 14). An increase 
in muscle capillarity is expected to improve blood–tissue 
exchange properties by increasing the surface area for 
oxygen diffusion, nutrient uptake and/or elimination of 
toxic waste products, and therefore, should determine 
the metabolic potential of the muscle, a concept that was 
already recognized by August Krogh in the beginning of 
the 20th century (15). Nonetheless, despite the intimate 
link between capillary content and muscle metabolism, the 
molecular mechanisms underlying muscle angiogenesis 
in response to exercise are still poorly understood.

Mechanisms of angiogenesis in 
skeletal muscle

Angiogenesis can occur via distinct mechanisms: vessel 
sprouting or vessel splitting (also called intussusception 
or non-sprouting angiogenesis) (16). Vessel sprouting 
is initiated by the conversion of a quiescent EC into a 
tip cell, which sends out filopodia and guides a sprout in 
response to the secretion of pro-angiogenic factors from the 
hypoxic or metabolically active microenvironment (17). 
The neighboring cells become stalk cells that proliferate, 
extend the growing sprout and form a lumen (18). When 
two sprouts fuse, blood flow reinitiates and the ECs return 
to quiescence, secrete basement membrane components 
and form tight junctions (19). In skeletal muscle, only a few 
electron microscopy studies have observed capillary sprouts 
following chronic muscle electrostimulation (20, 21, 22, 23) 
or overload induced by synergist ablation (23, 24) in rodents 
or upon endurance training in humans (25). Moreover, while 
the molecular mechanisms that control vessel sprouting 
during development and certain diseases are widely studied 
(26, 27, 28), evidence for a conserved program occurring in 
skeletal muscle in response to exercise training is lacking.

During vessel splitting, capillaries expand via the 
insertion of pillar-like structures into the vessel lumen 
(16, 29). A contact zone is formed between opposing 
capillary walls, followed by the perforation of the contact 
zone and shaping of a pillar-like structure. Ultimately, 
expansion of the pillar results in splitting of the primary 
vessel into two new ones. Vessel splitting may occur in 
the virtual absence of endothelial proliferation and can 
allow rapid expansion of a vascular network, which, in 
contrast to sprouting angiogenesis, does not require the 

breakdown of the extracellular matrix (30). Vessel splitting 
can be induced in the absence of muscle contractions by 
pharmacologically elevating blood flow (23, 24) or by 
chronic electrostimulation, in which contractions take place 
simultaneously to an increase in blood flow (22, 23). This 
suggests that sprouting and splitting angiogenesis could 
be complementary or additive phenomena in response to 
muscle contraction and can be dependent on the mode of 
contraction. Indeed, differences in the angiogenic response to 
exercise were reported between exercise programs involving 
concentric versus eccentric contractions in rats (31). 
Moreover, isometric and dynamic contractions differentially 
affect muscle blood flow and could therefore evoke a 
different angiogenic response (32). The temporal and spatial 
characteristics of sprouting versus splitting angiogenesis, as 
well as their relative contribution to the expansion of the 
vascular network in response to different exercise modes, are 
not clear and require further investigation.

The growth of functional capillaries following 
exercise is the result of a tight balance between pro- and 
anti-angiogenic factors, with the pro-angiogenic vascular 
endothelial growth factor (VEGF) playing a crucial 
role. Skeletal muscle VEGF mRNA (33) and protein (34) 
levels transiently increase after acute exercise bouts and 
VEGF is essential for exercise-induced angiogenesis (35, 
36), though it is not clear whether this is by promoting 
splitting or sprouting angiogenesis. Even though VEGF is 
a powerful stimulator of sprouting angiogenesis (17), its 
overexpression by myoblasts implanted into skeletal muscle 
increases capillarity essentially via intussusception (29, 37). 
The VEGF levels in such model, however, are much higher 
than those observed upon exercise (29). Pharmacological 
inhibition of VEGF receptor signaling or deletion of Vegf 
in myofibers (35, 36, 38) blunts but does not completely 
prevent the increase in capillary-to-fiber ratio following 
exercise training. Of note, since VEGF also promotes 
contraction-induced hyperemia (39), reduced capillary 
density following training upon myofiber-specific deletion 
of Vegf could be secondary to reduced blood flow. Moreover, 
under specific conditions such as muscle damage, other 
cells within the muscle microenvironment which localize 
in close proximity to capillaries express pro-angiogenic 
genes (40), but it remains to be shown whether activation 
of these cells during exercise can promote angiogenesis.

Exercise-induced changes in metabolism of 
skeletal muscle cells promote angiogenesis

It is clear that there is an intimate interplay between 
angiogenesis and metabolism in skeletal muscle.  

This work is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 
International License.

https://vb.bioscientifica.com © 2019 The authors
 Published by Bioscientifica Ltdhttps://doi.org/10.1530/VB-19-0008

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://vb.bioscientifica.com
https://doi.org/10.1530/VB-19-0008


T Gorski and K De Bock Exercise, metabolism and 
angiogenesis

H31:1

Indeed, slow-twitch, fatigue-resistant muscles are 
characterized by high capacity for energy production via 
oxidative phosphorylation (OXPHOS) and have a dense 
vascular network, while fast-twitch, fatigue-sensitive 
muscles display lower OXPHOS, higher capacity for 
glycolytic energy production and fewer capillaries (11, 41, 
42). The estrogen-related receptor γ (ERRγ) is exclusively and 
abundantly expressed in slow muscle fibers, and activation 
of ERRγ in fast muscle fibers increases OXPHOS and vascular 
density, as well as exercise endurance (43). ERRγ controls 
baseline muscle vascularization by directly upregulating 
the expression of the Vegf and Fgf1 genes and by activating 
the energy sensor 5′ adenosine monophosphate-activated 
protein kinase (AMPK) (43), which also promotes Vegf 
transcription (44, 45). Accordingly, mice expressing a 
dominant negative AMPK in muscle have lower baseline 
capillarization, but do not show impairments in exercise-
induced angiogenesis (45), suggesting that different 
metabolic regulators control baseline versus exercise-
induced vascular density (Fig. 1).

The transcriptional coactivator PGC1α (peroxisome-
proliferator-activated receptor-γ coactivator-1α) is a 
potent metabolic sensor, which is activated during 
exercise (46, 47) and orchestrates several adaptations to 
endurance exercise including mitochondrial biogenesis 
and increased OXPHOS (48). PGC1α also controls the 
expression of Vegf and other pro-angiogenic genes 
by recruiting estrogen-related receptor α (ERRα) to 
conserved binding sites within their promoters (49, 50). 
In contrast to Errγ, loss of Pgc1α does not affect baseline 
muscle capillary density (43, 51), but mice lacking 
Pgc1α or Errα in myofibers fail to increase vascular 
density in response to exercise (50, 52). Even though  
PGC1α/ERRα control Vegf expression independently of 
hypoxia signaling via the hypoxia inducible factor (HIF) 
1α (49), hypoxia increases PGC1α gene expression (49, 
53) and the Pgc1α-mediated increase in mitochondrial 
content can indirectly promote cellular hypoxia due to 
increased oxygen consumption (54). Nonetheless, the 
role of HIF1α in regulating muscle angiogenesis is still 
controversial since muscle-specific loss of Hif1α leads to 
a higher – not lower – capillary-to-fiber ratio (55).

ECs metabolically rewire during angiogenesis

ECs are highly glycolytic and produce 85% of their 
energy glycolytically (56). However, when they need to 
sprout into avascular areas, they upregulate glycolysis 
even further and reducing EC glycolysis by deleting the 
glycolytic regulators Pfkfb3 (phosphofructokinase-2/
frustcose-2,6-bisphosphatase isoform 3) or hexokinase 
2 impairs EC migration and proliferation, resulting in 
impaired angiogenesis during development and under 
several pathological conditions (56, 57, 58). Beyond 
ensuring optimal energy provision, glycolytic enzymes 
(such as the pyruvate kinase muscle isoenzyme PKM2) 
also prevent cell cycle arrest during angiogenesis (59). 
ECs do not require mitochondrial ATP production 
for angiogenesis, but rather use their mitochondria 
to maintain NAD+/NADH balance (60) and as a hub 
for macromolecule synthesis during proliferation. 
Indeed, fatty acid oxidation is crucial for the synthesis 
of nucleotides used in DNA replication, and blocking 
this process impairs EC proliferation without affecting 
migration (61). Interestingly, intermediates of lipid 
synthesis also control proliferation via posttranslational 
repression of the activity of the mechanistic target 
of rapamycin complex 1 (mTORC1), which controls 
cell growth (62). Proliferating ECs also consume high 

Figure 1
Exercise-induced activation of transcription factors in myofibers 
stimulates angiogenesis. While ERRγ determines baseline muscle 
vascularization either via direct binding to the VEGF promoter or via 
controlling the activity of AMPK, exercise-induced activation of PGC1α 
(through recruitment of ERRα to the VEGF promotor), and potentially 
increased stabilization of HIF1α, culminates in the increased expression of 
VEGF and other pro-angiogenic factors. Release of VEGF and other 
angiogenic factors from the exercising muscle leads to increased muscle 
vascularization through vessel sprouting or vessel splitting. AMPK, 5′ 
adenosine monophosphate-activated protein kinase; ERRα, estrogen-
related receptor α; ERRγ, estrogen-related receptor γ; HIF1α, hypoxia 
inducible factor 1α; PGC1α, peroxisome-proliferator-activated receptor-γ 
coactivator-1α; VEGF, vascular endothelial growth factor.
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amounts of glutamine, and glutamine deprivation or 
deletion of glutaminase 1 decreases vessel sprouting due 
to decreases in both cell migration and proliferation 
(63, 64). A detailed overview of the metabolic regulation 
of EC function during sprouting is provided elsewhere 
(65, 66), but to the best of our knowledge, there are 
no studies showing that ECs also metabolically rewire 
during intussusception.

Do ECs metabolically rewire during exercise-
induced muscle angiogenesis?

Only very few studies have addressed the role of skeletal 
muscle EC metabolism in response to exercise. Exercise-
induced angiogenesis requires adequate activation of the 
NAD+-dependent deacetylase sirtuin 1 (SIRT1) nutrient 
sensor in ECs (67), at least partially because endothelial 
Sirt1 is required for VEGF-mediated angiogenesis (67, 
68). SIRT1 controls EC function by inhibiting Notch, a 
potent repressor of sprouting as well as intussusception 
(69, 70), and via deacetylating and inactivating forkhead 
box O1 (FOXO1) (69), which ensures endothelial 
quiescence by limiting EC glycolysis and OXPHOS (71). 
Activation of SIRT1 by treatment with an NAD+ precursor 

during exercise training potentiates the increases in 
capillary density in mice (67). Interestingly, the effect of 
Pgc1α overexpression in myofibers on capillary density 
also depends on SIRT1 activation in ECs (67). SIRT1 
is activated not only by a rise in NAD+ during energy 
depletion, but also by hydrogen sulfide (H2S). In ECs, the 
latter is generated by cystathionine γ-lyase (CGL) during 
dietary restriction of sulfur amino acids (methionine, 
cysteine) or upon VEGF stimulation. CGL-derived H2S 
downregulates endothelial OXPHOS and subsequently 
increases glucose uptake in an AMPK-dependent but 
VEGF-independent fashion, leading to an increase in 
glycolysis-driven EC migration and in EC proliferation 
through increased biosynthesis of nucleotides via the 
pentose phosphate pathway (72). These data support 
a role for glycolytic metabolism in exercise-induced 
angiogenesis, but future genetic experiments are required 
to confirm this. Moreover, even though deletion of CGL 
prevented exercise-induced angiogenesis, these genetic 
interventions were not restricted to ECs and could 
therefore be confounded by effects of H2S in other cells 
residing in skeletal muscle (72). The proposed model on 
how EC metabolism changes in response to exercise is 
illustrated in Fig. 2.

Figure 2
Proposed model for exercise-induced changes in EC metabolism promoting angiogenesis. (Panel A) ECs are highly glycolytic and produce 85% of their 
energy glycolytically. Mitochondria do not significantly contribute to energy production but rather maintain NAD+/NADH balance. (Panel B) During 
exercise, increased CGL activity leads to H2S generation. CGL-derived H2S downregulates endothelial OXPHOS by inhibiting complex IV activity. This leads 
to increased glucose uptake, glycolysis and pentose phosphate pathway flux in an AMPK-dependent fashion. In addition, exercise-induced angiogenesis 
requires adequate activation of SIRT1, at least partially because endothelial SIRT1 is required for VEGF-mediated angiogenesis. SIRT1 also controls EC 
function by inhibiting Notch (NICD indicates active Notch) and via inactivating FOXO1 (forkhead box O1, not shown). 3PG, glyceraldehyde 3-phosphate; 
AMPK, 5′ adenosine monophosphate-activated protein kinase; CGL, cystathionine γ-lyase; G6P, glucose 6-phosphate; NAD, nicotinamide adenine 
dinucleotide; NICD, Notch intracellular domain; OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; Pyr, pyruvate; ROS, reactive 
oxygen species; SIRT1, Sirtuin 1; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.
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Outlook: can exercise-induced metabolic 
crosstalk between ECs and muscle contribute 
to angiogenesis?

The available evidence thus far indicates that VEGF is 
driving exercise-induced angiogenesis in skeletal muscle, 
but the extent of the angiogenic response can be mediated 
by altering the metabolic ‘fitness’ of ECs. This raises the 
exciting hypothesis that targeting EC metabolism can 
promote exercise-induced angiogenesis. Potentially, 
skeletal muscle cells can modulate EC metabolic fitness as 
well via metabolic crosstalk during exercise. Indeed, it has 
already been shown that metabolites that are secreted from 
myofibers during exercise can either potentiate the effect of 
VEGF or directly contribute to angiogenesis. For instance, 
lactate is secreted (mainly) by fast glycolytic fibers during 
intense exercise. In other settings, lactate renders ECs more 
responsive to VEGF by promoting an increase in VEGF 
receptor content due to enhanced HIF1α stabilization in 
an α-ketoglutarate- and reactive oxygen species (ROS)-
dependent fashion (73, 74). Increasing lactate levels near 
ischemic muscles also improves their revascularization 
(75). Exercising muscles also release ATP, which is converted 
to adenosine in the extracellular space (76). In the retina, 
adenosine can act through activation of the adenosine 
A2a receptor, which causes pathological angiogenesis by 
increasing endothelial glycolysis in a HIF1α-dependent 
fashion (77). Whether lactate- and/or adenosine-dependent 
metabolic rewiring of ECs contributes to exercise-induced 
angiogenesis remains an open question.

Finally, despite the strong correlation between muscle 
capillary density and skeletal muscle metabolism (15), as 
well as the control of Vegf (and other angiogenic factors) 
expression by myofiber metabolic master switches, there 
is still no conclusive evidence that improving vascular 
density is required for achieving muscle adaptations 
to training, such as increased oxidative capacity 
and improved performance. On the other hand, the 
observation that increased capillary density per se (via 
the overexpression of SIRT1 in ECs) improves running 
performance and lowers blood glucose levels in mice 
(67) indicates that increasing blood vessel density suffices 
to enhance exercise performance and/or affect systemic 
metabolism. Unraveling the mechanisms underlying 
these observations will yield valuable insight into 
metabolic regulation as well as determinants of human 
performance and will potentially open novel avenues for 
the treatment of diseases such as peripheral artery disease 
and insulin resistance.
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