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ABSTRACT
Discovery of therapeutic antibodies against infectious disease pathogens presents distinct
challenges. Ideal candidates must possess not only the properties required for any therapeutic
antibody (e.g. specificity, low immunogenicity) but also high affinity to many mutants of the
target antigen. Here we present RESP2, an enhanced version of our RESP pipeline, designed
for the discovery of antibodies against diverse antigens with simultaneously optimized
developability properties. RESP2 provides a suite of methods to estimate the uncertainty of
predictions including a new model combining neural network and Gaussian process with great
flexibility to model protein engineering data, which accelerates in silico directed evolution to
identify tight binders even those not present in the original screening library. An interpretable
model is then exploited to assess antibody humanness to minimize immunogenicity risk of the
selected candidates. To demonstrate the power of this pipeline, we use the receptor binding
domain (RBD) of the COVID-19 spike protein as a case study, and discover a highly human
antibody with broad (mid to high-affinity) binding to at least 8 different variants of the RBD.
These results illustrate the advantages of this pipeline for antibody discovery against a
challenging target. The code needed to reproduce the experiments in this paper is available at
https://github.com/Wang-lab-UCSD/RESP2 .
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INTRODUCTION
Discovery of therapeutic antibodies against any fast mutating antigens such as those for
infectious diseases and some cancers poses a unique array of challenges. For an antibody to
be successful, it must not only possess good “developability” (e.g. minimal immunogenicity risk,
robust solubility and stability)1,2, but also exhibit tight binding to multiple antigen variants to
achieve broad neutralization against potential mutants.

Traditionally this multi-parameter optimization problem has been tackled through
time-consuming experimental approaches3–5. Recently, a variety of machine learning
(ML)-assisted approaches to expediting this process via predicting affinity or other key
properties have emerged6–13. While ML models can learn complex relationships between
structure and properties or between sequence and properties, their accuracy diminishes when
applied to new data that deviate significantly from the training set14–17.

In our previous work, we introduced RESP, an ML-assisted pipeline for identifying antibodies
with tight binding to a specific target12. This pipeline employs uncertainty-aware ML models that
effectively manage the limits of their knowledge to avoid inappropriate extrapolation. Our
algorithm also conducts in silico directed evolution to find tight binders to a target not
necessarily present in the screening library.

In our current study, we enhance the RESP pipeline to enable in silico optimization against
multiple antigens or antigen variants. We present two new uncertainty-aware ML models not
previously used for protein engineering. We also integrate a generative model trained on 130
million human antibody sequences. This integration enables rapid assessment of humanness
and developability for any antibody sequence suggested by the in silico evolution algorithm and
humanization of promising candidates.

We demonstrate the updated pipeline RESP2’s efficacy using the receptor binding domain
(RBD) of the SARS-CoV-2 spike protein as a target. The SARS-CoV-2 virus is the causative
agent of the COVID-19 pandemic responsible for 7 million deaths worldwide18. Its spike protein
is a challenging target for antibody drug discovery due to its mutability. Despite the approval of
various antibody treatments for COVID-19, their effectiveness is often compromised by viral
mutations and by the pathogen’s continuing evolution19.

Beginning with an antibody exhibiting limited affinity across various RBDs, we employ RESP2 to
identify, through a single additional round of screening and sequencing, an antibody with an
expanded range of affinities for multiple variants (e.g. BA.2) to which the original antibody had
negligible affinity. This in silico selection also allows us to screen candidates for human-likeness
to reduce the risk of immunogenicity. These results indicate that the RESP2 pipeline holds
significant potential for developing highly human-like antibodies with favorable developability
properties, particularly against challenging mutation escape-prone targets.

RESULTS
Overview of the RESP2 pipeline
The RESP2 pipeline is enhanced from the previous version to facilitate discovery of antibodies
that both bind to multiple target antigens and exhibit additional desired properties (Figure 1A).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605700doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605700
http://creativecommons.org/licenses/by-nc-nd/4.0/


First, we employ random mutagenesis to generate a focused library of the scFv heavy chain.
We screen this library against each antigen of interest and used fluorescence activated cell
sorting (FACS) to select a subpopulation of mutants with improved binding to each antigen. Both
the unscreened library and the tighter-binding subpopulations against each antigen are
sequenced. Unlike RESP, RESP2 collects data for multiple antigens, facilitating concurrent
optimization against multiple targets.

Second, we encode the raw data using a representation of the antibody and antigen sequences,
then train an uncertainty-aware “affinity model” to predict the likelihood that a sequence is a
strong binder. The affinity model takes a paired antibody-antigen sequence as input and predicts
enrichment in a subpopulation as a proxy for binding affinity. RESP2 provides 3 methods to
estimate uncertainty, including the variational Bayesian network used by RESP12, a fast and
scalable approximate Gaussian process (GP) method implemented in xGPR20, and a new
uncertainty-aware deep learning architecture (ByteNet-SNGP) developed in this work with the
greatest flexibility for antibody engineering. We demonstrate that both xGPR and
ByteNet-SNGP offer improved performance coupled with well-calibrated uncertainty quantitation
and that uncertainty assigned by these models can identify out-of-distribution (OOD)
sequences.

Third, we refine the in silico directed evolution (ISDE) algorithm we developed in RESP to
concurrently optimize binding to multiple antigens. We begin with the wild-type as the initial
candidate sequence. We then select positions for in silico mutagenesis using the affinity model
from the previous step. During each iteration, the algorithm proposes a mutation to the current
candidate. Mutations associated with high uncertainty in the model’s scoring are automatically
discarded to avoid reliance on potentially inaccurate predictions. Next, the algorithm accepts or
rejects the mutation in a simulated annealing process based on the smallest increase or largest
decrease in score against any antigen rather than focusing on a single antigen as in RESP (see
Materials and Methods for details). This procedure selects for mutations which enhance or at
least preserve binding affinity against all the targets. The temperature in the simulated annealing
is high at the start and gradually lowered to promote exploration in the early stages and
refinement later on.

Finally, we collect the candidates generated by the ISDE and filter them to identify those with
other desired properties in addition to high affinity for the antigens of interest. If this filtering
process yields few or no candidate sequences, the ISDE algorithm is re-run to generate more
candidates. We use SAM21, a fully interpretable generative model with state of the art accuracy
for distinguishing human from nonhuman antibodies, to score candidates to ensure low risk of
immunogenicity; this model is available in the AntPack library. We also score selected
sequences for solubility. Additional filters can easily be added at this stage of the pipeline as
desired.

In this study, to evaluate the potential of RESP2, we used the COVID-19 spike protein receptor
binding domain (RBD) as a test case. We discovered a highly human antibody with a good
developability profile and with low nanomolar to picomolar affinity for 8 of the 10 RBD variants
used in the screens, along with significantly improved binding to the other 2 RBDs relative to the
starting WT sequence. The pipeline can be readily adapted to other targets.

Generation and Screening of the scFv Heavy Chain Library for Improved Binding
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The heavy chain of the starting clone (Delta-6 scFv, see Supplementary Figures S1 & S5 for its
sequence) was mutated randomly by error-prone PCR using a previously described method22,
creating an average of 2 mutations per heavy chain. The Delta-6 clone, which was derived from
a hit from a naive yeast display scFv library23 in our lab, was selected because it bound the RBD
of the Delta variant (which was prevalent during the earlier stage of this project) with a KD of 1.3
nM (Figure 4C). Only the heavy chain was mutated to facilitate deep sequencing of the library
hits, due its smaller overall size (366 bp) compared to the whole scFv (747 bp). The mutated
heavy chain and the rest of the plasmid were assembled by NEBuilder HiFi DNA assembly
(NEB) and the assembled plasmid library electroporated into E. coli. The plasmid library was
then heat-shocked into EBY100 yeasts to generate a library with an estimated diversity of at
least 107 members.

This Delta-6 scFv library was then screened against 10 different RBDs (SARS COV-2 WT,
Alpha, Beta, Gamma, Delta, Lambda, Kappa, B.1.1.529, BA.2, and BA.5,) incubated at various
concentrations with the yeast library and sorted by FACS into different bins (see supplementary
figure S4 for examples of FACS plots). If the Delta-6 scFv already had lower nM affinity against
the RBD (WT/Alpha/Delta/Lambda), then the concentration of RBD used in the sort was
approximately equal to the KD value and the hits sorted into either a “WT-level” bin (about the
same affinity as the WT Delta-6 scFv) or a stronger-affinity bin. The hits corresponding to the
WT-level were gathered to scrutinize the heavy-chain positions that appeared to be invariable,
essential for preserving a WT-level (low nM) KD with the specific RBD (i.e., positions to avoid
mutating in a focused library due to high conservation). For RBDs with poorer/no apparent
affinity to Delta-6, the hits were binned into either a “better than WT Delta-6” group or
“significantly better than WT Delta-6” group using 2 different RBD concentrations. Also, an
additional 200,000 random library clones were collected to provide information about pre-gating
sequence frequencies for modeling.

We found that a single sort was sufficient for RBDs with low nM KD values to Delta-6
(WT/Alpha/Delta/Lambda variants) to effectively enrich for stronger binders but 2 sorts for the
rest of the RBDs were necessary. After 1-2 sorts, library hits were grown to high density then
harvested by yeast miniprep, the heavy chains of the hit plasmids PCR amplified with 2 rounds
of PCR to add adaptors/indices and sequenced with MiSeq PE303 deep sequencing.

Benchmarking uncertainty-aware models predicting sequence enrichment
We first calculated the relative abundance of each sequence in each binding bin compared to its
abundance in the original library (see Materials and Methods for details). We refer to this
quantity as enrichment and use it as a proxy for binding affinity. The FACS sorting data
measures the abundance of a sequence in the unselected library and also in a binding bin for
each antigen. A sequence that is more common in the binding bin for a given antigen than in the
unselected library is likely to bind to that antigen, whereas a sequence that is more abundant in
the original library is less likely to be a binder. The antigens were experimentally tested in two
separate groups as described above. Group A contained Lambda, WT, Delta and Alpha, which
underwent a single sort. Group B comprised Beta, B.1.1.529 , BA5, BA2, Gamma and Kappa,
with two sorts applied. Landrum et al.24 recently demonstrated that combining measured Ki and
IC50 values from different sources can introduce substantial noise into datasets for ML,
sometimes completely obscuring the signal of interest. In this instance, the different number of
sorts between the groups could be a confounding factor. To avoid any impact on the model’s
reliability, we modeled each group separately.
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Next, we trained a supervised learning model to predict enrichment, which as before was used
as an indirect proxy for binding affinity. RESP2 provides three models for estimating uncertainty
including (1) variational Bayesian neural network implemented in the original RESP12; (2)
xGPR20, a fast random Fourier features-approximated Gaussian process (RFFAGP) with
sequence kernels that could provide performance competitive with deep learning for many
sequence property prediction tasks, while providing uncertainty estimates significantly more
well-calibrated than popular uncertainty estimation techniques for deep learning models; (3) a
new model called ByteNet-SNGP that combines deep neural network with RFFGP
by using the RFFAGP as the last layer of the deep learning framework. As demonstrated by Li
et al.25, when used in conjunction with spectral normalization on the neural network weights,
known as spectral-normalized Gaussian process (SNGP), this model can achieve
well-calibrated uncertainty estimation and is compatible with any deep learning architecture. The
deep learning model provides great flexibility to learn a representation of the inputs which is
well-suited for the RFFAGP layer to achieve optimal performance. Therefore, this option unlike a
Gaussian process does not require kernel selection and can provide greater flexibility. Ko et al.
explored the use of SNGP-quantified uncertainty for protein-protein interaction prediction in
recent work26; the use of the SNGP for protein and antibody engineering has not otherwise been
studied previously.

We considered two possible deep learning architectures in combination with the SNGP. The first
was the well-known transformer architecture27. The second was the ByteNet convolutional
neural network (CNN)28. In recent work, Yang et al.29 demonstrated that a ByteNet which
“learns” to reconstruct its input provides performance highly competitive with language models
like ESM-2, suggesting that the ByteNet CNN architecture could serve as an effective
general-purpose model for protein sequence data. The core structure of ByteNet (Figure 1B; for
more details, see Materials and Methods) employs progressive convolutions with increasing
dilation to capture long-range dependencies between all parts of a sequence. We adapted this
architecture to process two paired sequences – an antibody and an antigen – as inputs, which
provides a new flexible uncertain-aware model for antibody engineering.

We evaluated these models alongside a range of encoding schemes. The models under
consideration included 1) linear regression, 2) variational Bayesian neural network, similar to the
one in RESP12, 3) xGPR with an RBF kernel but with different length scales for the antigen and
antibody sequences, approximated using 32,768 random Fourier features, 4) xGPR with the
FastConv1d convolution kernel, a kernel developed for modeling protein sequences20, 5)
ByteNet deep learning architecture28 with 10 layers, either non-uncertainty aware (the standard
architecture) or uncertainty aware (with an RFFAGP last layer, i.e. an SNGP25). Additionally, we
explored a four layer transformer (i.e. a multi-head self-attention based architecture with
separate modules for the antigen and antibody) but initial experiments (data not shown)
indicated challenges in achieving validation set performance comparable to ByteNet.
Consequently, our subsequent experiments focused on the ByteNet architecture.

In our investigation of encoding schemes, we considered 1) one-hot encoding, 2) PFASUM
encoding using a common substitution matrix derived from Pfam seed multiple sequence
alignments (MSAs), which is similar to BLOSUM but tailored to the known sequence space for
improved homology search results and MSA quality30 and 3) encoding using learned
representations combining the AbLang representation31 with the ESM1v representation32 for the
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antigen. The use of embeddings for the antibody greatly increased the memory and time cost of
model training; for instance, each of 104 antibody positions is represented by a 768- and
1280-length vector in AbLang and ESM1v, respectively. There are many other embeddings we
could use to represent antibody and antigen sequences, such as AbLang31, IGLM33, AntiBerty34,
Antiberta35, ProGen-OAS36 and BALM37. It is beyond the scope of this paper to consider all. We
use AbLang and ESM due to their frequent applications for this task. We used the ESM-1
embedding rather than ESM-238 since it is not only significantly faster but also frequently
provides similar performance. Notin et al., for example, found that across over 200 benchmark
datasets, the average Spearman’s-r for correlation between zero-shot predicted fitness and
actual fitness for ESM-1b is statistically equivalent to the performance achieved by the much
larger ESM-2 15-billion parameter model39.

We randomly split the raw data into 80% train, 20% test, using random seed 123, and further
subdivided the training data into 80% train, 20% validation. For linear regression and the
Gaussian process, we tuned kernel hyperparameters by maximizing the marginal likelihood on
the training data, using the Python xGPR package20. For all other model architectures, we tuned
the hyperparameters of the model by evaluating performance on the validation set. Finally, we
assessed performance for all models on the held-out test data. Results are summarized in
Figure 2A; details and the error bars on each result appear in the Supplementary Info Table S1.

xGPR achieved performance generally similar to the more complex ByteNet-SNGP model. The
performance of the ByteNet-SNGP was slightly improved by using embeddings for the antibody
as input, at the expense of a dramatic increase in computational expense. xGPR had marginally
decreased performance when embeddings are employed, likely because significantly more
random Fourier features are needed to work well with an extremely high-dimensional input.
Surprisingly yet consistent with our past findings12, one-hot encoding achieved comparable
performance.

To evaluate the quality of uncertainty estimation, we calculated the area under the calibration
error curve (AUCE)40 for the ByteNet-SNGP, the xGPR and the vBNN using one-hot encoding.
AUCE varies from 0 to 1, where 0 indicates perfectly calibrated uncertainty and 1 represents the
poorest calibration possible. While all three models achieved comparable results, the xGPR
appeared to be better-calibrated (Figure 2A and Supplementary Info, Table S2).

This comparative analysis indicates that xGPR and ByteNet-SNGP showed better performance
and calibration of uncertainty estimates than variational Bayesian fully-connected NN. xGPR
was efficient for this task, fitting the data in about a minute or less, a stark contrast to
ByteNet-SNGP which required several hours. Furthermore, hyperparameter tuning for xGPR is
completed in timeframes ranging from < 30 minutes to up to two hours, depending on the
expense and rigor of the hyperparameter tuning procedure selected. ByteNet-SNGP by contrast
took a week of experiments.

Based on these results, we one-hot encoded the antibody. We then encoded the antigen using
an ESM2 embedding averaged over the sequence (i.e. the embeddings for each amino acid are
averaged to yield a single vector representation). We then fitted the data using xGPR as above.
To further confirm that uncertainty assigned by xGPR could detect out of distribution data, we
generated a dataset of 10,000 mutants by introducing 20 random mutations into the wild-type
sequence. Given that the average training and test set sequence had only 3.7 mutations, we
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expected the model to be significantly more uncertain about these new sequences, which it was
(Figure 2B, p = 0.0, Mann-Whitney U test). These results appear in Figure 2.

Identifying important positions for in silico directed evolution
To identify positions most likely to improve affinity, we mutated each position in silico to each
possible amino acid (except cysteine) and assigned scores against all antigens using the model.
The smallest score for any antigen was used as the score for that mutation, and the largest
score for any mutation at each position was used as the score for that position. This approach
identifies positions where there is at least one possible mutation that yields a large score
increase against all antigens (rather than only one or a few of them).

The choice of the number of positions depends on available experimental resources; the larger
the number of candidates that can be tested, the larger the search space that can be adopted.
In our case, we sought to limit the number of candidates to < 30 given our available
experimental resources. To limit the search space for in silico directed evolution, we picked the
top six highest scoring positions. This procedure yielded positions 26, 27, 29, 32, 73 and 103 as
the best positions for mutagenesis. 26, 27, 29 and 32 are all in CDR1, while 103 is in CDR3.
Position 73 is the only one outside a CDR. To assess the risk associated with modification of
this position, we evaluated the human-likeness of the wild-type sequence using AntPack
(v0.2.7). We found that depending on which mutation was selected, this framework position
could be mutated with a decrease in human-likeness score of < 3%, and that certain mutations
at this position are therefore likely to have negligible impact since the sequence and framework
with this modification is still rated as highly human by the model.

When using an automated procedure such as the one we describe here, it is important to
enable human oversight so that practitioners can double-check the decisions made by the
model. To explore the raw data in greater detail and to provide a “sanity check” on important
position identification, we also fitted a mixture of categorical distributions to sequences with
enrichment values of 3x or above in two or more bins, i.e. sequences for which the probability of
the sequence in a binding bin is at least 20x greater than that in the naive bin for two or more
antigens. This simple model calculates the probability of any sequence of length L as:

𝑝(𝑥) =  
𝑘

𝐾

∑ π
𝑘 

𝑖

𝐿

∏
𝑗

21

∏ θ
𝑖𝑗𝑘

𝐼[𝑥
𝑖
==𝑗]

Where the sum is across K clusters is the mixture weight for each cluster, is theπ
𝑘 

θ
𝑖𝑗𝑘

probability of amino acid j (21 amino acids including gaps) at position i for cluster k, and I is the
indicator function. Each cluster treats positions as independent, but since probabilities are
conditional on cluster membership, the full model captures relationships between positions and
the joint distribution. The model is fully interpretable and provides a simple yet powerful tool for
dataset exploration. This model’s simplicity makes it very easy to fit quickly; Parkinson et al. for
example fit it to 70 million light chains and 60 million heavy chains21. Despite its simplicity, this
type of model has not previously been used for protein engineering to our knowledge. We
selected the number of clusters by finding the number which minimizes the Bayes information
criterion (BIC) (for more details on the fitting procedure, see Materials and Methods). This
procedure yielded 9 clusters.
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The probability of each possible mutation in each cluster is illustrated in Figure 3, with the CDR
regions shaded. Every single cluster features either the F27L or F27I mutations with probability
0.98 or above (for seven of the clusters, > 0.99), suggesting the F27 mutations are key for
improved affinity. Two clusters feature a G26E mutation with probability 1 and a third exhibits
G26E with moderate probability (> 0.3). Positions 103, 28 and 73 have a low-moderate
probability of mutation in some clusters (for example, position 73 is mutated with about 25%
probability in cluster 1).

There are two interesting discrepancies between the mixture model-preferred positions and
those selected by the automated procedure described above. Position 31 is not identified as a
key position by the mixture model, indicating it is not mutated in the most highly enriched
mutants but only rather in more moderately enriched mutants. A more interesting discrepancy
involves position 76. The mixture model identifies this as a promising position for mutation, with
a mutation probability > 99% in two clusters. The affinity model also predicts large score
increases > 1 for most antigens if this position is mutated, but predicts smaller score increases
(< 0.8) for antigens B.1.1.529, ba5 and ba2, and moderate score increases for beta and
gamma.

Interestingly, the affinity model further predicts that mutating 76 in combination with the F27L
mutation will give a much larger increase in score for B.1.1.529, ba5 and ba2 than either
mutation alone. The two mutations in combination result in a predicted score increase > 4 for all
antigens. Both models therefore concur that mutating position 76 is likely beneficial in the
presence of certain other specific mutations but is not likely sufficient (note there are no mixture
model clusters in which 76 is mutated without a corresponding mutation at position 27).
Modifying 76 would however incur some additional risk since the selected positions already
include another framework position at 73. In light of this consideration we used the set of
positions selected by the automated procedure we describe above. The workflow we have
outlined here illustrates how practitioners can model the distribution of mutations in tight-binding
sequences in a fully interpretable way and choose to modify the positions selected through a
simple automated procedure as appropriate.

In silico directed evolution to select the most promising candidates
In RESP2, after training a model to predict affinity, we employ it to conduct in silico directed
evolution (ISDE) using a modified simulated annealing algorithm. During each iteration, the
current candidate is mutated at a randomly selected site and accepted with probability:

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) =
𝑖

𝑀

∏ 𝑚𝑖𝑛(1; ( 𝑒
−(𝑆

𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡
−𝑆

𝑖𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑
)  

𝑇 ))

Where T is the temperature and and are the current candidate score and the𝑆
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑆
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

score of the proposed sequence respectively, runs over the M antigens in the panel. The𝑖... 𝑀
scores here are the predicted affinities / enrichments from the affinity model. We introduce a
novel modification to typical simulated annealing, however, by rejecting any candidates for
which model uncertainty on its predicted score is high. This key modification ensures the
directed evolution process does not wander into regions of sequence space where model
predictions are unreliable. This strategy selects sequences that exhibit improved binding to at
least one antigen on each round.
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To ensure good developability (low risk of immunogenicity, good solubility, stability etc.), we filter
the sequences generated by ISDE for solubility (using the CamSol model41) and for humanness
(using the SAM model of Parkinson et al.21).

The SAM model exhibited superior performance on a test set of 400 million sequences for
distinguishing human heavy and light chains from those of other species21. Importantly, since it
is fully interpretable, it can suggest modifications that would improve humanness for a tight
binder with initially low scores. These modifications are then evaluated by the affinity model to
ensure they do not compromise binding, facilitating a complete in silico humanization process.

In this study, we conducted five ISDE experiments and harvested 116 sequences, which still far
exceeded our testing capacity. Given the available resources, our objective was to select < 30
sequences for testing. We removed any with low humanness scores or high relative uncertainty
in model-assigned score (for details on the selection criteria, see Materials and Methods), then
selected the 29 remaining sequences with the highest model-assigned score.

Validation of the predicted tight binding antibodies
We ordered Delta-6 scFv HC variants as eBlocks from IDT (Supplemental Tables S3, S5), PCR
amplified them using primers to add NheI-HF and MluI-HF cut sites, inserted the genes into the
WT Delta-6 pCTCON2 vector (Supplemental Figure S5), then transformed all 29 mutants into
EBY100 to generate thousands of transformants. We also transformed the WT Delta-6 scFv as
a control for the flow cytometry experiments.The WT Delta-6 scFv or the 29-member mutant
library were grown and induced and incubated with the 10 different RBDs. For the RBDs with
measurable KD values to Delta-6, the KD was used as the labeling concentration, while for RBDs
with no measurable KD to Delta-6 the concentration was set at 321 nM, the highest
concentration used in the KD measurements.

The flow cytometry plots showed that the 29-member library exhibited a significantly higher
binding signal than the WT scFv control for 10/10 RBDs (see Figure 4A for example FACS plots,
supplementary figure S6 for all the plots). The percentage of library members with higher
intensity than the WT ranged from 67.4% for the Gamma RBD to 90.6% for the Alpha RBD (see
Figure 4B for full listing of % library members more intense than WT Delta-6). Importantly, there
was minimal non-specific binding to the secondary detection reagent streptavidin-PE with 2.2%
events positive for Delta-6 compared to 2.9% for the 29-member library. This indicates that the
improved binding of the library is due to specific interaction with the RBD rather than
non-specific (like hydrophobic or charge-charge) effects.

We picked one of the 29 clones, named Delta-63, and measured its KD values individually
against each of the 10 RBDs, comparing them to those of Delta-6 (Figure 4C). Remarkably,
Delta-63 demonstrated tighter KD values than Delta-6 for all RBDs tested. For the RBDs of
B.1.1.529 and BA.5, we could not determine precise KD values for Delta-63 but the binding
curves clearly showed enhanced binding relative to the WT Delta-6 (see supplementary figure
S7 for KD plots per RBD). For 8/10 RBDs, the KD values improved significantly, ranging from
modest 4-5 fold increase for the Lambda and Delta variants to several orders of magnitude for
the Kappa and BA.2 RBD. Specifically, the Delta-6 KD values to Kappa and BA.2 RBDs were
too weak to quantify but Delta-63 exhibited a marked improvement , achieving low nM to pM
levels. The BA.2 variant presented a stark contrast; Delta-6’s binding was virtually undetectable,
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whereas Delta-63 achieved a KD of 3.1 nM. Similarly, the Beta and Gamma RBDs, which initially
showed negligible binding to Delta-6, displayed substantial gains of binding to Delta-63, with KD

values of 19 and 65 nM, respectively.

We further tested if Delta-63 could inhibit the RBD-ACE2 interaction. When 3.2 nM of the WT
SARS COV-2 RBD was added to yeast cells expressing Delta-63, a robust binding signal was
observed. This signal was reduced more than 3 fold upon the addition of a large molar excess
of ACE2 (Supplementary Figure S2), suggesting that Delta-63 binds at least part of the ACE2
epitope on the RBD. This observation indicates that Delta-63 could be further optimized into a
functional anti-COVID monoclonal antibody capable of inhibiting the RBD-ACE2 interaction - a
characteristic of effective anti-COVID monoclonal antibodies42,43.

Furthermore, we measured the expression level of Delta-63 on the yeast surface, as the
expression level of proteins on the yeast surface has been shown to correlate with thermal
stability/soluble secretion levels44–46. Compared to Delta-6, alongside other COVID antibodies
and an irrelevant anti-PDL1 antibody (Atezolizumab), Delta-63 had the highest expression on
the surface of yeast cells (see Supplementary figure S3). Furthermore, at the highest
concentrations of RBDs used to determine the KD of Delta-63 and Delta-6, Delta-63 consistently
showed a higher binding signal at saturation (Supplementary figure S7). This indicates higher
levels of active Delta-63 scFv on the yeast surface compared to Delta-6 (again suggesting
higher levels of solubility/stability of Delta-63 compared to Delta-6). This indicates Delta-63 may
be a particularly stable/soluble scFv and useful for future affinity maturation campaigns against
new SARS COV-2 variants.

DISCUSSION
Here we present RESP2, a new AI pipeline for antibody engineering. We enhance the RESP
pipeline with implementation and development of two new state-of-the-art uncertainty-aware
models, the fast approximate Gaussian process (GP) implemented in the xGPR library and the
ByteNet CNN architecture combined with a last-layer Gaussian process and spectral
normalization (ByteNet-SNGP). Neither model has been used for protein engineering previously
to our knowledge and both models outperform the vBNN in the RESP framework. Notably, these
models provide well-calibrated uncertainty estimation. While xGPR’s uncertainty estimation is
more accurate, the area under the curve of the receiver operating characteristic (AUCE)
remains comparable for both models. This improved uncertainty estimation enhances the
selection of promising candidates for subsequent optimization, expediting the development
process.

RESP2 incorporates several uncertainty-aware models, enabling users to choose the most
fitting option for their applications. The Conv1dRBF kernel in the xGPR software package works
well when each datapoint is associated with only a single sequence, particularly useful when the
goal is to enhance affinity against only a single target antigen, but harder to adapt to a pair of
sequences when optimizing affinity against multiple antigens. Instead, as we have demonstrated
here, the FastConv1d and RBF kernels are easily adapted to this task, making them viable
choices. A CNN with a last-layer Gaussian process (i.e. an SNGP) is an alternative that may
improve accuracy and can be selected instead if it provides substantially better performance.

Another important feature in RESP2 is the ability to develop antibodies against multiple targets,
which is unique among machine learning-assisted pipelines for antibody development. The
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modified in silico directed evolution process considers model predictions for a multitude of
antigens prioritizing sequences likely to have improved binding across all targets. We also
introduce a simple yet flexible and fully interpretable mixture model for exploring the raw data.
The mixture model identifies the positions that have the highest mutation probability in tight
binders and thereby serves as a valuable “sanity check” for fully automated position selection.

Finally, we incorporate models for predicting developability. We make use of a fully
human-interpretable generative model for human antibody sequences implemented in the
AntPack package21, which can distinguish human from nonhuman sequences with better
accuracy than any other comparator model currently available. As demonstrated in this paper,
we can make use of humanness scores provided by AntPack at two stages in the pipeline. First,
we can select positions for in silico mutagenesis where a mutation would be unlikely to impact
humanness. This is generally true for CDRs, of course, but we can use AntPack to identify
mutation-tolerant positions in the framework as well. Second, we can filter candidates generated
by the pipeline based on their humanness scores, removing any which are suboptimal. We have
included solubility prediction using the CamSol model41, and the pipeline can readily
accommodate additional computational filters as desired. For example, it is easy and
straightforward to incorporate predictions for MHC class II binding, which can further lower the
risk of immunogenicity by removing mutations that increase risk.

To demonstrate the power of RESP2, we experimentally assess our pipeline using the
COVID-19 RBD as a test case. Using RESP2, we have successfully evolved a weaker-binding
antibody to one exhibiting low nanomolar to subnanomolar affinity against multiple targets after
constructing only a single random library. Concurrently, we are able to optimize developability
properties. The capability to simultaneously improve binding against multiple antigens and
developability is not currently practicable for any purely experimental technique. Note that
RESP2 is designed for general applications in antibody engineering and can be instrumental in
expediting a variety of discovery endeavors.

MATERIALS AND METHODS

Media Recipes
PBS used for the yeast experiments was 140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.4. SDCAA plates used to titrate yeasts are made with 5 g/L Bacto Casamino Acids
(Thermo Fisher 223050), 20 g/L D-(+)-Glucose (Sigma G8270), 1.7 g/L yeast nitrogen base w/o
amino acids or ammonium sulfate (BD Difco 233520), 5.3 g/L ammonium sulfate (Fisher
A702-500), 10.19 g/L Na2HPO4-7H20 (VWR 0348-1KG), 8.56 g/L NaH2PO4-H20 (VWR
0823-1KG, 182 g/L D-sorbitol (Sigma S1876-500G), 16.67 g/L BD Bacto Agar (214010), and
100 μg/mL ampicillin. SDCAA citrate media (same recipe as for SDCAA plates except no
sorbitol, agar, and 7.4 g/L Citric Acid Monohydrate (Macron 0627-12) + 11.85 g/L Sodium Citrate
Dihydrate (MP Biomedicals) instead of the sodium phosphate reagents) and no ampicillin.
SGCAA media for induction of surface expression is the same as the SDCAA plate formula but
with no agar/sorbitol and 20 g/L D-(+)-Galactose (Millipore Sigma G5388) instead of glucose.
Generally, 100 μg/mL ampicillin (final concentration) was freshly added to the SGCAA media.
For transformation, EBY100 cells were grown in 2xYPAD media before heat shock (2% Bacto
Yeast Extract (BD 212750), 4% Bacto Peptone (BD 211677), 160 mg/L Adenine hemisulfate salt
(Sigma A3159-5G), 4% D-(+)-Glucose (Sigma G8270-10kg)).
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scFv KD determination on the yeast surface
The dissociation constant (KD) was determined basically as described22. Specifically, 105 yeasts
were added per Eppendorf tube and serially diluted RBD (Acro Biosystems #SPD-C82E9,
SPD-C82E5, SPD-C82E7, SPD-C82E6, SPD-C82Ec, SPD-C82Ed, SPD-C82Eh, SPD-C82E4,
SPD-C82Eq, and SPD-C82Ew) were added per tube (diluent was 1%-BSA (Biotium #22013) in
PBS. Once RBD was added, tubes were rotated at RT overnight. The following morning, 1:100
dilution of anti-c-myc mAb (Cell Signaling Technology 2276s) was added and tubes rotated for
another hour at RT. Afterwards, tubes were pelleted, yeasts washed with 1% BSA-PBS (cold),
then resuspended in 100 uL PBS-BSA with 1:100 PE Streptavidin (BD 554061) and 1:100 goat
anti-mouse AF647 secondary antibody (Invitrogen A21241). Cells were tapped to mix and kept
on ice 20 minutes in the dark, with occasional tapping. The cells were then washed again with
cold PBS-BSA and resuspended in 120 uL PBS-BSA for flow cytometry. For each data point, the
PE mean fluorescent intensity (MFI) was recorded for the expressing cells. MFI was plotted
along with RBD concentration to generate binding curves, fit using GraphPad Prism 10.2.1
software using the following equation: Y=Bmax*X/(Kd+X), where Bmax is the curve plateau and
X each RBD concentration. The MFI without antigen was subtracted from each concentration
data point to account for non-specific binding.

ACE2 Competition Assay on the Yeast Surface
The Delta-63 scFv expressed on the yeast surface was incubated for 135 minutes at RT with
either 3.2 nM WT SARS COV-2 RBD or 3.2 nM WT RBD (Acro Biosystems SPD-C82E9) + 294 nM
soluble ACE2 (Sino Biological 10108-H08H) in 1% BSA-PBS (100,000 cells per tube, 1:100
dilution 2276s anti-c-myc antibody). Afterwards, cells were pelleted/washed with cold PBS-BSA
and treated/analyzed as in the KD determination experiments.

Generation of the Delta-6 scFv Heavy Chain Library
The heavy chain of Delta-6 was mutated randomly by error-prone PCR using 8-oxo-dGTP
(TriLink N-2034) and dPTP (TriLink N-2037) in a similar manner as previously reported22, where
the heavy chain PCR involved either 30 cycles of error-prone PCR with 2 μM or 20 μM each
nucleotide analog to create a lower or higher mutation rate (primers “D6 ePCR F/R”,,
supplementary table S4). The gel-extracted lower and higher mutated DNA were PCR amplified
using Q5 Hot Start DNA polymerase (NEB) (“D6 F/R” primers), gel-extracted again (Zymo
Research D4002), then used for NEBuilder HiFi DNA assembly (M5520A) along with the
linearized WT Delta-6 scFv in pCTCON2 (linearized by PCR with Q5 Hot Start (NEB M0493S) and
“D6 linear F/R” primers, treated with DpnI (NEB R0176S), then gel-extracted (Zymo Kit)). The
purified fragments were used to assemble the plasmid library via HiFi DNA assembly in 14
reactions (7 for the higher error rate and 7 for the lower error rate). The reactions were then
concentrated using Zymo DNA Clean and Concentrator-5 kit (D4004), eluted in nuclease-free
water, and mixed together. The concentrated plasmids were electroporated into MegaX DH10B
T1R E. coli (Thermo Fisher C640003) (78.44 x 106 transformants determined by serial dilution
onto LB-ampicillin plates). The plasmid library was harvested after overnight growth in
LB-ampicillin via ZymoPure II Plasmid MidiPrep kit (D4200), eluted in nuclease-free water.
Sequencing of random clones suggested an average mutation rate of about 2 mutations per
heavy chain.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605700doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605700
http://creativecommons.org/licenses/by-nc-nd/4.0/


EBY100 yeasts were heat-shocked with 250 μg of library plasmid using a previously described
method47 to generate ≥ 107 transformants, judged based on serial dilution onto SDCAA selection
plates. The library was grown/passaged in SDCAA citrate (pH 4.5) media and frozen in aliquots
at -80C in freezing media (85% ddH20, 10% glycerol, 5% DMSO).

Screening the Delta-6 scFv Heavy Chain Library Against 10 SARS COV-2 RBDs
The naive Delta-6 library was seeded at 50 x 106 live cells into SDCAA-citrate media and grown
to high density at 30 C, 300 RPM. To induce surface expression of scFv, the library was diluted
to OD600 = 0.5, grown back to high density in SDCAA citrate and just when the cells reached
high density again (OD600 = 5) the media was switched to SGCAA media with ampicillin (100
𝜇g/mL) at a starting OD600 = 0.5, shaking at 20 C, 300 RPM for 46 hours. Cells were pelleted,
washed with PBS-BSA (1% w/v BSA), then resuspended in different tubes with various
concentrations of RBDs (for WT SARS COV-2 RBD = 5 nM, Alpha RBD (5 nM), Lambda RBD (2
nM), Delta RBD (1 nM), Kappa RBD (40 nM). For the rest of the RBDs, the concentration was set
at 130 nM. Cells were diluted in PBS-BSA to prevent antigen depleting conditions (which
depended on the RBD concentration). Yeast library-RBD mixtures were rotated overnight at RT
to allow for the binding reaction to reach equilibrium, followed by addition of 1:100 mouse 9B11
anti-c-myc antibody for 1 hour at RT. Cells were pelleted and washed with 1 volume cold
PBS-BSA, followed by resuspension in ice-cold PBS-BSA with 1:100 streptavidin-PE (BD 554061)
and 1:100 goat anti-mouse IgG2a-AF647 and incubated with flicking on ice for 20 minutes in the
dark. Afterwards, cells were pelleted and washed with 1 cold volume PBS-BSA and
resuspended at 106 cells per 120 𝜇L for FACS on a BD FACSAria II cell sorter. Hits from the
screens were collected in 1 mL SDCAA citrate. 200,000 c-myc positive naive library members
were collected as a control for deep sequencing, along with 200,000 hits from the WT SARS
COV-2, Alpha, Lambda, and Delta RBD screens that had WT-level affinity to observe apparently
immutable positions needed to obtain a lower nM KD value. Also for WT/Alpha/Lambda/Delta,
cells with higher intensity than the WT Delta-6 were collected (about the top 0.2% of all cells for
each RBD). For the rest of the RBDs, since they lacked a measurable KD towards WT Delta-6,
only the most intense cells were collected (about the top 0.2% for each one). Hits were grown to
high density at 30 C, 300 RPM and frozen/stored at -80C or used for the next round of sorting.

For all but the WT SARS COV-2, Alpha, Lamda, Delta RBDs, a second sort was necessary to
get significant enrichment of hits better than WT Delta-6 scFv. Hits from the 1st round were
seeded in SDCAA citrate, grown to high density and induced in SGCAA media at 20C/300 RPM
in the same manner as the naive library. For Beta/Gamma/B.1.1.529/BA.2/BA.5, the cells were
labeled at both 130 nM and 32 nM to either enrich binders better than WT Delta-6 (130 nM
concentration) or significantly better (32 nM, a more stringent condition). For the Kappa RBD,
cells were instead labeled at 40 nM (better than WT Delta-6) or 8 nM (significantly better). Also,
60,000 of the “WT-level” binders to the RBDs from the 1st round that maintained WT-level KD to
WT/Alpha/Delta/Lambda were collected so as to reduce their numbers to more manageable
numbers for the subsequent deep sequencing step. For all hits from either the 1st or 2nd round,
the total number of collected hits was less than or equal to 60,000 cells (except for the 200,000
naive c-myc positive ones). All hits were grown to high density in SDCAA citrate and the yeast
plasmids harvested by yeast miniprep (Zymo Research Yeast Plasmid Miniprep II kit, D2004).

Preparation of DNA for MiSeq PE303
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The heavy chain region of plasmids isolated from the yeast miniprep for each selected group
were PCR amplified with “Delta-6 NGS F/R” primers (supplemental table S4) using Q5 hotstart
DNA polymerase at 20 cycles (determined optimal by qPCR), followed by concentration of the
PCR products by DNA Clean and Concentrator-5 kit (Zymo Research), then gel-extraction by
1% agarose gel and Zymo Research D4002 Gel Recovery Kit. The eluted PCR products were
then amplified with a second round of PCR using 2x Kapa HiFi Master Mix (KK2601) and 10
cycles of PCR with the “Ad1/2” primers listed in supplemental table S4. The PCR products were
purified with AMPure XP beads (A63880), eluted with TE buffer. All PCR products were
analyzed by Tapestation (both High Sensitivity D5000 and D1000 to analyze size distributions of
the PCR products). All samples were diluted to 8 ng/uL and mixed together at equal volumes
for MiSeq PE303. The 200,000 c-myc positive naive library members collected as a control
were separately sequenced by MiSeq PE303.

Sequence Processing
The raw paired end reads from sequencing were checked for quality (for details of the quality
filtering procedure, refer to the Supplementary Info section S2). After the quality filtering
procedure, we obtained a dataset with 9,058,099 amino acid sequences or 205,520 unique
amino acid sequences with an average of 3.7 mutations per sequence as compared with the
wild-type.

We randomly split the raw data into 80% train, 20% test, using random seed 123, and further
subdivide the training data into 80% train, 20% validation. Sequences were then encoded using
the following schemes. 1) One-hot encoding for both antibody and antigen sequences. 2)
One-hot encoding for the antibody sequence and ESM-1v embeddings32 averaged over the full
sequence for the antigen. 3) AbLang embeddings31 for the antibody and ESM-1v embeddings
for the antigen, left unaveraged with one embedding per position for the antigen. 4) The
autoencoder described in Parkinson / Hard et al.12 for the antibody sequence and one-hot
encoding for the antigen sequence. 5) A substitution matrix (the PFA-SUM matrix30),
preprocessed so that for matrix rows and corresponding to amino acids i and j,𝑀

𝑖
𝑀

𝑗

is the substitution matrix distance. Each amino acid was then represented as the||𝑀
𝑖

− 𝑀
𝑗
||2

row of the preprocessed matrix corresponding to that amino acid. For details on how this
preprocessing was achieved, refer to Supplementary Info section S2. This last encoding is
referred to as the “PFASUM matrix” in the table and is designed to work well with kernels (e.g.
an RBF kernel) but is not anticipated to work well with linear regression.

We converted the frequencies of specific sequences into enrichment values that would be
predicted by the model as follows. We first calculated the posterior probability of drawing each
sequence from the corresponding filtered bin and the posterior probability of drawing that same
sequence from the naive library using a Bernoulli likelihood with a Jeffreys prior (a Beta
distribution with ). The resulting posterior distribution was a beta distribution, andα = β = 1/2
the posterior predictive (the probability of drawing this sequence on the next draw) was just:

𝑝(𝑠) =  𝑓 + 0.5
𝑁 + 1
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Where N is the total number of sequences in that bin and f is the frequency of the sequence of
interest.

We then used the log of the probability in the filtered bin divided by the log of the probability in
the naive bin as the enrichment. We also calculated the 75% highest posterior density credible
interval on the posterior distribution for that sequence for both the filtered bin and the naive
library. If these credible intervals overlapped, we could not be very confident that the sequence
was more (or less) abundant in the filtered bin than it was in the naive library, and the datapoint
was uninformative. We excluded such datapoints from our training and test sets since they did
not provide useful information to the model. (We originally used a 95% credible interval rather
than the 75% interval shown here, but found that this excluded over half of the training data; we
relaxed the interval to 75% so that less training data would be excluded.)

The supervised learning model in the RESP pipeline12 was trained to predict enrichment.
Positive enrichment values indicated a sequence that has some likelihood of being a strong
binder, and the more positive, the more likely. Negative values, by contrast, indicated sequences
unlikely to be binders. We do not need the model to be able to distinguish between sequences
that are somewhat unlikely and sequences that are highly unlikely to be binders; therefore, the
magnitude of the enrichment if it is less than zero does not provide useful information to the
model. We therefore “clipped” enrichment so that enrichment values < 0 were set to zero.

To identify key positions, we mutated each position in silico to each possible amino acid (except
cysteine) and assigned scores against all antigens using the model. The smallest score for any
antigen was used as the score for that mutation, and the largest score for any mutation at each
position was used as the score for that position. The top 6 best positions were selected. We also
fitted a mixture of categorical distributions to sequences with enrichment > 3 for two or more
antigens, using the EM algorithm to maximize the likelihood of the data. We used a variable
number of clusters with 10 restarts with different random seeds for each number of clusters,
then calculated the Bayes information criterion (BIC) for each number of clusters. The number of
clusters that yielded the smallest BIC was used. The final model for each group was then fitted
using 10 restarts. Any clusters with mixture weights smaller than 1e-2 at the end of fitting were
purged from the model. This fitting process yielded nine clusters.

The ByteNet-SNGP architecture and hyperparameter tuning
The ByteNet architecture uses a fully connected layer to map the input sequence to a higher
dimensional embedding. This embedding is then fed into a series of ByteNet blocks as
illustrated in Figure 1C; for this task, we used 10 ByteNet blocks. Each successive block uses
dilated convolutions with increasing dilations coupled with residual connections to “learn” a
representation of the input which captures both short and long-range correlations.

For this task, the model must use a paired antibody and antigen sequence as input. As
illustrated in Figure 1C, the antigen and antibody sequences were processed in parallel by two
separate ByteNet modules. The output of the two modules was concatenated to form a single
representation. A fully connected layer applied to each position then reduced the dimensionality
of this representation to 1, followed by normalization. This last normalization step in initial
experiments turned out to be crucial; if it is omitted, training became unstable for a wide range
of hyperparameter settings. Since the antibody and antigen sequences are both fixed-length,
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the resulting embedding was now fixed length, and was supplied as input to a fully connected
layer which yields predicted enrichment as output.

To convert this model into an uncertainty-aware architecture, we merely needed to replace the
last fully connected layer with an RFFAGP as illustrated in Figure 1C. To ensure the mapping
from input sequence to embedding was approximately distance-preserving, we applied spectral
normalization to all weight blocks in the model48. This ensured that datapoints far from the
training set in the original space were not mapped to locations close to the training set in
embedding space. Since a GP with an RBF kernel assigns high uncertainty to datapoints distant
from the training set, a distorted mapping of this kind would have led the model to incorrectly
assign low uncertainty to sequences very different from the original training data.

We tuned hyperparameters for this model by varying the learning rate, learning rate schedule
and weight decay and evaluating validation set performance, using one-hot encoded data as
input and using the generic (non-uncertainty-aware) architecture. Following this initial tuning
procedure, the same hyperparameters were used for both generic and uncertainty-aware
architectures to ensure a fair comparison. Learning rate schedulers and weight decay were
found not to provide a significant improvement and thus were not used. The models were
trained using the Adam algorithm with a learning rate of 0.001 for 150 epochs on all datasets.

The xGPR model and hyperparameter tuning
xGPR offers a variety of kernels for sequence data including two types of convolution kernel.
The Conv1d kernels, for example, assess the similarity of any two sequences x and y using the
following metric:

𝑘(𝑥, 𝑦) = 𝑁
𝑖

(𝐿
𝑥 

−𝑚+1

∑
𝑗

)(𝐿
𝑦 

−𝑚+1)

∑ 𝑘'(𝑥
𝑖:𝑖+𝑚

,  𝑦
𝑗:𝑗+𝑚

) 

Where is a k-mer of length m, L is the length of the corresponding sequence, is a kernel𝑥
𝑖:𝑖+𝑚

𝑘'
function for assessing the similarity of two k-mers, and N is an optional normalization constant
(to account for the number of comparisons performed). There are many possible alternatives for
, but one of the simplest is an RBF kernel:𝑘'

𝑘'(𝑥
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Where is a hyperparameter we select using an empirical Bayesian approach by maximizingγ
the marginal likelihood of the training data. If the input data is one-hot encoded,

is merely twice the Hamming distance. If additionally is large and multiple||𝑥
𝑖:𝑖+𝑚

− 𝑦
𝑗:𝑗+𝑚

||2 γ
values for m are selected, this is a k-mer spectrum kernel, which is closely related to a local
alignment kernel that computes similarity based on local alignment; see Parkinson et al.20 for
details. Alternatively, by encoding the input using embeddings from a deep learning model or by
using substitution matrices (e.g. BLOSUM64), we obtain other measures of distance between
k-mers. We can for example choose the amino acid encodings in such a way that
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yields the BLOSUM distance between two k-mers; see the Supplementary||𝑥
𝑖:𝑖+𝑚

− 𝑦
𝑗:𝑗+𝑚

||2

Info section S1 for details.

A GP with the Conv1d kernels described here would naively exhibit quadratic scaling with
sequence length and dataset size, but by using a fast Hadamard transform-based random
features approximation, we are able to implement it in a way that scales linearly with sequence
length and dataset size. See Parkinson et al.20 for details.

We can also use the FastConv1d kernel implemented in xGPR. This kernel conducts
convolution across the sequence with random weights implemented using fast Hadamard
transforms and diagonal matrix multiplications20, followed by ReLU activation and maxpooling.
The output of this procedure is fed into an RBF kernel. This kernel constitutes an approximation
to an infinitely wide three-layer Bayesian CNN populated with random weights. See Parkinson
et al. for details.20

The FastConv1d kernel was easier to use for this particular task than the Conv1d kernels
described above, since the random features generated by the FastConv1d random weight
convolutions for the antigen and antibody sequences can be concatenated, while the Conv1d
kernel would need to be modified to accept two paired sequences as input. We therefore used
the FastConv1d kernel for convenience.

Convolution kernels are useful when the sequences in question are of different length. In this
case, however, all antibody and antigen sequences were of the same length. It is therefore even
simpler to use the RBF kernel:

𝑘(𝑥, 𝑦) = 𝑒−γ||𝑥 − 𝑦||2

Again, if the two sequences are one-hot encoded, is twice the Hamming distance.||𝑥 − 𝑦||2

Encoding using embeddings or substitution matrices yields other measurements of distance. We
can convert this kernel into a kernel for comparing antibody-antigen pairs by simply
concatenating the antibody and antigen representations.

An obvious drawback to this kernel is that binding affinity is likely very sensitive to mutations in
some regions and mostly insensitive in other regions. We can correct this problem by assigning
a different hyperparameter to each position so that the kernel becomes:γ

𝑘(𝑥, 𝑦) = 𝑒
−

𝑖

𝑀

∑γ
𝑖 
||𝑥

𝑖
−𝑦

𝑖
||2

The hyperparameter values are found as before – by maximizing the marginal likelihood of theγ
training data. This is implemented as a “MiniARD” kernel in the xGPR library. As for the Conv1d
kernels, this kernel is implemented using a fast Hadamard transform-based random features
approximation in xGPR; see Parkinson et al.21 for details. We refrained from assigning a
separate hyperparameter to each position since we have found this in our experience to leadγ
to overfitting, because the model can “learn” a small for a position which is never mutated inγ
the training data but is mutated in the test data or in new data. A more conservative approach is
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to assign a different for each region of the input sequence (e.g. antibody heavy framework 1,γ
antibody heavy CDR1, antibody heavy framework 2, antigen etc.), so that all positions in that
region use the same -hyperparameter value.γ

For simplicity, in this study we assigned one for the antibody sequence and one for theγ γ
antigen sequence and “learned” these by maximizing the marginal likelihood of the training data
using the default approach implemented in xGPR version 0.3.2. Briefly, if the number of random
features generated for each datapoint is small (<4,000), it is cheap to compute the random
feature-approximated marginal likelihood exactly, without further approximations. A small
number of random features is not however usually sufficient to approximate the kernel to high
accuracy.

A larger number of random features can be used if the model is fitted using the preconditioned
conjugate gradients (PCG) strategy implemented in xGPR, which is highly efficient and exhibits
linear scaling with dataset size, but fitting the model in this way does not provide all the
information needed to calculate training set marginal likelihood. If Z is an N x M matrix formed
for N datapoints with M random features, for example, the marginal likelihood requires the
calculation of the log determinant , where is a model hyperparameter that𝑙𝑜𝑔 |𝑍𝑇 𝑍 + λ𝐼| λ
regulates overfitting (analogous to the ridge parameter in ridge regression). To enable
calculation of the marginal likelihood for a large number of random features, xGPR makes use
of stochastic Lanczos quadrature to provide a (highly accurate) estimate of the log determinant
when fitting with preconditioned conjugate gradients. See Parkinson et al.20 for details.

To tune hyperparameters, then, we first used the L-BFGS algorithm49 to maximize the marginal
likelihood with 1,024 random features per datapoint; this gave a “crude” initial estimate of the
region of hyperparameter space where optimal hyperparameters were likely located. Next, we
“fine-tuned” the hyperparameters with the Powell algorithm50 using a larger number of random
features per datapoint (16,384) and using the PCG-based approach described above. The
xGPR documentation (https://xgpr.readthedocs.io/en/latest/) provides examples of this approach
for hyperparameter tuning, which requires only a few lines of Python code.

We also fitted the data to a linear model using the “Linear” kernel in the xGPR library. We tuned
the hyperparameter (the ridge regression parameter) by maximizing the marginal likelihood.λ
We used an exact calculation for the marginal likelihood if the number of features was relatively
small (<4,000), which was true for all encodings except the AbLang / ESM-embedding-based
encoding. In this case, we set the hyperparameter to a default value of 1.

In silico directed evolution
We modified the in silico directed evolution algorithm of Parkinson / Hard et al.12 to support
optimization for binding to multiple targets. In the original algorithm, we began with the starting
sequence and on each iteration proposed a mutation to this sequence, then used the binding
prediction model to score the candidate sequence both with and without the mutation. We then
calculated the following threshold:

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) = 𝑚𝑖𝑛(1,   𝑒
−

(𝑆
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

−𝑆
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

)

𝑇 )
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Where T is a temperature parameter initially set to 25 then multiplied by on each𝑎 <  1
iteration. In this way, the algorithm initially favored exploration, with a high probability that any
modification would be accepted, and later favored only mutations that improve the score, since
once temperature was small (e.g. < 1) the probability rapidly fell towards zero when 𝑆

𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑
was significantly less than .𝑆

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

There are a variety of ways in which this scheme could be modified to support M targets. We
could for example use a product:

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) =
𝑖

𝑀

∏ 𝑚𝑖𝑛(1,   𝑒
−

(𝑆
𝑖𝐶

−𝑆
𝑖𝑃

)

𝑇 )

Where iC and iP denote the current candidate and proposed mutation scores for target i. We
refer to this as the conservative scheme. Alternatively we could use a maximum:

𝑝(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) = 𝑚𝑖𝑛(1,  𝑚𝑎𝑥
1,2...𝑀

( 𝑒
−

(𝑆
𝑖𝐶

−𝑆
𝑖𝑃

)

𝑇 ))

We refer to this as the aggressive scheme. The aggressive scheme is more likely to accept a
mutation if it offers a large score improvement for any one target, even if scores against other
targets are worse as a result of the mutation. The conservative scheme, by contrast, only
accepts mutations with high probability if they improve or at least do not damage the score for
most or all targets. See Amine et al.51 for a discussion of these and other alternatives for
multi-objective annealing.

Since our goal here was to find a sequence which binds tightly to all of the targets, we used the
conservative scheme. As discussed in Parkinson / Hard et al.12, even with in silico directed
evolution, antibody sequence space is too large to search efficiently; thus, it is generally
preferable to restrict the search space to some subset of the input sequence. This could be
done in any of a number of ways as preferred by the end user – based on prior knowledge
about which positions are most important, for example, or as in Parkinson / Hard et al.12 by
selecting those positions which are most frequently mutated in tight binding sequences. We
describe our process for selecting positions above under the Materials and Methods section
under “Sequence processing”.

Next, we ran in silico directed evolution using the conservative scoring scheme described
above. On each iteration, if the uncertainty for any prediction against any antigen is > the 80th
percentile of variance values observed in the training set, the mutation was automatically
rejected. This ensured that we did not consider scores less reliable than most scores assigned
to the training set. We ran 5 in silico directed evolution experiments and harvested the accepted
sequences.

Given our resources, our goal at this stage was to find the best <= 30 sequences to test
experimentally. The best sequences were those with the highest scores (most likely to be tight
binders), with the lowest variance (most confident predictions), the highest human-likeness
(lowest risk of immunogenicity) and best predicted solubility. It is possible to incorporate all of
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these objectives into the in silico directed evolution procedure described above. Our preference,
however, is to use the in silico process to generate new batches of likely tight binders as many
times as needed, then filter these based on the other criteria to select a number of sequences
compatible with resources available for experimental testing.

We therefore removed any sequences for which the smallest predicted score against any
antigen was < 3.5 (the 95th percentile for scores in the training set), corresponding to a
sequence which was roughly 30 times more abundant in the filtered bin than in the naive library.
Our experimental capacity only allowed testing of up to 30 sequences. Therefore, we used a
series cutoffs to select the most confident predictions. We first removed any sequences with
human-likeness scores < -100 assigned by AntPack21 and further removed the 30% with the
worst human-likeness scores. Next, we sorted sequences by the variance on the
model-predicted score and discarded the worst 40%. This yielded 59 sequences; we then
selected the 29 of these with the best score. The resulting sequences were experimentally
tested as described above. Many of these filter cutoffs are arbitrary and can be adjusted if more
(or fewer) sequences are desired for experimental testing.

Generation and Screening of the 29 Member Delta-6 Library
The 29 dsDNA fragments used to create the 29-member library were purchased from IDT as
eBlocks, followed by PCR amplification by Q5 hotstart DNA polymerase using “29 F/R” primers
listed in supplemental table S4. The PCR products were concentrated with DNA Clean and
Concentrator-5 kit (Zymo Research), purified by gel-extraction (1% agarose/Zymo Research Gel
Recovery Kit), then double digested/ligated into the WT Delta-6 pCTCON2 vector by cutting out
the WT section of the Delta-6 scFv with NheI-Hf & MluI-HF and ligating the mutant DNA with T4
DNA ligase (after treating the digested vector with rSAP (M0371S, NEB)). The plasmids were
transformed into GC10 competent cells (Genesee Scientific 42-658) and sequenced by Sanger
sequencing to verify the correct insert.

The 29 plasmids for the library were pooled together and transformed into EBY100 yeasts using
the T2001 kit (Frozen-EZ Yeast Transformation II kit, Zymo Research). The WT Delta-6 scFv in
pCTCON2 was separately transformed with the same kit. Transformants for each
transformation (at least 7,000 colonies each) were scraped together into SDCAA citrate, grown
to high density with shaking at 30C, then made into frozen stocks at -80C with freezing media
(85% ddH20, 10% glycerol, 5% DMSO). To screen the 29-member library vs. WT Delta-6, the
library and Delta-6 frozen yeasts stocks were thawed and added at 5 x 106 viable cells each to
50 mL SDCAA-citrate and rotated at 30C/300RPM until the cultures got to high density, diluted
10x to OD600 = 0.5, rotated to high density again and induced once the OD600 reached 5. The
cells were induced in SGCAA + ampicillin (100 μg/mL) at 20C, 300 RPM for 46h. The cells were
then added at 100,000 cells per RBD tube (the concentration of the RBD in each tube depended
on the KD of that RBD to WT Delta-6). For the RBDs from WT SARS COV-2, Alpha, Delta, and
Lambda variants, the concentration of the RBD was equal to the KD of WT Delta-6 scFv. For
Kappa, it was 160 nM (we estimated this was the KD of Delta-6 to Kappa based on its binding
curve), and 321 nM for the rest of the RBDs since the WT Delta-6 KD was too weak to determine
against them. Yeasts/RBDs were rotated in 1% BSA in PBS for 13.5 hr at RT, then 1:100 of 9B11
mouse anti-c-myc was added for 2h at RT. Afterwards, the yeasts were pelleted at
17,000xG/30s, washed with 100 uL cold PBS-BSA, then resuspended in 100 uL cold PBS-BSA
with 1:100 each streptavidin-PE and goat anti-mouse AF647 for 20 minutes on ice in the dark
with tapping. The tubes were pelleted high speed, washed with 100 uL cold PBS-BSA, then
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resuspened at 120 uL each for flow cytometry analysis. Solutions were analyzed at 50,000
events per tube on a BD FACSAria II cell sorter at the Moores Cancer Center UC San Diego.
For each RBD, a gate was drawn just above the WT Delta-6 main population and the
29-member library was analyzed compared to the same gate to determine the % of library
member cells occurring above the WT main group of cells.

Determination of the Expression Level of Delta-63 and other scFv on the Yeast Surface
ySYNAGa yeasts were transformed with PmeI-digested scFv in the pSYNAGa plasmid using a
Frozen-EZ Yeast Transformation II kit, (Zymo Research) and expression on the yeast surface
was determined basically as described52, using a 1:50 dilution of fitc-mAb (CMYC-45F-Z (ICL)).
The FITC mean fluorescent intensity was determined on a BD FACSAria II cell sorter at the
Moores Cancer Center UC San Diego.

SOFTWARE
Analysis and modeling was conducted using Python 3.10 with the PyTorch library version 2.3.1,
the Numpy library version 1.24.4, the Scipy library version 1.13.1, the scikit-learn library version
1.5.0, the xGPR library version 0.2.0.5, and the AntPack library version 0.2.7. 123 was used as
a random seed for model weight initialization, train-test splitting etc. xGPR in later versions
(>0.4.0.01) is much faster and easier to install, so although v0.2.0.5 was used here, newer
versions of xGPR should be preferred for future projects.

STATISTICS AND REPRODUCIBILITY
No statistical method was used to predetermine sample size. When processing raw sequence
data, unreliable sequence reads (using criteria detailed in the Supplementary Info section S1)
were discarded before any further analysis or processing was conducted. These steps were
taken to ensure that only reliable reads were used for analysis. No data was otherwise excluded
from any subsequent analysis or model training. The test set for evaluating model performance
was constructed by randomly selecting 20% of the assembled sequences and assigning these
to test. The random partition was generated using the Mersenne Twister random number
generation algorithm as implemented in Python’s numpy library version 1.19.5 with a seed value
of 123. When model performance was assessed using cross-validations, the cross-validation
splits were generated by randomly partitioning the dataset into 5 splits of equal size using the
KFold function in Python’s scikit-learn library version 1.5.0.

The final evaluation of model performance was conducted “blind” by generating predictions for
sequences not present in our data and experimentally evaluating these predictions as described
above.

CODE AVAILABILITY
The code used to perform the analysis described in this paper is available at
https://github.com/Wang-lab-UCSD/RESP2 .
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Figure 1 1A. An overview of the RESP2 pipeline. 1B. The overall ByteNet architecture. 1C. The
ByteNet block used in the ByteNet architecture.
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Figure 2. 2A. Test set performance for selected model architectures and data encoding types
(see Supplementary Info Table S1 for error bars on the R^2 values).

2B. Area under the calibration error curve (AUCE) for selected model architectures and data
encoding types.

2C. Uncertainty on decoys (sequences known to lie outside the region of sequence space
covered by the training set). We generate 10,000 “out-of-sample” mutants by randomly mutating
the starting heavy chain sequence in 20 locations. We then calculate the posterior predictive
variance on these sequences vs the variance on the training and validation sets using the final
trained random features approximated Gaussian process models for group A and group B
antigens. In both cases, the model’s uncertainty for decoys is significantly greater than that for
non-decoys. In both cases, using the two-sided Mann-Whitney U test as implemented in
Python’s Scipy library version 1.5.4, the calculated p-value for training vs out of sample and for
validation vs out of sample is 0.0.

The following conventions apply for each boxplot. The upper and lower bounds of the box are
the 25th and 75th percentile of the data, and the whiskers are drawn at 1.5x the interquartile
range (the distance from the 25th percentile to the 75th percentile). The center is drawn at the
median of the data. The circles represent “outlier” points which lie outside 1.5x the interquartile
range. Four asterisks indicate the p-value is < 0.00001. Source data are provided as a source
data file.
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Figure 3. The probability of each mutation in each cluster for a mixture of categorical
distributions fitted to highly enriched sequences.
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Figure 4. 4a. Examples of flow cytometry analysis of WT Delta-6 scFv vs. 29-member library
using the RBDs of WT SARS COV-2 (top panels) and the BA.2 variant (bottom panels). The %
values represent % of expressing library members above the WT Delta-6 main population. As a
control, the % of WT Delta-6 cells appearing above the WT main group is included. The y-axis
of each plot represents scFv expression (c-myc tag) while the x-axis the binding intensity to the
RBD (PE fluorescence).

4B. The percentage of scFv-expressing 29-member library yeast cells scoring as more intense
than the WT Delta-6 scFv cells for binding to each RBD, corrected for background WT cells.
The WT SARS COV-2 data is averaged from 2 replicates.

4C. Binding Affinity of the Delta-6 or Delta-63 scFv on the yeast surface towards the 10 RBDs
used in the Delta-6 library screen. NDB is no detectable binding, while “weak” means the KD

was too weak to determine a numerical value but binding was observed. A single replicate was
performed for each KD value.
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