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Introduction: An increasing number of parameters can be considered when making

decisions in oncology. Tumor characteristics can also be extracted from imaging

through the use of radiomics and add to this wealth of clinical data. Machine learning

can encompass these parameters and thus enhance clinical decision as well as

radiotherapy workflow.

Methods: We performed a description of machine learning applications at each step of

treatment by radiotherapy in head and neck cancers. We then performed a systematic

review on radiomics and machine learning outcome prediction models in head and

neck cancers.

Results: Machine Learning has several promising applications in treatment planning with

automatic organ at risk delineation improvements and adaptative radiotherapy workflow

automation. It may also provide new approaches for Normal Tissue Complication

Probability models. Radiomics may provide additional data on tumors for improved

machine learning powered predictive models, not only on survival, but also on risk of

distant metastasis, in field recurrence, HPV status and extra nodal spread. However,

most studies provide preliminary data requiring further validation.

Conclusion: Promising perspectives arise from machine learning applications and

radiomics based models, yet further data are necessary for their implementation in

daily care.

Keywords: radiomics, machine learning in head and neck cancer, predictive medicine, radiation oncology,

treatment planning
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INTRODUCTION

Machine Learning (ML) has promising applications in radiation
oncology. This technique can process a high number of
heterogeneous parameters and its recent development has led
to a new paradigm in predictive medicine with hope for
improved prognosis classification and toxicity prediction for
a better treatment strategy. ML algorithms are all the more
powerful that they include data from many different sources that
can be clinical, biological, genomic and radiologic. Radiomics
are actively being explored as prognostic and predictive tools,
correlated with histologic and genomic characteristics in several
cancer types (1–3). ML techniques may also enhance the
radiation oncology workflow management thanks to automation
of treatment planning steps such as automatic delineation or
adaptive radiotherapy.

Radiomics
Innovation in medical imaging has led to a dramatic increase
of resolution and imaging modalities (MRI, PET TDM, CT),
imaging agents, reproducible protocols, and image analysis
such as radiomics. Radiomics consists in extracting hundreds
of quantitative features by an automated or semi-automated
software. It relies on the hypothesis that mineable data can
be extracted from medical images and provide additional
information on gene protein and tumor phenotype and then used
for patient care (4, 5).

Contrary to subjective evaluation of tumor characteristics
such as necrosis or heterogeneity, radiomics use data
characterization algorithms, automatically extracted from a
delineated volume/region of interest (on a CT, PET, or MRI
scan), to render a mineable feature space. They can be classified
into the following categories (6).

- First order features describing the distribution of voxel
intensities (including intensity features from wavelet
decompositions of the original image).

- Shape features: related to the shape of the volume.
- Texture features: revealing intra-tumoral heterogeneity
differences (including texture features from wavelet
decompositions of the original image).

A high number of features is usually extracted and a selection
needs to be made, generally by the following steps: each
region/volume of interest is contoured by two independent
physicians to assess feature stability: only reproducible values
independent of delineation uncertainties are kept, using Intra
Class Correlation (ICC). Then univariate analysis is performed to
select features with a statistically significant correlation with the

Abbreviations: ML, Machine Learning; ANN, Artificial Neural Network; DT,

Decisional Tree; SVM, Support Vector Machine; BN, Bayesian Network; NTCP,

Normal Tissue Complication Probability; RT, Radiotherapy; DSC, Dice-Sørensen

Coefficient; OAR, Organ at Risk; IMRT, Intensity Modulated RadioTherapy;

kV-CBCT, Kilo-Voltage Cone Beam Computed Tomography; MV-CBCT, Mega

Voltage Cone Beam Computed Tomography; ART, Adaptive Radiation Therapy;

HDIR, hybrid deformable image registration; TPS, Treatment Planning System;

ROI, Region Of Interest; DVH, Dose Volume Histogram; RFC, Random Forest

Classification; GTV, Gross Tumor Volume; ENE, extra nodal extension; FOV, Field

Of View.

FIGURE 1 | Feature selection general process.

endpoint. Eventually multivariate analysis and feature ranking
are performed. The best performing features are then combined
into a predictive model. The performances of the resulting model
is then assessed on an external validation dataset (Figures 1, 2).
Due to the high number of interdependant features generated,
ML algorithms are well-suited to render best performing models.
The rise of research in radiomics has relied on the recent
accelerated development of ML techniques.

The reproducibility of such a model is also highly dependent
of the imaging technique (7, 8). Movement may alter the
model performances as well as the time lapse between contrast
injection and acquisition, or data processing from acquisition to
display (from RAW images to DICOM images), known to vary
across manufacturers.

Several institutions have dedicated teams for radiomics
research with an open source approach. For instance, the
radiomics.io plateform (http://www.radiomics.io/) was
developed by Harvard University in order to develop and
maintain open source projects, provide go-to resource for
radiomic applications and promote radiomics within the science
community. It provides links to major radiomics original
articles and features extraction tools such as PyRadiomics (9).
The CASMI (Chinese Academy of Science, Medical Imaging)
laboratory in Beijing has developed a website on which tools
such as 3DMed (feature extraction software) and Radiomics
Software (automated segmentation and radiomics classifier
software) are available for download (http://www.radiomics.
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FIGURE 2 | Radiomics workflow. ROI is first delineated. Then features are extracted from this ROI. Eventually, association with clinical parameters or survival are

sought.

net.cn). It also launched a cancer data sharing plateform. Other
features extraction softwares have also been developed and
made available to the scientific community such as IBEX (10),
LifeX (11).

Machine Learning
ML technique is a branch of artificial intelligence in which
an algorithm learns by inference from a data set (12). Its
main objective is to produce a model capable of classification,
prediction, and estimation of a situation from selected known
data. As a result it may improve our decision-making process as it
can encompass a higher number of parameters than humans (13).
Parameters coming from clinical observations, biology, genomics
and radiomics data may improve the clinician decision-making
process (Figure 3).

The training phase is the process of finding dependencies in a
system for a given dataset. Then, these dependencies are used to
predict new outputs. MLmethods are categorized into supervised
and unsupervised learning. Supervised algorithms use labeled
data (to map the data to the desired output classification) while
unsupervised learning algorithms do not use labeled examples
and provide a classification based on the patterns found in the
dataset. Semi supervised learning methods combine supervised
and unsupervised learning when dataset combines both labeled
and unlabeled data.

The performance of a model is estimated on a validation
sample, through sensitivity, specificity, accuracy and area under
the curve (AUC) on the testing sample (Figure 4). If there is
only one dataset, validation methods such as Holdout Method,
Random Sampling, Cross-Validation, and Bootstrapping can be
used (14).

Machine Learning methods include, but are not limited to:

• ANN (artificial neural network) can be used to classify
patients. Its main disadvantage is its high level of abstraction
which makes it difficult to determine what features were used
by the neural network. This disadvantage is called the “black
box” effect.

• DTs (Decisional Trees) renders a decisional tree to classify
each input.

• Random forest classifier uses a vote from multiple decisional
trees for a better classification compared to a single
decisional tree.

• SVM (Support Vector Machine) technique identifies a
hyperplane that separates data points in two classes. Its
advantages are its generalizability and the possibility to obtain
probabilistic outputs.

• BNs (Bayesian Networks) produce probability estimations
that are useful for representing dependencies between input
features through graphs.

Limitations of machine learning lie in data quality (missing,
duplicated, noise, outliers) which is the corner stone of quality
algorithms. Besides, a higher number of features (data type)
implies a higher number of samples (15). Data sample should
be 5–10 times more numerous than the number of features. As
a result, data processing is necessary to reduce dimensionality
and enhance the model robustness (16). However, for a given
question such as prognosis, many signatures with different
features are generated resulting in a lack of agreement on the
features to take into account (17–20).

The ideal classification model should fit the training set
and correctly classify each item in the test dataset. However,
if misclassification error rate is low in the training set, and
gets higher in the testing set, the model is overfitting and is
not generalizable.
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FIGURE 3 | Training and validation steps of a machine learning algorithm.

As a result, validation on external cohorts is critical to prove
its generalizability. Many models (not necessarily developed
with machine learning techniques) are shared on plateforms
such as http://www.predictcancer.org. This open source initiative
may ease external validation of models by other teams
on other populations and promoted by radiomics websites
previously introduced.

MATERIALS AND METHODS

Descriptive Approach of Machine
Learning Application
We performed a description of applications of machine learning
at each step of treatment of head and neck cancer in radiotherapy.

Review on Radiomics and Machine
Learning Survival Models
We then focused on radiomics with a systematic review in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA).

We conducted a comprehensive search of PubMed for
relevant peer-reviewed publications from January 2012 to
January 2019. A comprehensive list of MeSH terms and keywords
was used to query Pubmed (“head and neck cancer,” “radiomic,”
“signature,” “survival,” “machine learning”). The search strategy
also included screening of reference lists of relevant publications
(“snowball” search technique). Publications of models based
on radiomics or machine learning to predict survival or
distant metastasis in head and neck cancer after radiotherapy
was performed.

RADIATION ONCOLOGY
TREATMENT PLANNING

Radiotherapy treatment planning encompasses time consuming
tasks such as delineation, dosimetric planification, and adaptive

FIGURE 4 | Holistic clinical decision support system.

radiotherapy. Increasing automation of these tasks is a promising
prospective. It may shorten and improve reproducibility
of contouring that limits the implementation of adaptive
radiation therapy and Normal Tissue Complication Probability
(NTCP) modeling.

Automatic Organ at Risk (OAR) Delineation
The delineation process is manual and time-consuming and
suffers from inter and intra practitioner variability. Automatic
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OAR delineation may help for contouring homogenization and
ease the workflow, a key factor for implementing adaptive
radiotherapy. The initial approach for automatic delineation was
mainly atlas based, using hybrid registration to deform structures
from an atlas and map it to the patient anatomy.

Yang et al. (21) created an algorithm for automatic
segmentation of the post treatment parotid glands. Fifteen
patients were prospectively included. They had head and neck
cancer treated by radiation therapy with at least 1 year of follow-
up. Parotid glands were manually contoured on a pre-treatment
MRI. This volume would then be used as an atlas for each patient.
MRIs were performed at 3, 6, and 12 months after radiation
therapy. The aim was to have the parotids glands automatically
segmented on follow-up MRI to assess their evolution. The first
step was an atlas-based registration: first, a hybrid deformable
image registration was used to map the pre-RT MRI to the post-
RT MRI. The resulting transformation was applied to delineated
parotid volume. Multiple features were extracted for input aside
with the transformed contour for the support vector machine
training in order to detect horizontal, vertical and diagonal edges
and strength of edges.

The trained SVM could detect edges on the follow-up MRI to
render a parotid contour, then intersected with the transformed
parotid volume + 10mm. Smoothing and 3D morphology
operations were then applied to render a volume without
disconnection, holes or irregularities.

The ground truth was manually contoured on a follow
up MRI. A volumetric Dice-Sørensen Coefficient (DSC) was
performed to assess the model performance. There was no
significant difference of volume between the automatically and
manually contoured parotid glands on follow-up MRI with a
volumetric Dice-Sørensen Coefficient of more than 90%.

However, such an atlas based method provided little
improvement to the workflow since the result usually needs
correction (22–31). Using artificial neural networks is a new
approach: Nikolov et al. (32) recently created a convolutional
neural network using a 3D U-Net architecture model (33) to
automatically contour 21 OAR. The validation process had to
account for human variability: each case was segmented by an
experienced radiologist arbitrated by a second delineation; their
contour were then compared with two further radiographers
arbitrated by experienced radiation oncologists as the ground
truth. The performance was assessed by a surface DSC as it
provides a quantitative agreement between the two surfaces
instead of the two volumes.

This assessment method is more clinically relevant since it
better represents manual correction time for everymisplacement.
Delineated OARs were the brainstem, spinal canal, spinal cord,
left and right cochleas, lacrimal glands, lenses, lungs, optic
nerves, orbits, submandibular, and parotid glands. Each OAR
surface DSC was similar to humans in all previously described
OAR except for the right lens and the brainstem (deviation of
more than 5%). Right lens uncertainties may be correlated with
CT quality as borders are easier to see on a higher definition
CT. Interobserver variability among experienced oncologists (for
instance parotid delineation) was a limitation for learning since
the ground truth was not consensual.

Surface DSC is a metric introduced by Nikolov et al. to
take into account misplacement even by a small offset that
may be time consuming to correct compared to volumetric
DSC. This convolutional neural network approach improved
the usual performance of automatic delineation model. Clinical
acceptability and time saving estimations need to be assessed
to value the model’s clinical implementation. Integrating other
imaging modalities (MRI, PET, CT) co registration to better
contour certain OAR has to be assessed.

Adaptive Radiotherapy
Intensity Modulated RadioTherapy (IMRT) is the standard of
care for Head and Neck radiotherapy. Daily repositioning by
kV-CBCT (Kilo-Voltage Cone BeamComputed Tomography) or
MV-CBCT (Mega Voltage Cone Beam Computed Tomography)
through rigid registration to detect and correct set up errors
(34) can be performed. Adaptive Radiation Therapy (ART) is the
adaptation of target volumes and critical OAR volumes to tumor
shrinkage and patient emaciation during treatment (35–37).
Benefits and feasibility of ART has been assessed by exploratory
studies (38–40) ART is not routinely used, as a consequence of
limited resources, its time consuming character, and unreliable
automatic contouring.

Thus, the main obstacle to test ART on a higher number
of patients is the supplementary workload even with hybrid
deformable image registration (HDIR) (35). Guidi et al. created
(41) and tested (42) a support vector machine tool for adaptive
tomotherapy treatment in head and neck cancer to completely
automate this process in order to raise an alert when the
patient would need a new dosimetric scan to adapt the volumes.
Between 2013 and 2014, 40 patients diagnosed with a head
and neck cancer treated by radiation therapy with 66Gy on
high-risk volume and 54Gy on low-risk volume were included.
Raystation R© (v 4.5.1.14 RaySearch Laboratories AB, Stockholm
Sweden) TPS was used for HDIR. First, a rigid registration was
performed and ROIs copied on the MVCT. Then, HDIR was
performed and the resulting mesh grid—with a voxel to voxel
map of the deformed vector field—was eventually applied to
new automatically contoured ROIs. Then dose deformation was
carried out using the deform dose tool of the TPS.

The algorithm classified data that included ROIs and several
dose metrics on a weekly basis.

Eventually, the SVM model rendered a graph and a summary
of the output. Unsupervised learning identified four categories:

- Predictive: the data points are within the defined threshold.
Re-planning is not needed;

- Adaptive: Points are outside the defined threshold. The patient
needs a replanification;

- Errors: points that are outside thresholds because of a
software bias;

- Warning: points that are outside thresholds because of
emaciation, organ motion, or incorrect set up;

After a learning phase on 27 patients, the algorithm was tested on
13 patients. In the first 3 weeks, no replanification was needed for
84% of the patients. Then a reverse trend became significant at
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the beginning of the 4th week with 77% of replanification needed
during the last 2 weeks of treatment.

Guidi et al. then performed a clinical validation retrospective
cohort of 90 patients (42) from four radiation oncology centers
equipped with various accelerators (Tomotherapy or Linac +

CBCT) to assess the performance of the previously described
algorithm. Two physicians suggested an ideal re-planning time—
point if re-planning had to be performed. Decision was based on
parotid gland and neck volume shrinkage in comparison with the
initial dosimetric CT scan.

Similarly to Yang et al. (21) after 6 weeks of therapy, parotid
gland volume decreased by 23.7 ± 8.8%. As shown on their
previous work described above (41), there was no re-planning
needed during the first 3 weeks (for 86.7% of cases). From the 4th
week, 55.2% of patients would need a re-planning. 11.8% were
affected by biases and 5.9% would generate a warning.

Giudi et al. provide a machine learning powered, automated
tool to discriminate treatments in need of replanification. The
clinical validation was focused on the time point of re-planning
reproducibility compared with physician decision.

Many adaptive ART approaches are being investigated and
questioned (40). Dose recalculation models are based on patient
cohorts and are thus limited to data availability. It should be
enhanced with the rise of data mining and further validated.
The machine learning approach proposed by Guidi et al. opens
the prospect of triggering a clinical decision in an automated
process, leaving only equivocal cases to the radiation oncologist.
However, this would require an automatic workflow handling
with a powerful TPS computing power.

NORMAL TISSUE COMPLICATION
PROBABILITY ASSESSMENT

Predictive Model Limitations
NTCP models are usually based on dose–volume histograms
(DVHs), which are not ideal representations of 3D doses
and assume that all the regions of an OAR have an equal
functional importance, thus discarding organ specific spatial
information. They do not take into account fraction dose
variations, nor anatomical variations of the OAR and its
dosimetric consequences during treatment (43). Models taking
into account more data such as 3D dose distribution in OARs,
dependencies between the dose delivered at other OARs may
enhance toxicity prediction. Models using machine learning
might be well-suited since the bigger amount of interdependent
data to take into account.

Xerostomia
Xerostomia is one of the most limiting toxicity during radiation
therapy for head and neck cancer due to its consequences
on weight loss, tooth decay, speaking difficulties, dysphagia
(21, 44). A better prediction of parotid gland function would
enhance its protection and the quality of life after RT. Parotid
volume diminishes with radiotherapy (21, 41, 45). The volume
reduction and the migration toward high dose region can
generate a total absorbed dose significantly higher than the
planned one. Consequently, a relation between parotid gland

volume reduction and xerostomia was found (46). As previously
described, Yang et al. (21) generated an atlas based model for
parotid delineation. The volume tended to decrease with time
after radiotherapy consistently with previous finding (44). New
NTCP models predicting xerostomia using volumetric change
and other parameters could be tested without the limiting burden
of time-consuming contouring. Further longitudinal studies
using this algorithm may investigate parotid gland volume
reduction as a predictive factor of xerostomia.

Zhang et al. published a model for a plan related clinical
complication probability in a multiplan IMRT framework
(47). They aimed to predict a given OAR complication as a
function of all OAR dose volume constraint settings without
explicit additional computation. Using machine learning, such a
prediction may be possible. One hundred and twenty-five plans
for one head and neck by varying Dose Volume (DV) constraints
on right or left parotid, or cord were created

The sample was randomly partitioned between training
and testing samples with a 50-time cross validation. Decision
trees and support vector machine were explored. SVM yielded
superior results in predicting saliva flow rate and decision trees
rectal bleeding.

The ground truth on salivary flow estimated by an Equivalent
Uniform Dose based model developed by Chao et al. (48) trained
on retrospective studies (48–50). Compared to this model, plan
related post RT salivary flow rate prediction using SVM had a
0.42% (0.41–0.43) error.

This multiplan approach to display the risk of an OAR adverse
event regarding dosimetry constraints on other OAR is global
and may help physicians in their prescription. The ground
truth relies on relatively weak and somewhat heterogenous
data (retrospective cohorts) that may bias the prediction tool,
but on the other hand, it easily integrates these data in
the clinical decision. This approach would now require a
clinical validation.

Mucositis
Mucositis is commonly seen in head and neck radiation therapy
treatments, leading to anorexia, pain, dysphagia, weight loss (51),
reduced quality of life (52) and eventually missed fractions (53),
higher treatment duration compromising tumor control (54).
Mucositis limits dose escalation or hyper fractionation designed
for better oncology outcomes (55).

Many NTCPmodels have been developed for clinical decision
support, treatment modality selection, and treatment plan
optimization (56–59). However, none can predict mucositis
severity and guide clinical decision. This may be due to their
DVH-based nature, leading to oversimplification of the dose
distribution [since it was previously shown that xerostomia was
impacted by spatial distribution of the dose (60)]. Oral cavity
contains keratinised and non-keratinised mucosa, thus DVH
based decision may be biased. Dean et al. conducted a study
to generate a severe acute mucositis NTCP and provide with
the generated model clinical decision guidance, based on dose
constraints (61).

Three hundred and fifty-one patients enrolled in six
prospective trials were included. Patients had been treated for
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various head and neck cancers and had DICOM RT files
available. Mucositis was graded with the common terminology
criteria for adverse events CTCAE v2 or 3 which are almost
equivalent. Mucositis was dichotomized between severe (grade
3 and more) and non-severe (grade 2 or less). Induction
chemotherapy, concurrent chemotherapy regimen, definitive vs.
post-operative radiotherapy, primary disease site, age, sex and
relative cumulative dose–volume histogram in 20 cGy intervals
from 20 to 260 cGy per fraction were co variates of the models.
Statistical analysis used for ML methods followed the principles
described by Kang et al. (15) for model generation, and on
the TRIPOD guidelines (Transparent Reporting of multivariable
Prediction model for Individual Prognosis or Diagnosis) (62).
Three different types of classifiers were generated: penalized
logistic regression (PLR) (63), support vector classification (SVC)
(64) and random forest classification (RFC) (65). They had
approximately the same discriminative abilities. The addition
of the dose distribution description did not improve the
discriminative abilities. Therefore, the standard models (without
the spatial dosimetric data) were favored. The standard RFC
model had better calibration, probability estimates and overall
performance than PLR and was the easiest to understand. As
a result, the RFC model was preferred for prediction of severe
mucositis for individual patient. It is available online at https://
github.com/jamiedean/oral-mucositis-model.

The volume which received 220 cGy or more by fraction
(V220) was the most important feature in both RFC models.
The higher fractional dose volume (v240 and v260) were close
to 0% and therefore did not correlate with mucositis. Age was
the clinical covariate of highest importance but this may be
artifactual due to the large number of possible values compared
with the other clinical co variates. Besides, on univariate
logistic regression, it was not significantly associated with
severe mucositis.

Another model was published (66) with a similar findings
on dose response (volume of oral mucosa receiving more than
2Gy per daily fraction was the most strongly associated feature).
Concurrent chemotherapy was also correlated contrary to the
Dean et al. model, perhaps since the V220 cGy volume was
positively correlated with concurrent chemotherapy. The Dean
et al. model was based on delineation standard that does not
accurately represent the mucosal surface and may explain the
lack of improvement with spatial dosimetric data. Dean et al.
recently created and validated a novel automated contouring
technique for oral mucosa that would be more reproducible and
representative of the mucosal surface (67, 68). Data on tobacco
and alcohol consumption were not available for patients in two
out of six trials.

TUMOR CONTROL
PROBABILITY ASSESSMENT

Improving the tumor control probability assessment before
treatment is a promising way to adapt the treatment
strategy. Head and Neck tumor treatment strategy mainly
depend on the TNM stage. Radiomics are correlated

with tumor characteristics, which may provide improved
prognosis classification.

Radiomics Revealing
Tumor Characteristics
HPV Status

Yu et al. (69) developed a model to assess HPV status with a
radiomic signature: they extracted 1,683 features with IBEX (10)
from head and neck GTV T or N (or both, in this case the most
extreme value was used). Feature selection was carried out in a
stepwise manner: (1) inhomogeneous features between training
and validation cohorts were discarded; (2) only features which
could discriminate HPV + and – were kept; (3) only biserial
absolute correlation > 0.3 between each radiomic feature and
HPV status were kept (4) only the top 10 features regarding their
mean AUC (assessed by various statistical models) were kept (5)
final features were selected by forward selection (one by one add
to the model until the model AUC ceases to increase).

The General Linear Model (GLM) was used as it provided
better AUC compared with various other models (such
as random forest, SVM, decision trees, deep learning. . . ).
MeanBreadth and Spherical Disproportion were the most
important features. MeanBreadth measures width of the ROI,
thus it is correlated to tumor size. SphericalDisproportion
represents the complication of the surface compared to a sphere.
This may imply that HPV + tumors are smaller and less
complex compared to HPV—tumors. The model performance
was tested on two dataset coming from a public and a private
hospital. The model performed an AUC of 0.86667 on public
leaderboard, and 0.91549 on the private one which is a good
indicator of generalizability. Clinical data such as grade or TNM
stage although available, were not used as authors wanted to
assess the image discriminatory power, and the discretization
induced by these variables could add uncertainty to the
final model.

Extra Nodal Extension

Nodal metastasis and tumor extra nodal extension (ENE)
are key decision factors for cancer management. However,
the performance for ENE detection by imaging measured by
AUC range between 0.65 and 0.69 (70). From CT scans of
270 patients from 11 centers, Kann et al. (71) developed a
convolutional neural network (CNN) trained on 2875 lymph
nodes delineated and labeled with histologic features. After cross
validation on 124 samples, the CNN was then tested on 131
samples. To avoid overfitting, data augmentation by random
rotations and flips was used. Three different networks were
used (Boxnet, SmallNet, DualNet). Dualnet was selected for
further testing as it yielded the best AUC. On independent
test set, the DualNet neural network demonstrated an AUC of
0.91 (95%CI: 0.85–0.97) with a negative prediction value (NPV)
of 0.95 for ENE status, and a AUC of 0.91 with a NPV of
0.82 for nodal metastasis. Using a convolutional neural network
directly on images, without prior features extraction, on raw
DICOM is a robust approach as it frees from the variability
of radiomics features and image pre-processing. Furthermore,
they performed a feature extraction with RF analyse with lower
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performance compared to convolutional neural network. Only
nodes that could definitively be correlated with histologic reports
were included, which may lead to a selection bias. CT scan
parameters heterogeneity was minimized by normalization and
scan resampling.

Machine Learning on Clinical Factors for
Prognosis Assessment
Bryce et al. (72) developed an artificial neural network on
clinical factors and compared it to a logistic regression approach
to create a predictive model of the 2-year recurrence free
survival. They analyzed data from a phase III trial (73)
that included patients with locally advanced head and neck
squamous cell carcinoma (≥T3 or N3 or T2N0 base of tongue,
hypopharyngeal, or pyriform sinus carcinomas) undergoing
hyperfractionated accelerated radiation therapy with or without
concurrent cisplatin and 5FU. Of the 116 patients of the study,
95 were included. Fourteen clinical variable potentially associated
with 2 year PFS (Progression Free Survival) were available.
Initial univariate analysis followed by stepwise multivariate
analysis were first performed to select a subset of promising
variables. This subset was pruned through stepwise elimination
from an ANN model. The neural network used was a three
layers feed forward back propagation neural network (74). For
logistic regression models, clinical variables were first selected by
stepwise selection and backward elimination with an assessment
of the model performance to confirm that the selected variables
were the best for 2-year survival prediction. The best logistic
regression model used nodal stage, tumor size and race with an
AUC of 0.67 ± 0.5. At 70% sensitivity, LR performed a 54%
specificity while artificial neural network performed a higher
AUC of 0.78 ± 0.05 (p = 0.07) with a specificity of 72% for
a 70% sensitivity. As a result, ANN performed a better model
of the 2-year survival. Although its performance remains low
for a clinical use, it was a sensible improvement in prediction
compared to TNM alone or logistic regression model within
the limits of the available data (≥T3 or N3 or T2N0 base of
tongue, hypopharyngeal or pyriform sinus carcinomas). As a
result, the 2-year follow-up was too short to reveal the effects
of chemotherapy. Due to this non-linear and non-parametric
superior ability to model complex patterns, ANN techniques
provide a new approach for predictive medicine, but rely on
the quality and quantity of data available and its performance is
always limited to characteristics of the patients in the training set.

Radiomic Signature Added Value
Radiomic features can predict tumor characteristics linked to
survival. But do they provide additional information for a
better prognosis classification? Ou et al. (75) developed a
radiomic signature to estimate overall survival and assess its
incremental value to HPV status. One hundred and twenty
patients with stage III—IVb (TNM 2010) were included from
2006 to 2010 in a former monocentric study cohort (76). They
received either cetuximab (BRT group) or cisplatin (CRT group)
concurrently with a 3 dose levels radiotherapy (70, 60, 50–54Gy).
OncoradiomicsTM was used to extract 544 features, narrowed to
24 statistically significant features by logistic regression, from

which a radiomic signature score was generated. On the whole
population, the signature score had prediction capacity of 5-
year survival with AUC = 0.67 95% CI [0.58–0.76]. The fraction
of patient whom HPV status was unknown in BRT or CRT
groups was not detailed. P16 status also predicted for OS (Overall
Survival). Patients with low score had significantly better OS
and PFS. When combining p16 and radiomics signature the
prognostic performance improved (AUC = 0.78, p = 0.01).
This preliminary study showed an incremental added value of a
radiomic signature score to HPV status. It would require external
validation on a more homogenous population as treatment
standards evolved between 2006 and 2012.

Radiomic signature reveals a tumor phenotype that may
not be organ specific. For instance, Aerts et al. (6) generated
a four feature radiomic signature on a retrospective cohort
of 422 patients diagnosed with Non-Small Cell Lung Cancer
(NSCLC) treated with curative intent. The signature’s validation
was performed on a 225 NSCLC patients cohort, two Head
and Neck Squamous Cell Carcinoma (HNSCC) patients cohort,
and a 89 patients HNSCC cohort with genomic information.
The four feature radiomics signature was validated using the
concordance index [c-index or CI, a generalization of the ROC
AUC (77)]. On Lung2 data, performance was good with a CI
of 0.65, p = 2.91.10−9 (Wilcoxon test). On H&N1 and H&N2,
performance was high with respective CI of 0.69, P= 7.99× 10−7

(Wilcoxon test), and CI= 0.69, P= 3.53× 10−6 (Wilcoxon test).
Compared to volume, the radiomic performed significantly

better. When combined to TNM classification, the performance
was significantly better than TNM alone suggesting
complementary information for prognosis. These performances
were improved both in the HNSCC and the NSCLC cohorts,
in all the treatment groups (radiation or concurrent chemo
radiation). This signature was not correlated with HPV status
and did preserve its performance in the HPV—group.

Aerts et al. showed the predictive value of features selected
for their stability and reproducibility which indicates the power
of integrating independent datasets for feature selection and
model building. Among those features, keeping only the top
four performing features regarding prognosis to perform a single
validation on 545 patients allowed a robust statistical analyse
and avoided overfitting. The most dominant features of the
signature quantified intra-tumor heterogeneity. Intra-tumoral
heterogeneity reveals the presence of multiple colonies with
different gene expression that cannot be encompassed by biopsies
and therefore is an obstacle to personalized medicine and a
potential prognosis marker. This results could be supported by
associations with gene expression found by Zhu et al. on the
TCGA and TCIA cohorts (78). The better prognosis prediction
performance in head and neck cancer may be due to the absence
of breathing movement but underlines the non-specificity of
heterogeneity of this signature in cancer prognosis.

The MD Anderson Cancer Center head and neck quantitative
imaging working group (79) has developed a radiomic signature
on 465 patients with oropharyngeal cancer to assess the
recurrence probability after IMRT. Patients were split into
training, tuning and validation sets. For each GTVp, 134
radiomic features were extracted using IBEX and narrowed
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to two features with decision tree modeling: Intensity Direct
Local Range Max (LRM) and Neighbor Intensity Difference
2.5 Complexity with cut-off values corresponding to 1,616 and
457,808, respectively. Patients with both values were below the
aforementioned cut offs, had a more favorable local tumor
control with 94% of tumor control rate at 5 years in the training
set compared to 62 to 80% depending if one or two values
were above cut-offs. Compared to clinical factors such as HPV,
smoking status or age, the radiomic signature performed better.
Limitations come from CT heterogeneity and some missing
clinical data (HPV status, tabaco consumption status).

Nasopharyngeal carcinomas 5-year overall survival is around
50% (80), but drops when in advanced stage. Prediction of
outcome may help to make decision regarding treatment.
Zhang et al. (81) developed a predictive model for 3-year PFS
using MRI-based radiomics in nasopharyngeal carcinomas. One
hundred and eighteen patients were included. Nine hundred
and seventy features were extracted using Matlab. A radiomics
signature from 8 features (5 from T1 weighted and 3 from T2
weighted images) yielded a C index of 0.737 (95% CI: 0.549–
0.924). This performance outperformed classic TNM staging
system (C-index: 0.514), but both combined yielded a better
performance (C-index: 0.761; 95% CI, 0.664–0.858) with a
good calibration.

Being able to predict not only the risk of recurrence but
also whether it would be locoregional or a distant metastasis
(DM) may enhance treatment decisions. As a result, Li et al.
(82) explored the predictive power of radiomics for the type
of recurrence (in field, out of field, marginal). After selection
of the influential subset of radiomic features, Kruskal Wallis
test and ROC analysis were employed for each feature to
assess its capability on in field recurrence prediction. After
further selection, several machine learning models were trained
(Artificial Neural Network, K Nearest Neighbor and Support
Vector Machine). Three hundred and six patients were included
with a median follow up of 26.5 months. Eighteen in field, one
marginal and one out of field recurrences occurred. Patients with
in field recurrence could be differentiated by 8 features. The best
performing model was artificial neural network (AUC: 0.812).

Zhang et al. (83) developed a MRI based model for distant
metastasis (DM) prediction in nasopharyngeal carcinoma. DM
is a common cause of treatment failure in nasopharyngeal
carcinoma. One hundred and seventy-six patients from a
retrospective multicentric cohort were included, 123 in the
training cohort and 53 in the validation cohort. Pre-treatment
MRIs, clinical and biological data were gathered. The primary
endpoint was the time to primary MRI to DM or censoring. The
follow up ranged from 36 to 60months after the primaryMRI. All
patients received concurrent platinum based chemoradiotherapy.
MRI were performed with various protocols, thus intensity
images were normalized using PyRadiomics plateform. Two
senior radiologists segmented images blinded from each other
to assess interobserver reproducibility. Two thousand eight
hundred and three imaging features were extracted using
PyRadiomics platform. Feature selection included many steps:
First interclass correlation coefficient (ICC) was calculated to
assess the effect of segmentation variability, only features with an

ICC above 0.75 were kept. Then, univariate analysis for survival
using Chi2 or Mann–Whitney U-tests were performed for
each features. Only statistically significant parameters were kept
(p < 0.05). Then minimum redundancy maximum relevance
model was applied to keep the top 10% features. Eventually, the
most significant features with highest area under the curve were
selected using LASSO (Least Absolute Shrinkage and Selection
operator) algorithm. A logistic regression based model to assess
the DM risk was then trained. KaplanMeier survival curves of the
two groups were compared using log rank tests. The predictive
ability of the model was assessed with AUC. A Distant Metastasis
MRI bases Model (DMMM) was created from 7 selected
radiomics features with an AUC of 0.827. In the training cohort
and 0.792 in the validation cohort. Patients with a high risk of
DM had a 5-year overall survival of 12% vs. 26% in the low risk
group. The DM related feature with the maximum significance
was “CET1-w_wavelet.HLL_ GLCM_Correlation.” It reflects
the intra tumor heterogeneity from the gray scale extension
perspective. The worse performance in the validation cohort
suggested overfitting and further training on larger multicentric
dataset should be considered. Still, being able to predict the
risk of distant metastasis, or in field recurrence are promising
prospective for radiomics support for clinical decisions.

Kwan et al. (84) performed a study with a similar goal on
HPV related oropharyngeal carcinoma. Three hundred patients
with HPV related oropharyngeal carcinoma were included. The
4 features radiomics features form Aerts et al. (6) previously
described study were used. The best performing model was a
combination of the radiomic signature with clinical data. In this
cohort, the signature had better performance for prognostication
of DM than of 5 years overall survival while it was initially
designed for overall survival. The radiomics signature stratified
patients for DM risks especially for cohorts with greater risks
such as stage III patients.

DISCUSSION

Radiomics is a new way to mine data from imaging. It
may provide specific information on tumoral heterogeneity,
HPV status, lymphocytic infiltration and consequently,
prognostic signatures.

For instance, as shown with Aerts et al. (6) gray level non-
uniformity revealing intra tumoral heterogeneity was found
as a bad prognosis factor which is congruent with literature
and may reveal multiple clonal populations with a variable
response pattern to treatments. Radiomics provide whole tumor
information compared to biopsies and thus provide additional
information that may become useful for treatment strategy.

As shown by Berenguer et al. (7), many radiomics features
may be redundant or not reproducible. Using standardized
imaging acquisition with homogenized contrast enhancement
delay before acquisition, may enhance the quality of the data.
Still, if all CT parameters were fixed except FOV, tube voltage,
and milliamperage, then the information provided by radiomics
could be summarized in only ten radiomics factors. On the other
hand, too restrictive protocols may decrease the applicability

Frontiers in Oncology | www.frontiersin.org 9 March 2019 | Volume 9 | Article 174

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Giraud et al. Radiomics, Machine Learning in Hand and Neck Cancer

TABLE 1 | Overview of radiomics based outcome prediction models.

Study Features Extraction software (ES)

and statistical method (SM)

Outcome prediction

(OP) and

performance (P)

Number of

patients

Tumor

characteristics

Yu et al. (64) MeanBreadth Spherical

disproportion

ES: IBEX

SM: GLM

HPV status AUC:

0.86667 and 0.91549

315 pts Oropharyngeal cancers

Ou et al. (71) 24 features signature ES: Oncoradiomics

SM: Logistical regression

5 y survival P: AUC =

0.67 CI (0.58–0.76)

120 pts stage III – IVb Head and

Neck cancer from (71)

Aerts et al. (4) Statistics Energy Shape

compactness 2 Grey level

non uniformity Run

length non-uniformity

ES: IBEX

SM: Logistic regression

Overall Survival

C-index: 0.69

545 pts Lung and head and

neck cancers

Anderson (79) Intensity direct local range max

Neighbour intensity difference

2.5 complexity

ES: IBEX

SM: Decision Tree model

5 y Tumour control

classifier (3 groups)

465 pts Oropharyngeal cancers

Kann et al. (67) No prior extraction for the

selected model

ES: PyRadiomics

SM: Random Forest and CNN

Extra nodal extension

AUC = 0.91

(95%CI:0.85–0.97).

NPV: 0.95

270 pts Nodal invasion in

resected head and

neck cancer

Zhang et al. (81) 8 features signature ES: Matlab: MRI based

features.

SM: LASSO and Rad-Score

3 y PFS C-index: 0.737

(95% CI: 0.549–0.924)

118 pts Nasopharyngeal

carcinomas

Li et al. (82) 8 features signature ES: PyRadiomics on SPAIR

T2W MRI

SM: ANN

In field recurrence

Accuracy: 0.812

306 pts Nasopharyngeal

carcinomas

Zhang et al. (83) 7 features signature ES: PyRadiomics MRI based

SM: Logistic regression

Distant Metastatic MRI

based Model AUC

: 0.827

176 pts Nasopharyngeal

carcinomas

GLM, General Linear model; CNN, Convolutional Neural Network; LASSO, Least Absolute Shrinkage and Selection operator; SPAIR T2W, spectral attenuated inversion-recovery

T2-weighted; ANN, Artificial Neural Netwo.

to routine clinical care, all the more that with a given delay
to acquisition, the actual enhancement varies depending on
subjects. Another approach would be to gather CT scans with
varying parameters to rule out noise in the dataset [as done by
Aerts et al. (6), presented previously]. The extracted features also
depend on the extraction software, patient motion and image
treatment. This may be one of the reasons for variability of the
generated signatures between each study (Table 1). This creates
a real challenge for its implementation in daily clinical care, the
ultimate goal of radiomics.

Machine learning encompasses many statistical tools suited
for complex patterns detection with inter dependent and non-
linear parameters. Machine learning models provide a promising
enhancement of predictive model performances, suited for the
increasing number of parameters available for analysis with the
rise of omics. However, one of its main limitations is overfitting,
leading to a lack of generalizability to other samples. To avoid
overfitting, the number of patients should be five to ten times
higher than the number of features (85), which requires a
thorough pre-selection of features to keep the number of patients
to include reasonable.

Models are only applicable on the range of data used for
its generation and dependant on primary data quality. Ground
truth definition is fundamental for successful model learning. It
is usually defined by experienced practitioner’s data labeling. In
non-consensual situation, such as delineation, learning may be
impaired by inter-practitioners’ non-reproducibility. In this case,
an approach based on comparing the model’s uncertainty with

the expert’s uncertainty seems valid, as long as a clinically relevant
metric is used. Last, each problem has its variables, and no type
of machine learning algorithm can always prevail. For instance,
logistic regression was better for the study of Ou et al. (75) while
ANN was better suited for the clinical prediction of survival
by Bryce et al. (72), which underlines the model benchmarking
approach, where several models should be tested, and the best
performing one kept.

CONCLUSION

Potential applications of machine learning and radiomics
methods in the field of head and neck cancer have been explored
in several studies. Treatment planning tasks such as OAR
delineation or dose recalculation are time consuming and could
eventually be automated, opening the possibility for adaptive
radiotherapy. Machine learning and radiomics can provide better
modeling tools both for adverse events and survival for a step
toward personalized and predictivemedicine.While these studies
provided interesting results, none of them are actually being
used in the daily workflow of radiation therapy departments.
Before we can reach this goal, they must be thoroughly assessed
in prospective, multicentric trials to prove their actual benefit.
Collaborating groups will have an important role in the design
and conduct of these important studies. The use of interoperable
standards and homogeneous treatment planning methods will
also be needed before such study can be performed.
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