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A B S T R A C T

In this study, a partial least squares discriminant analysis (PLS-DA) discriminant model for umami peptides was 
constructed based on molecular dynamics simulation data, achieving a R2 value of 0.949 and a Q2 value of 0.558. 
Using this novel model and bioinformatics screening methods, five new umami peptides (EALEATAQ, SPPTEE, 
SEEG, KEE, and FEE, with umami taste thresholds of 0.139, 0.085, 0.096, 0.060, and 0.079 mg/mL, respectively) 
were identified in Douchi. Molecular docking revealed that the residues ASN150 of T1R1, as well as SER170, 
GLU301 and GLN389 of T1R3, might be key amino acid residues for the binding of umami peptides to T1R1/ 
T1R3. Molecular dynamics simulations revealed significant differences in the root-mean-square fluctuation 
(RMSF) values between the two complex systems of umami peptides-T1R1/T1R3 and non-umami peptides- 
T1R1/T1R3. The newly constructed umami peptide discriminant model can improve the accuracy of umami 
peptide screening and enhance the efficiency of discovering new umami peptides.

1. Introduction

Douchi, which originated in China, is one of the traditional fer
mented foods in East and Southeast Asia (Guo et al., 2023; Guo, Zhang, 
Long, Fu, & Ren, 2023). It is a well-known traditional condiment in 
China (Chen et al., 2021; Chen, Wang, Blank, Xu, & Chung, 2021; Wang, 
Xiang, Zhang, Hou, & Guo, 2021), of which the main taste characteris
tics consist of umami, sweetness, and saltiness, with umami being the 
primary one. In previous studies (Guo, Xiao, et al., 2023; Guo, Zhang, 
et al., 2023), taste peptides have been found to be a crucial compound 
underlying for the flavor of Douchi, but there are limited studies on 
identifying associated with umami in Douchi.

Umami peptides are small molecular peptides that exhibit umami 
characteristics (Li et al., 2022). In recent years, as the concept of healthy 
food has evolved, consumers’ demands for natural foods and ingredients 
have become increasingly rigorous. Compared to traditional umami 
enhancers, umami peptides, as a potential new type of umami substance, 
possess potential the advantages of being natural, safe, and free from 
side effects (Wang et al., 2023; Wang et al., 2023).

The traditional methods for identifying (Ding, Li, & Kan, 2017) and 
characterizing (Chen, Li, et al., 2021; Chen, Wang, et al., 2021) umami 
peptides include multiple steps, such as separation, purification, and 
assessment, which are not only time-consuming and costly but also have 
limited accuracy. Recent technological advancements have led to the 
development of mass spectrometry-based peptidomics technology 
combined with bioinformatics, molecular docking, and molecular dy
namics simulation, which has emerged as a novel, rapid, and effective 
method for discovering umami peptides, and is gradually gaining 
widespread acceptance and application (Amin, Kusnadi, Hsu, Doerksen, 
& Huang, 2020). For example, Jia et al. (2024) have identified three 
umami peptides in Wuding Chicken, HLEEEIK, LDDALR, and ELY 
(threshold: 0.03–0.06 mg/mL) using Nano-HPLC-MS/MS-based pepti
domics technology combined with sensory evaluation. Through molec
ular docking and molecular dynamics simulation, they predicted the 
secondary structures of these peptides, simulated the interactions be
tween the peptides and T1R1/T1R3, and discovered that the TYR74, 
ARG323 of T1R1, and ARG272, GLN35 of T1R3 are the key amino acid 
residues for the binding of umami peptides to the receptor. Utilizing 
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peptidomics and machine learning methods, Wang et al. (2024) iden
tified 16 umami peptides (threshold: 0.09–0.35 mg/mL) from fermented 
sea bass. Through molecular docking, it was discovered that these 16 
peptides formed stable complexes with the T1R3 protein, with key 
binding sites including SER170, SER147, GLN389, and HIS145. The 
primary interaction forces were aromatic interactions and hydrogen 
bonds. However, most of the current research focuses on static analysis 
methods, such as molecular docking. There are few studies on the 
umami peptides by dynamic analysis tools such as molecular dynamics 
simulation (MD Simulation), and few literatures have summarized their 
umami regularity.

The objectives of this study were: 1) to investigate the structure- 
activity relationships of umami receptors and ligands via MD Simula
tion, in order to elucidate umami perception mechanism. 2) to establish 
guidelines for screening umami peptides by MD Simulation, molecular 
docking and bioinformatics analysis to enhance the accuracy of their 
identification. To accomplish these goals, The taste properties of three 
types of Chinese Douchi were analyzed using an electronic tongue. Non- 
targeted broad-spectrum detection of endogenous peptides in Douchi 
was performed using LC-MS/MS-based peptidomics technology. A new 
discriminant model for umami peptides was established based on mo
lecular docking and MD Simulation data. Combining bioinformatics 
analysis, new umami peptides in Douchi were identified.

2. Materials and methods

2.1. Samples

The project collected a total of 12 samples of three common types of 
Douchi (Aspergillus-type: Liuyang Douchi, Yangjiang Douchi, and Mucor- 
type: Yongchuan Douchi) in the Chinese market. Each type of Douchi 
includes four sub-samples from different brands. The Douchi samples 
were purchased from local supermarkets. Douchi were ground into 
powder in liquid nitrogen and stored at − 20 ◦C before use.

2.2. Methods

2.2.1. Construction of a discrimination model for umami peptides based on 
molecular dynamics simulation data

2.2.1.1. Homology modeling of receptor structure. T1R1/T1R3, the pri
mary receptor for umami taste, belongs to class C of G protein-coupled 
receptors and comprises three parts: the extracellular venus flytrap 
domain (VFT), the intracellular transmembrane helix domain (TMD), 
and the Cysteine-rich domain (CRD) connecting above two domains.

The AlphaFold2 2.3.0 (Wayment-Steele et al., 2024) multimer 
module was employed to perform homology modeling and structural 
optimization of the umami receptor T1R1/T1R3. The optimal confor
mation was then selected for a 50 ns MD, and the final stable confor
mation was retained for subsequent research.

The Ramachandran Plot of the homology modeling revealed that 
over 99.9 % of the points in the T1R1/T1R3 receptor model fell within 
the reasonable region, and the amino acid residues maintained a good 
conformational space. Among them, 93.6 % were located in the most 
favorable region, 6.4 % in the additional allowed region, and only 0.1 % 
of the amino acid residues were in the generously allowed region 
(Fig. S1). The umami receptor structure obtained through homology 
modeling is considered reasonable and complete, which can be used to 
study the relationship between umami peptides and T1R1/T1R3.

Five active pockets in T1R1/T1R3 were predicted using POCASA 
prediction platform (http://altair.sci.hokudai.ac.jp/g6/service/pocasa 
/), and the most active binding domain was found to be the VFT (Li 
et al., 2021). The VFT and CRD of T1R1/T1R3 (T1R1: 1-564; T1R3: 1- 
566) were extracted and were used to perform molecular docking and 
dynamics simulations.

2.2.1.2. Data sets for modeling. Twenty six peptides (Table 1) with 
varying lengths and known thresholds were selected from the databases. 
Among them, twenty two umami sequences were from BIOPEP-UWM 
and the Flavor Database of umami peptides, and four non-umami se
quences were from BIOPEP-UWM and literature reports (Liu et al., 
2023), with clear artificial sensory thresholds and literature support, 
respectively.

2.2.1.3. Molecular docking. Preparation of Ligands: The PEP-FOLD3 
(https://bioserv.rpbs.univ-paris-diderot. fr/services/PEP-FOLD3/) on
line simulation platform (Zhao et al., 2020) was utilized to construct the 
three-dimensional structure of peptide molecules and stored in PDB 
format (Shen, Maupetit, Derreumaux, & Tufféry, 2014).

Docking Parameters: The Autodock 1.4.7 was employed to dock the 
umami receptor structure with umami peptides. The docking was 
centered on the T1R1/T1R3-VFD (X center = 37.288, Y center = 48.507, 
Z center = 36.614), with the box dimensions of Size X = 80, Size Y =
126, Size Z = 88 (large enough to accommodate the binding pocket 
region of T1R1/T1R3-VFD) (Seifert et al., 2016).

Twenty conformations and scores were generated for each docking 
run, and the resulting conformations were ranked based on binding 
energy scores. The best-docked conformation was selected for the 
following studies.

2.2.1.4. Molecular dynamics simulation (MD simulation). MD Simulation 
was performed using GROMACS 2023.2 software (Smith, Dong, & 
Raghavan, 2022). The topology of the T1R1/T1R3-peptide (complex) 
was generated using the Generalized Amber Force Field (GAFF).

The size of the simulation box was optimized to ensure that each 
atom of the protein was more than 1.0 nm away from the box. Then, the 
box was filled with H2O (transferable interatomic potential with three 
points model, TIP3P Water Model) at a density of 1 g/cm3. Subse
quently, some water molecules were replaced with Cl− or Na+ ions to 
ensure that the simulation system was electrically neutral.

Table 1 
Taste information on umami and non-umami amino acids and peptides used for 
modeling.

Sequence Taste Umami threshold (mg⋅mL− 1)

E umami 0.300
DD umami 1.410
EE umami 0.068

EGS umami 1.135
NNP umami 0.140
AAPY umami 0.887
GGGE umami 0.589
EEDGK umami 0.811
LPEEV umami 2.000

ALPEEV umami 0.186
TESSSE umami 0.142

HLQLAIR umami 0.575
SEASNNK umami 0.23

HGEDKEGE umami 0.143
SLAKGDEE umami 0.283
LLLPGELAK umami 0.315
STMLLESER umami 0.754

AGFAGDDAPR umami 0.283
GYSFTTTAER umami 1.461
VLPTDQNFILR umami 0.125

DAGVIAGLNVLR umami 0.284
RGENESEEEGAIVT umami 0.125

R non umami –
GL non umami –

RRPFF non umami –
YPFPFPIPN non umami –

–: No threshold was reported in literature.
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Energy minimization was carried out using the steepest descent 
method to reduce unreasonable contacts or atomic overlaps in the entire 
system. After energy minimization, the simulation system was pre- 
equilibrated using the NVT module and the NPT module respectively 
at 300 K. Finally, dynamic simulations were conducted. The stable 
conformations, and root-mean-square fluctuations (RMSF) were 
collected.

2.2.1.5. PLS-DA discriminant model for umami peptides based on MD 
simulation data. The RMSF values obtained from 15 ns of MD Simulation 
was used as the dataset, a partial least squares discriminant analysis 

(PLS-DA) model was established using SIMCA 14.1 software (Umetrics, 
Sweden).

The identification of differential amino acid residues was identified 
by the following rule: the ones with fold change (FC) values greater than 
1.5 or less than 0.67, and p-values less than 0.05 in the PLS-DA model 
were screened as differential amino acids.

2.2.1.6. Analysis of Douchi umami peptides using the discriminant model 
based on MD simulation data. The RMSF values obtained from the MD 
Simulation of the peptide-T1R1/T1R3 complex system were imported 
into the PLS-DA model as predictor variables, and the specify module of 

Fig. 1. Flowchart for rapid screening of umami peptides in Douchi.

Fig. 2. Structural variations in the complex systems of T1R1/T1R3 with umami or non-umami peptides. 
A: Distribution of binding sites of umami peptide to T1R1/T1R3. 
B: Comparison of mean RMSF trajectories from MD Simulations (graphing amino acids within residues 1–550 of the VFT + CRD sections), with complete RMSF data 
presented in Fig. S4, S5. 
C: Final structures of T1R1/T1R3 after MD Simulations. 
Green represents the protein structure without ligand binding, red represents the umami peptide-receptor complex, and blue represents the non-umami peptide- 
receptor complex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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SIMCA was used for validation. Peptide sequences located below the 
DCrit (0.05) line, indicating a 95 % confidence interval, in the 
DModXPS+ plot were identified as umami peptide sequences with 
umami properties.

2.2.2. Rapid screening of Douchi umami peptides
The rapid screening of Douchi umami peptides comprises the 

following eight steps (Fig. 1): 

1) Peptidomics analysis of Douchi based on LC-MS/MS.

2) Correlation analysis between the content of Douchi peptides and the 
umami taste detected by an electronic tongue (Fig. S2). The se
quences that showed significant positive correlations were retained.

3) Comparison with umami databases (Iwaniak, Minkiewicz, Darewicz, 
Sieniawski, & Starowicz, 2016): BIOPEP-UWM (www.uwm.edu.pl/ 
biochemia) and Flavor Database (https://mffi.sjtu.edu.cn/ data
base). The sequences not reported by the database were retained.

4) Prediction using online umami peptide predictors: iUmami-SCM (htt 
ps://cam t.pythonanywhere.com/iUmami-SCM) and UMPred-FRL 

Fig. 2. (continued).

W. Guo et al.                                                                                                                                                                                                                                    Food Chemistry: X 24 (2024) 101940 

4 

http://www.uwm.edu.pl/biochemia
http://www.uwm.edu.pl/biochemia
https://mffi.sjtu.edu.cn/
https://cam
https://cam
http://t.pythonanywhere.com/iUmami-SCM


(http://pmlabstack.pythonan ywhere.com/UMPred-FRL). The pep
tides predicted as umami on both platforms were retained.

5) After molecular docking, the peptides with binding energies lower 
than the positive control were retained (the binding energy between 
L-glutamic acid and T1R1 -VFT).

6) After toxicity screening, predicting the toxicity of peptides using 
ToxinPred (https: //webs.iiitd.edu.in/raghava/toxinpred/design. 
php) and the sequences predicted to have potential toxicity to 
humans were eliminated.

7) In PLS-DA umami peptide discrimination model analysis.
8) The peptides were artificially synthesized and subjected to sensory 

evaluation.

2.2.3. LC-MS/MS peptidomics analysis of Douchi
Twenty mg of Douchi powder sample was taken into an EP tube, and 

2 mL of 1 % formic acid was added. The mixture was vortexed until 
evenly mixed followed by sonicated in ice for 10 min. The mixture was 
centrifuged at 20,000g for 30 min at 4 ◦C (TG25KR, Dongwang In
struments, Changsha, China). The supernatant was collected as the test 
solution and stored at 4 ◦C for analysis using the EASY-nLC 1000 ultra- 
high-pressure nano-liquid chromatography system (Thermo Scientific, 
USA).

The LC conditions: liquid phase A was 0.1 % formic acid-water so
lution, and liquid phase B was 0.1 % formic acid-acetonitrile solution. 
Separation of sample was executed with a 60 min gradient at 300 nL/ 

Fig. 3. Construction of an umami peptide prediction model based on RMSF data from MD Simulations. 
A: Score plot of the umami peptide prediction model. 
B: Internal validation of the umami peptide model (DModXPS+ plot). Weights below the DCrit(0.05) line indicate umami, represented in red; those above the line 
indicate non-umami, represented in blue. 
C: Cross-validation plot of the umami peptide prediction model. 
D: Box plot of significant amino acid difference sites indicated by RMSF (data with FC > 2 or FC < 0.5 and p < 0.01). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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min flow rate. Gradient B: 2–5 % for 2 min, 5–22 % for 34 min, 22–45 % 
for 20 min, 45–95 % for 2 min, 95 % for 2 min. (Garshick et al., 2019).

MS conditions: The ion source spray voltage was set to 2.2 kV, and 
the heating capillary of the fusion mass spectrometer was set to 320 ◦C. 
Data-dependent acquisition was used to automatically switch between 
MS and MS/MS (Lee et al., 2016).

MaxQuant software (version 1.6.5.0) was used to search the liquid 
chromatography-mass spectrometry raw files. The quantitative analysis 
was conducted by iBAQ algorithm using MaxQuant software.

2.2.4. Artificial synthesis of peptides and determination of their taste 
characteristics and thresholds

The selected peptide sequences were artificially synthesized by 
ChiaPeptides Co., ltd. (Shanghai, China) using FMOC solid-phase 
chemical synthesis (Guo, Xiao, et al., 2023; Guo, Zhang, et al., 2023).

Eleven panelists of the sensory evaluation (6 females and 5 males, 
aged 24–30 years) with sensory evaluation experience were recruited 
from the College of Food Science and Engineering, Central South Uni
versity of Forestry and Technology (Changsha, China). Four-week sen
sory training was conducted for 11 trained sensory evaluators on the five 
basic tastes of sourness, sweetness, bitterness, saltiness, and umami, 
referring to the National Standard of China (GB/T 16291.1-2012). Prior 
to their participation, each team member has signed an informed con
sent to participate in the study, and the process strictly follows the 
guidelines outlined in the Declaration of Helsinki, ensuring the study 
conforms to ethical norms. This study has been reviewed and approved 
by the relevant audit institutions and committees of the college (Ap
pendix 2 - Informed Consent for the Sensory evaluation).

The analysis of taste characteristics and threshold determination of 
synthetic peptides were performed referring to the methods of Su et al. 

Fig. 3. (continued).
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(2023). The synthetic peptides were dissolved in ultrapure water at a 
concentration of 2 mg/mL and then mixed using a vortex mixer for 30 s. 
They were randomly assigned three-digit numbers for sensory evalua
tion. The evaluators need to describe umami, sweetness, sourness, 
saltiness and bitterness of the samples.

The triangle test (2 blank water samples, 1 peptide solution) was 
used to distinguish each diluted level. The samples were diluted with 
ultrapure water at a ratio of 1:1 (v/v). Each level of sample was 
measured using a three-point method at 30 ◦C for sensory evaluation. 
The mean value of the final two dilution concentrations that effectively 
differentiated the taste between the synthetic peptide solution and the 
water samples was recorded as the individual umami recognition 
threshold-dilution value (TD). The final value was determined by 
averaging the results of three separate experiments.

2.2.5. Data analysis
Data collation and correlation analysis were conducted using Excel 

and SPSS 22.0 (SPSS Inc., Chicago, IL, USA), with p < 0.05 indicating 
significant differences. Graph plotting was completed with Origin 2018 
(OriginLab Corporation, Northampton, MA, USA). For the results of 
molecular docking and MD Simulation, visualization analysis and 
interaction analysis were performed using Pymol 2.4.0 (Schrödinger 
Inc., USA). The twodimensional (2D) diagram of the docking results was 
presented by Discovery Studio (DS) 2019 (BIOVIA, Dassault Systèmes, 
San Diego) (Singh, Upadhyay, & Reddy, 2021).

3. Results and discussion

3.1. Construction of umami peptide discrimination model based on MD 
simulation data

Umami and bitter amino acids exhibit significant differences in 
chemical structure and properties (Liu, Da, & Liu, 2019), which may 
lead to distinct conformational and dynamic characteristics when they 
interact with the umami receptor T1R1/T1R3 in MD Simulation.

In order to elucidate umami perception mechanism, this study 
selected 26 sequences of varying peptide lengths with known thresholds 
from the database (Table 1), including 22 umami peptides or amino acid 
and 4 non-umami peptides (Liu et al., 2023). After molecular docking, 
MD were performed for 15 ns.

When umami peptides bind to T1R1/T1R3, they interact with amino 
acid residues in the VFT binding domain of T1R1/T1R3 through 
hydrogen bonds. Specifically, the amino acid residues involved were (for 
the T1R1 subunit): CYS50, GLN52, ARG54, ASP108, SER148, THR149, 
ASN150, ARG151, THR154, ALA171, SER172, SER173, ASP192, 
LYS193, ASP219, TYR220, and LEU223; and for the T1R3 subunit: 
SER66, SER146, SER147, GLU148, LYS155, SER158, GLY168, ALA169, 
SER170, MET171, GLU178, THR179, PRO181, PRO188, ASP190, 
SER214, ASP216, TYR218, GLY219, PHE274, ALA275, SER276, 
CAL277, VAL277, SER300, GLU301, ALA302, ALA303, GLN326, 
GLN389, and TYR454 (Fig. 2A). Among them, ASN150 showed high 
docking frequency, indicating that it significantly impacted the binding 
region of T1R1. Meanwhile, SER170, GLU301 and GLN389 of T1R3 also 
exhibited a high occurrence frequency. It is speculated that these four 
amino acid residues might be the key amino acid residues for the binding 
of umami peptides to T1R1/T1R3. In the umami peptiede-T1R1/T1R3 
system, the frequency of SER, GLN, ALA and GLU in the binding sites 
exceeded 50 %, and the frequency of SER was the highest, reaching 
23.24 %. GLU is a negatively charged polar amino acid and a strong 
hydrogen bond acceptor amino acid. SER is a common hydrophilic 
amino acid. It contains polar hydroxyl groups, which generally 
distribute on the surface of globular proteins (Rapino et al., 2021). It has 
been reported that in chicken soup, SER promotes the formation of 83 % 
umami peptide-T1R3 complex (Cui et al., 2023; Cui, Li, Wu, & Hu, 
2023). The above result is consistent with the report that SER and GLU 
might be the key residues for the binding of umami peptides to T1R1/ 
T1R3 (Feng et al., 2024; Li et al., 2022; Wang, Wang, Xu, et al., 2023; 
Wang, Wang, Zhang, et al., 2023; L. Zhang et al., 2023).

The statistical analysis revealed that the binding of 22 umami pep
tides to T1R1/T1R3 could be categorized into three types: binding to the 
cavity of the umami receptor T1R1 (E, EGS, AAPY), embedding into the 
binding pocket of the T1R3 cavity (NNP, GYSFTTTAER, DAG
VIAGLNVLR, DD, ALPEEV, STMLLESER, LLLPGELAK, RGENESEEE
GAIVT, AGFAGDDAPR, EE, GGGE, HGEDKEGE, LPEEV), and interacting 
with both T1R1 and T1R3 (VLPTDQNFILR, EEDGK, TESSSE, HLQLAIR, 
SEASNNK, SLAKGDEE). This classification aligns with the summarized 
patterns of 11 peptides identified by Fu et al. (2024) and Yang, Fu, 
Meng, Liu, and Bi (2024) et al. in Agaricus blazei and watermelon 
soybean paste. For instance, among the 11 umami peptides in Agrocybe 
aegerita, four (EY, EG, ECG, and DGPL) were located in the cavity of the 
umami receptor T1R1, four (EV, ENG, DEL, and EDCS) were embedded 

Fig. 4. Profile analysis of Douchi peptidomics. 
A: Tree Diagram showing the proportional distribution of Douchi peptidomics 
precursor proteins, with area size representing the degree of proportional oc
cupancy. 
B: Distribution of peptide lengths in Douchi.
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in the binding pocket of the T1R3 cavity, and the remaining three (PEG, 
DDL, and PEEL) strongly interacted with both T1R1 and T1R3.

Furthermore, there is a specific pattern in the distribution of binding 

regions: The receptor T1R1 cavity mainly accommodates small peptides 
composed of 1 to 4 amino acid residues. However, there is no specific 
length or sequence limitation for the T1R3 region and the T1R1/T1R3 

Fig. 5. Workflow of peptide screening and analysis in Douchi peptidomics.

Fig. 6. The umami peptides in Douchi were identified and verified by the weighted sum of squared residuals (DModXPS+). Weights below the DCrit(0.05) line 
indicate umami, represented in red; those above the line indicate non-umami, represented in blue. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

Table 2 
Taste characteristics of synthetic peptides.

Number Sequence iUmami-SCM UMPred-FRL MD* Bind energy (kcal⋅mol− 1) Taste Umami threshold (mg⋅mL− 1)

1 EALEATAQ + + + − 7.5 umami 0.139
2 SPPTEE + + + − 6.1 umami 0.085
3 SEEG + + + − 5.5 umami 0.096
4 KEE + + + − 5.3 umami 0.060
5 FEE + + + − 5.3 umami, salty 0.079
6 PNM + + − − 5.3 n.d. n.d.
7 EEEQR + + − − 5.8 sweet n.d.

+: The predicted result is umami.
− : The predicted result is non-umami.
n.d.: No detected.

* : The umami peptide prediction model constructed in present study based on RMSF data from MD simulations.
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composite cavity region when binding peptides. Some peptides with a 
length greater than 5 or more amino acids can bind to the T1R3 region or 
the T1R1/T1R3 composite cavity. For example, three new umami tet
rapeptides identified by Zhao et al. (2023) in rainbow trout bind to the 
binding pocket of the T1R1 cavity, while 13 long peptides (5–14 amino 
acids) identified by Du and Zhang in Pacific oyster (Crassostrea gigas) 
and Termitomyces albuminosus bind to the T1R3 (Fu et al., 2024; Zhang 
et al., 2024; Zhang, Tu, Wen, Wang, & Hu, 2024). These research 
findings further validate the pattern that umami peptides of different 
lengths might have different acting sites.

From the analysis of the mean RMSF trajectories (Fig. 2B) and the 
visualization analysis of the final structures of protein binding with 
peptides (Fig. 2C), it can be observed that upon binding of ligands with 
different taste characteristics to the T1R1/T1R3, there are shifts in the 
amino acid positions of the VFT. Specifically, these shifts are observed at 
the following significant sites (T1R1: MET1, LEU8, PHE21, ARG56, 
PRO57, PRO122, GLY123, GLN124, SER137, GLU366, GLN368, 
LYS379, SER382, LEU403, SER408, GLY409, ALA410, CYS411, SER412, 
GLY458, PRO459; T1R3: LEU51, VAL309, ASN406, THR407, GLU428, 
MET430). Furthermore, these displacements propagate further to the C- 
terminal domain (CRD), leading to changes in consecutive amino acids 
in the CRD. Notably, in T1R3, due to its larger cavity, the displacements 
are more significant, manifesting in the regions PRO495-SER497 and 
PHE540-GLU545. The results showed that the changes of amino acids 
were more consistent from the VFT region to the CRD region. A possible 
scenario is that the consistent change could lead to a rearrangement of 
amino acid positions in the TMD. Ultimately, this might result in the 
movement or even swapping of helices, transmitting the umami signal.

The hypothesis is consistent with the rule of protein conformation 
changes after the activation of other G protein-coupled receptors 
(GPCRs) (Wang, Wang, Xu, et al., 2023; Wang, Wang, Zhang, et al., 
2023). Metabotropic glutamate receptors (mGluRs), as a member of the 
C-type G protein-coupled receptor (GPCR) family, have been widely 
studied for their protein conformation changes during activation. Dur
ing the activation process, these receptors undergo a signal transfer 
between the Venus Flytrap domain (VFT), the Cysteine-Rich Domain 
(CRD), and the Transmembrane Domain (TMD), which comprises seven 
transmembrane helices. First, the Venus flytrap (VFT) domain outside 
the membrane binds to an activating ligand, leading to a decrease in the 
distance between the upper and lower lobes of the VFT, and rear
rangement of the hinge region between the upper and lower lobes at the 
dimer interface (Krishna Kumar et al., 2024). Subsequently, this change 
causes the CRD and the TMD connected to move closer to each other. 
Within TMD, the TM4 of two subunits forms a tight interaction, while 
the TM6 forms a shallow groove via its intracellular loop region, binding 
to the C-terminus of the G protein (Du et al., 2021; Lin et al., 2021). This 
combination ultimately activates a series of downstream physiological 
activities.

In Fig. 2B, the mean RMSF trajectories obtained from MD Simulation 
of the peptide-T1R1/T1R3 complexes are compared with that of ligand- 
free T1R1/T1R3. To highlight the contrast in detail, Fig. 2B specifically 
emphasizes the trajectory changes of the first 550 amino acids of T1R1 
and T1R3. For umami peptides, there are 24 significantly different sites 
(p < 0.01) in T1R1. Meanwhile, 98 sites (p < 0.01) exhibit significant 
differences in T1R3. For non-umami peptides, there are 60 significantly 
different sites (p < 0.01), with 6 located in T1R1 and 54 in T1R3.

By analyzing the statistical results of these differential sites, it could 
be observed that in the complex system with ligands, the impact of 
ligand binding on T1R3 was greater than that on T1R1. This might be 
due to the fact that T1R3, compared to T1R1, possesses a larger open 
cavity domain (Liu et al., 2023), which allows the protein to have a 
higher degree of freedom of movement.

The RMSF values were taken as the dataset (Fig. S3, S4). Partial least 
squares discriminant analysis (PLS-DA) was employed to establish an 
umami peptide discrimination model (Fig. 3).

The model results indicate that the 26 peptides can be accurately 

classified into umami and non-umami categories, with complete accu
racy (Fig. 3A, B). The model’s R2 value is 0.949, and Q2 is 0.558 
(Fig. 3C), suggesting that the model is valid according to the established 
criteria (Yan et al., 2024).

A total of 39 amino acid residues with significant changes (p < 0.05, 
FC > 1.5 or < 0.67) in RMSF were identified: MET1, LEU8, PHE21, 
ARG56, PRO57, PRO122, GLY123, GLN124, SER137, GLU366, GLN368, 
LYS379, SER382, LEU403, SER408, GLY409, ALA410, CYS411, SER412, 
GLY458, PRO459, ASN490, GLN491, TYR534 of T1R1; and LEU51, 
VAL309, ASN406, THR407, GLU428, MET430, PRO495, VAL496, 
SER497, PHE540, CYS541, GLY542, GLN543, ASP544, GLU545 of 
T1R3. Among these, 27 are in the VFT domain, and 12 are in the CRD 
domain. Eight amino acid residues with FC > 2 or FC < 0.5 and p < 0.01 
were chosen for presentation. These include PRO122, GLY123, GLN124, 
GLY409, ALA410, CYS411, and SER412 of T1R1, as well as GLU428 of 
T1R3 (Fig. 3D).

3.2. Analysis of the peptide profiles of Douchi

Through non-targeted peptidomics methods, a total of 19,040 pep
tide sequences were obtained from 12 Douchi samples.The chromato
gram of total ion current is shown in Fig. S6. Analysis of their precursor 
protein types revealed 60 categories, with glycinin G2 (P04405) and 
β-conglycinin (O22120) as the major components (Fig. 4A). Glycinin G2 
and β-conglycinin are two major soy proteins, accounting for 70–80 % of 
the total seed globulin content. Studies have shown that during soybean 
fermentation, the α-subunit of β-conglycinin and glycinin G2 undergo 
specific degradation, with hydrolytic sites located on the molecular 
surface or in mobile disordered regions (Shirotani et al., 2021). Analysis 
of peptide length revealed that tetrapeptides are the most abundant, 
followed by pentapeptides (Fig. 4B).

3.3. Bioinformatics analysis of the Douchi Peptidomics

To enhance the accuracy of umami peptide identification, the rapid 
screening of Douchi umami peptides was optimized (Fig. 5).

The correlation between the content of Douchi peptide and the 
umami value in the sensory results of Douchi was analyzed (data not 
shown). A total of 3500 peptide sequences with a significant positive 
correlation (p < 0.05) with the umami value of Douchi and a length of 
3–8 amino acids were screened and retained.

After comparing with the sequences in the BIOPEP-UWM database 
(www.uwm.edu.pl/biochemia), 17 previously reported umami peptides 
(AEA, DDE, DED, DEE, EDE, EDV, EED, EEE, EGS, EPQ, GFP, LDL, NNP, 
PET, SEE, LPEEV, ALPEEV) were excluded, leaving 3483 peptides, 
including 592 tripeptides, 649 tetrapeptides, 620 pentapeptides, 584 
hexapeptides, 543 heptapeptides, and 495 octapeptides for further 
screening.

These sequences were then subjected to prediction using the machine 
learning-based iUmami-SCM and UMPred-FRL online umami peptide 
prediction platforms. Of these, 784 peptides predicted to be umami-taste 
by both platforms were selected for batch molecular docking with T1R1/ 
T1R3.

We retained those peptides with molecular docking binding energies 
lower than the glutamic acid binding energy (− 5.2 Kcal) and screened 
out the peptide sequences without toxicity using the ToxinPred web
server algorithm, resulting in a total of 685 peptides.

Finally, the remaining peptides were sorted according to their scores 
on the online umami peptide prediction platforms. Seven peptide se
quences with iUmami-SCM scores greater than 580 (Zhang, Tu, et al., 
2024; Zhang, Zhang, et al., 2024), UMPred-FRL scores greater than 0.9 
(Cui, Li, et al., 2023; Cui, Zhang, et al., 2023), and ranked within the top 
80 in both platforms were selected.

Through the rapid bioinformatics screening described above, we 
have identified a total of seven novel potential umami peptides in 
Douchi, which are EALEATAQ, SPPTEE, SEEG, KEE, FEE, PNM, and 
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EEEQR (Fig. 5).

3.4. Analysis of potential umami peptides in Douchi using the PLS-DA 
umami peptide discrimination model and verification of their artificial 
synthesis

The seven potential umami peptides rapidly screened through bio
informatics analysis undergone MD Simulation, and the RMSF results 
were substituted into the PLS-DA model for classification. It was found 
that according to the PLS-DA model, five peptides were predicted to be 
umami peptides, and two were predicted to be non-umami (Fig. 6).

Finally, all seven peptides were artificially synthesized, and sensory 
evaluations were conducted to determine the umami threshold 
(Table 2). The results of the taste characteristics of these peptides 
determined by sensory evaluation are consistent with the classification 
results of the PLS-DA model. The five predicted umami peptides showed 
threshold between 0.060 and 0.150 mg/mL, all of which were lower 
than the umami threshold of 0.3 mg/mL for sodium glutamate. Among 
them, KEE (threshold: 0.060 mg/mL; binding energy: − 5.3 kcal/mol) 
had the strongest umami taste. It has a stronger umami characteristic 
than the umami peptides in yeast extract and Pacific oyster ethanol 
extract reported in the literatures (Fu et al., 2024; Jia et al., 2024; Wang, 
Wang, Xu, et al., 2023; Wang, Wang, Zhang, et al., 2023). This result 
verifies the validity of the model.

4. Conclusion

Five novel umami peptides were identified in Douchi, with a 
threshold range of 0.060 to 0.150 mg/mL. The PLS-DA discriminant 
model constructed for umami peptides exhibited an R2 value of 0.949 
and a Q2 value of 0.558. The residues ASN150 of T1R1, as well as 
SER170, GLU301 and GLN389 of T1R3, were suggested as the key amino 
acid residues for the binding of umami peptides to the T1R1/T1R3 re
ceptor complex. Furthermore, it was found that the amino acid residues 
with significant RMSF changes are concentrated in the T1R3. A total of 
39 different amino acid sites of the two complex systems formed by 
umami/non-umami peptides and the taste receptor proteins (T1R1/ 
T1R3) were identified. From the VFT to the CRD, it was observed that 
the amino acid site shift of the protein changed from occasional to 
continuous and cumulative. This phenomenon might potentially repre
sent the initial signaling of umami taste perception.
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