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Abstract

Many organism behaviors are innate or instinctual and have been “hard-coded” through

evolution. Current approaches to understanding these behaviors model evolution as an opti-

mization problem in which the traits of organisms are assumed to optimize an objective func-

tion representing evolutionary fitness. Here, we use a mechanistic birth-death dynamics

approach to study the evolution of innate behavioral strategies in a simulated population of

organisms. In particular, we performed agent-based stochastic simulations and mean-field

analyses of organisms exploring random environments and competing with each other to

find locations with plentiful resources. We find that when organism density is low, the mean-

field model allows us to derive an effective objective function, predicting how the most com-

petitive phenotypes depend on the exploration-exploitation trade-off between the scarcity of

high-resource sites and the increase in birth rate those sites offer organisms. However,

increasing organism density alters the most competitive behavioral strategies and precludes

the derivation of a well-defined objective function. Moreover, there exists a range of densi-

ties for which the coexistence of many phenotypes persists for evolutionarily long times.

Author summary

The innate, or instinctual, behavioral strategies that populations of organisms employ to

navigate their environments and fend for survival are shaped over epochs of evolutionary

selection, in contrast to individual behaviors that can change within an individual’s life-

time based on experience and sensory input. Understanding how the interplay between

organism and their environment shapes which behavior strategies emerge as the most suc-

cessful for a population’s survival is a major problem in mathematical biology. Often, evo-

lution is modeled as an optimization process that selects for behaviors that optimize the

“fitness” of organisms in their environment. However, the fundamental evolutionary

events are stochastic birth and death events, and the most successful organisms that

emerge under these dynamics are not always those predicted by fitness-based approaches.

In this work, we use agent-based stochastic simulations and mean-field approximations of

a mechanistic population dynamics model to investigate the evolution of a population’s

innate foraging strategies. In particular, we investigate when an emergent fitness function
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can be derived and how competition between individuals for resources alters the most

successful behavioral strategies and precludes the derivation of a simple fitness function

that predicts the most successful behavioral strategies.

Introduction

Foraging for resources—shelter, food, etc.—is one of the fundamental problems an organism

must solve in order to survive and reproduce, ensuring the continuity of its species [1]. Many

of the strategies organisms employ to solve such problems appear to be instinctual or innate;

for example, birds and fish know where to migrate even if they have never visited their migra-

tion grounds before [2], and many complex species such as fish, reptiles, birds, and insects

have been found to employ search strategies similar to the much simpler C. Elegans [3]. The

fact that many disparate species have converged upon similar strategies suggests there may be

unifying principles that can be captured by simple quantitative models to help explain the

emergence of these behavioral patterns.

Perhaps the most well-known candidate principle is “survival of the fittest:” species with

adaptations that give them any edge for outcompeting other species in their environments are

those that go on to proliferate. On its own this principle is somewhat tautologous, as the organ-

isms deemed fittest for their environment are those observed to survive and proliferate [4]. In

order to render this problem well-posed for quantitative modeling, a common approach is to

define a “fitness function,” a function of a population’s phenotypic parameters whose output is

a proxy for that phenotypic configuration to survive and reproduce in its environment. Often

the fitness function is modeled as the fitness of a single representative agent, rather than an

entire population. This idea has given rise to modeling evolution as an optimization process

that maximizes an organism’s fitness [4], i.e., selects for the phenotype parameters that maxi-

mize the fitness function. Fitness functions can range from relatively straightforward and con-

crete quantities, such as an organism’s rate of producing offspring or the time it takes to find

shelter or food [5–8], or they can be relatively abstract, such as the amount of information an

organism’s sensory organs convey to its nervous system [9–12]—the idea being that the more

efficiently an organism’s nervous system can process information it acquires about its environ-

ment, the more successful it will be at finding food, shelter, mates, etc.

Modeling evolution as an optimization process has had some notable successes in predict-

ing features of biological organisms [12–17]; however, some caveats and cautions are in order.

Firstly, one can always find an objective function and set of constraints for which an observed

solution is optimal [18]. Secondly, there are examples in which evolution is demonstrably not

optimal [19], exhibits significant deviations from optimality [16], or can even be repeatedly

reversible [20, 21]. These and other issues with modeling evolution as optimization have been

discussed extensively by Doebeli et al. [4]. Doebeli et al. emphasize that the fundamental events

in evolution are stochastic birth-death processes, which can give rise to complex evolutionary

dynamics that cannot always be captured by optimizing fitness. For instance, an approach that

focuses on birth-death events of entire populations can yield the distribution of successful phe-

notypes, including phenotypes that would be considered “sub-optimal” by optimization

approaches yet are able to coexist with phenotypes predicted to be optimal.

In this paper we take the mechanistic approach, simulating the dynamics of a population of

organisms with different innate behavioral strategies for exploring their environment in search

of locations with favorable conditions for reproduction. In particular, non-consumable

resources are distributed randomly throughout the environment, and each organism’s
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behavioral strategy consists of the set of rates at which the organism will leave locations of each

resource level in search of other locations with potentially greater amounts of the resource.

Each location in the environment can only support a single individual, resulting in competitive

population dynamics. The most competitive phenotypes in our model will be the set of reloca-

tion rates that enable organisms to proliferate, allowing these phenotypes to persist in the pop-

ulation over long time scales. Importantly, the birth rates of organisms in our model depend

only on an individual’s location within the environment, not that individual’s phenotype (i.e.,

locations with plentiful resources confer larger birth rates, regardless of the phenotype of the

organism). Thus, the reproductive competitiveness of a phenotype is only determined by how

that phenotype enables our model organisms to outcompete other phenotypes in discovering

high-resource locations. There is no explicit fitness function that the dynamics are assumed or

enforced to optimize, but we show that in the limit of low interaction density we can derive a

growth rate that is a function of the relocation rate parameters and serves as an emergent fit-

ness function. However, we also show that in general this function does not describe the most

successful phenotypes when interactions between individuals are frequent, or when demo-

graphic fluctuations are significant.

This paper is organized as follows: in Results we first define our stochastic model and its

formulations as an agent-based simulation and a corresponding analytic description in terms

of a stochastic master equation (Mechanistic model of evolutionary dynamics). We then show

that the environmental structure and the population dynamics of the simulated model indeed

select for particular phenotypes, even though birth rates depend only on spatial location and

not the phenotype. Importantly, we find that while some components of the phenotype experi-

ence selection pressures strong enough to select for a very narrow range of values, others expe-

rience relative weak selection pressure, resulting in distributions of nearly equally competitive

phenotypes (Distributions of competitive phenotypes are selected by birth-death dynamics).

We show that we can understand the origins of weak selection pressures using a minimal

mean-field model, in which we can derive the growth rate as a function of phenotype, which

acts as an effective fitness function, when organism density is low (A minimal mean-field

model explains variability in competitive phenotypes). In this limit we also study how the

exploration-exploitation trade-off depends on the scarcity of high-resource sites and their cor-

responding birth rate (Distribution of resources shapes exploration-exploitation trade-offs).

At higher density the interactions between individual conspecifics cannot be neglected and

alters the dominant phenotypes: at very high densities there is a reversal in the most competi-

tive phenotypes, and there is a range of intermediate densities at which many phenotypes coex-

ist for evolutionarily long times (Ranges of population density allow for long-lasting

phenotype coexistence). We conclude in the Discussion by addressing the interpretation of

our results in the context of mechanistic and normative approaches to the evolution of biologi-

cal structure (Summary and interpretation of results) and comparing our results to those of

related studies (Comparisons to related work), as well as discussing the limitations of our

approach (Limitations of the study) and future directions for extensions of this work (Future

directions).

Results

Mechanistic model of evolutionary dynamics

To investigate the evolution of foraging behavioral strategies, we focus on modeling a popula-

tion of organisms that must navigate their environment in search of locations favorable for

reproduction. For simplicity, we will assume the favorability of each location is determined by

the amount of a non-depleting “resource” at this location. Additionally, each location has a
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fixed carrying capacity, allowing only a single individual to occupy the location at any given

moment. Organisms are able to detect the resource level only at their current locations, and

must decide whether to remain where they are or explore in search of regions with more

resources (see Fig 1A); this is referred to as the “exploration-exploitation trade-off” [22]. In

this model the organisms’ movements are not deterministic, but instead each individual will

attempt to relocate stochastically at rates determined by the amount of resource at the individ-

ual’s current location; the value of these rates is determined by the individual’s phenotype. The

Fig 1. Schematic diagram of the mechanistic evolutionary dynamics model. A. The model consists of a population of agents foraging in an

environment with a random distribution of resources, in which each agent can either asexually produce an offspring (as shown by the orange arrow) or

relocate to one of the vertical or horizontal neighboring locations (as shown by the dashed blue arrow). Different colors here distinguish agents with

different phenotypes. B. The environment is a two dimensional discrete lattice on which each location has a predetermined resource level Sk, k 2 {1, 2,

3, 4, 5}, chosen from a distribution (a discrete uniform distribution shown here). A 20 × 20 subset of the environment is shown here. Each site on the

lattice is colored according to its resource level Sk. Agents at locations with resource level Sk will reproduce at a birth rate bk. C. Each agent has a

phenotype vector with 5 components, corresponding to the relocation or hopping rates of the agent at 5 different resource levels. These components are

initially chosen randomly for each agent and are shaped over the course of evolution. In the example shown here, agent 2 has a relocation rate γ3� 4

when it is at a site with resource level S3. In the agent-based stochastic model, an offspring inherits a noisy copy of its parent’s phenotype, as shown here

for the phenotypes of agent 1 and its offspring.

https://doi.org/10.1371/journal.pcbi.1009934.g001
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resource level at each location is predetermined and sampled from a discrete distribution; see

Fig 1B, depicting a discrete uniform resource distribution. The set of relocation rates (used

interchangeably with the term “hopping rates”) for each resource level comprises an organ-

ism’s phenotype in this model; see Fig 1C.

In addition to determining an organism’s relocation rate, the resource level at each site

directly determines the organisms’ birth rates at that location. Importantly, the birth rates do
not depend on the organisms’ phenotype—the only way the phenotype influences the organ-

ism’s reproductive success is by improving the organism’s odds of encountering high-resource

sites and staying there long enough to produce sufficiently large numbers of offspring. That is,

the selective advantage of a phenotype is due only to its dynamical success in the environment,

not any intrinsic advantage. For simplicity, we model all reproduction as asexual. In the agent-

based model to be defined shortly, the offsprings’ phenotypes are taken to be noisy copies of

the parents’ phenotype (see “Agent 1” and “Agent 1 offspring” in Fig 1C). In the mean-field

model discussed in the next section, the offsprings’ phenotypes will be direct copies of the

parents’.

The final ingredient the model needs is a means of selection. Typically, one would allow for

stochastic death of individuals, such that phenotypes that do not confer a sufficiently competi-

tive advantage will eventually die out, leaving the more competitive phenotypes to dominate

the population. However, a technical downside of stochastic death is that extinction becomes

not only possible but inevitable, potentially complicating investigation of long-term phenotype

distributions. To avoid the technical complications of stochastic death, we instead induce

selection by subjecting the population to a periodically-occurring “catastrophe” that randomly

culls individuals until the population is reduced to its initial size. In doing so, the population is

never at risk for extinction, but selection still occurs because the phenotypes that are able to

produce large numbers of offspring have better odds of surviving each catastrophe.

To formalize this schematic picture, we first build an agent-based stochastic model. In this

model the population consists of individual organisms, or “agents,” each of which is assigned a

location within a 2d environment, modeled as a discrete lattice, and the values of its hopping

rates γ at each resource level. In the simulations we investigate here, we assume the resource

level of site at location x, labeled sx, is drawn from 5 distinct resource levels, sx 2 {S1, S2, S3, S4,

S5}. Thus each agent has 5 corresponding hopping rates γ = {γ1, γ2, γ3, γ4, γ5}, one for each of

the five resource levels. The values of each of these hopping rates are initially chosen randomly

from the range [γmin, γmax], where γmin is the minimum rate at which an organism relocates

and γmax is the fastest rate an organism can relocate—we interpret this upper bound on reloca-

tion rates as being set by metabolic constraints that we do not model or allow to change during

the evolution of the population.

The state of the population of agents is updated in continuous time. At any given moment,

an agent can either relocate to or asexually give birth to an offspring into one of the vertical or

horizontal neighboring locations, as schematically shown in Fig 1A (because only one agent is

permitted per site, an agent cannot give birth to a child on its current site). The target site is

chosen randomly with a probability 1/4 in a 2d environment. The per-capita birth rate of an

agent, b(sx), is a function of the local resource level sx at location x. Because the resources are

not depleted in this model the actual numerical values of the sx are unimportant; the meaning-

ful values are the birth rates b(sx). However, we assume that the values of the birth rates are

ordered according to resource level, such that a site x with resource level sx = S1 has the lowest

birth rate and a site with resource level sx = S5 has the highest birth rate. Again, we stress that

the birth rates are entirely independent of an agent’s phenotype γ.

Agents with very different phenotypes will navigate the environment in different ways. An

agent with a small value of γ1, for example, will tend to remain in sites of resource level S1 for
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long periods of time, while agents with large values of γ1 will tend to leave sites of this resource

level rather quickly. Because the birth rate in sites of resource level S1 is low, we might expect

that agents with small γ1 may be less successful at proliferating than agents with larger γ1, and

will therefore be less likely to survive the periodic catastrophes that occur, creating a selection

pressure toward larger values of γ1. Similarly, agents with small (large) values of γ5 will tend to

remain in these high-resource sites for long (short) periods of time. Agents with small γ5 may

therefore produce more offspring because b(S5) is the highest, increasing their odds of surviv-

ing the catastrophes. This line of thinking makes it seem intuitively “obvious” that the most

competitive phenotype ought to have large hopping rates out of low resource sites and mini-

mal hopping out of the highest resource sites. Moreover, we might expect we can identify an

objective function that yields this phenotype as its optimum. In the next sections we present

the results of our stochastic simulations as well as the numerical solutions of the mean-field

model, showing that this intuition is largely correct when the population density is low—in

which case we can indeed derive an effective objective function—and when the distribution of

resource levels are drawn from a discrete uniform distribution, but this picture is not always

correct when high resource sites are rare or population density is high.

Distributions of competitive phenotypes are selected by birth-death

dynamics

For the results presented in this section, we simulate our agent-based model using the Gillespie

algorithm [23], starting with 500 agents on a 128 × 128 2d lattice. This corresponds to an initial

population density of 3.1%. Each lattice site belongs to one of the 5 resource levels {S1, S2, S3,

S4, S5}, which is drawn from a discrete uniform distribution. Initially, each agent is assigned a

spatial location x = (x, y) and a phenotype vector γ = (γ1, γ2, γ3, γ4, γ5) uniformly at random.

Catastrophes occur after a simulation runtime T, which defines an iteration of the simulation.

While the catastrophe randomly picks which agents to cull, it always reduces the total popula-

tion back to 500 agents. In Distribution of resources shapes exploration-exploitation trade-offs

we consider non-uniform distributions, and in Ranges of population density allow for long-

lasting phenotype coexistence we investigate different lattice sizes as a means of changing the

initial population density. The details of the simulation setups are presented in the Methods

Section.

Fig 2A–2D displays the evolution of the distribution of phenotypes over several thousand

catastrophes, with snapshots at (A) 0, (B) 50, (C) 500, and (D) 20000 iterations; these distribu-

tions represent averages over 20 trials of the dynamics starting from random initial conditions

generated from the same distribution. The initially uniform distributions of each of the five

hopping rates (phenotype components) are gradually reshaped by births and deaths. At long

times, the distributions are approximately stable; we do not expect the distributions to con-

verge to a single value for each γk due to the reproduction noise that accompanies each birth.

See S1A–S1C Fig for additional examples for different realizations of the resource levels ran-

domly assigned to each site. In Fig 2E we plot the evolution of the mean value of each hopping

rate over the 20000 catastrophes, averaged over 20 trials. The shaded regions of the plot corre-

spond to the width of the distributions (the standard deviation of each hopping rate compo-

nent). These dynamics are qualitatively reproduced by a mean-field model, shown in Fig 2F,

and extensively discussed in A minimal mean-field model explains variability in competitive

phenotypes.

We see that the long-time distribution appears to favor high hopping rates in sites with

resource levels S1 to S3 and low hopping rates for sites with the highest resource level S5,

reflecting our intuition that the most competitive phenotypes would be those that result in
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agents leaving their location as fast as possible when at low resource sites and staying put as

long as possible when at high resource sites. Notably, however, the distribution of the hopping

rates γ4 at the second-highest resource level S4 is not narrow, but spans much of the entire pos-

sible range of hopping rate values. This indicates that the selection pressure on this phenotype

component is relatively weak compared to the selection pressure on the other components.

While the average value of γ4 is closer to γmax than γmin, the large variance demonstrates that

the most competitive phenotype does not conform tightly to our intuitive predictions, and the

situation is more complex than might be naively expected. To gain insight into our results and

investigate how selection pressure depends on our environments’ properties, namely the dis-

tribution of resources and the values of the birth rates tied to each resource level, we develop a

deterministic minimal mean-field model that enables us to derive an effective objective

Fig 2. Emergent competitive phenotypes from evolutionary birth-death dynamics. A-D. Violin plots of distributions of phenotype components in

the agent-based stochastic simulations at iterations 0, 50, 500, and 20000, respectively. Each violin plot combines data from 20 independent trials. The

connected white dots are the median values of each relocation rate component, and the black boxes confine the first and third quartiles of each

phenotype component (i.e., box plot). The colored areas are the kernel density estimations of the underlying distributions. Panel A shows a uniform

relocation rate distribution for each phenotype component as the initial condition at iteration 0. The phenotype distributions evolve as the birth-death

dynamics play out in the agent-based model and approach a steady shape after around 20000 iterations as shown in panel D. E The evolutionary

trajectory of each phenotype component, averaged over 20 independent trials. The shaded area represents the standard deviations of phenotype

components. The stochastic birth-death dynamics selects out competitive phenotypes whose first three phenotype components γ1,2,3 saturate at hopping

rate of around 9, close to the maximum possible hopping rate of γmax = 10, and whose last phenotype component γ5 saturates at hopping rate around

0.5, close to the minimum possible hopping rate of γmin = 0. In contrast, the fourth component γ4 approaches a value around 8 with a relatively large

variability throughout the simulation. F. Predictions of the mean relocation rate of each phenotype component and their standard deviations using the

coupled 5-state mean-field model, discussed in A minimal mean-field model explains variability in competitive phenotypes. Note that the mean-field

model uses a slightly different birth rate b5 = 5, while the stochastic simulations use b5 = 4, and the 5-state mean-field model converges at a much

shorter timescale (700 iterations vs. 20000 iterations). These quantitative differences between the full agent-based model and the simplified 5-state

model are discussed in detail in the Discussion, S5 and S6 Figs.

https://doi.org/10.1371/journal.pcbi.1009934.g002
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function in a low-density limit. This fitness function predicts the optimal phenotypes and

explains the lack of selection pressure on γ4 observed in our stochastic simulations.

A minimal mean-field model explains variability in competitive

phenotypes

Agent-based models are often difficult to formulate directly as mathematical models, owing to

the combination of having individual with private properties (here, their phenotype) and the

fact that agents may be born or culled at any time. However, a formalism that can approximate

the agent-based model outlined here is a master equation formalism that keeps track of the

probability of configurations of the number of agents with each phenotype at each spatial loca-

tion. From such a formalism one can then derive a system of differential equations for the

expected number of agents with each phenotype and location. Such a model serves as the start-

ing point for the reduced model we investigate in this section. We focus only on the reduced

mean-field model here; see the Methods for details on the full master equation model and the

approximate reduction to the minimal mean-field model described below.

When agent density is low, such as in the simulations of the previous section (initial density

of 3.1%), we may assume that events in which an agent is blocked from relocating to another

site by another occupying agent are rare and may be neglected. In this approximation the

growth dynamics of the different phenotypes decouple, and we can describe the dynamics of

the population as a set of linear differential equations describing the expected number of

agents at each site. To simplify the mean-field model further, we use the fact that each site

belongs to one of the five resource levels and only count the number of agents at each level,

eliminating the spatial dependence of the environment. This reduces the model to a 5-state

model whose solution is the time course of the expected number of agents of each phenotype

at each resource level; see the Methods for a detailed derivation of this reduction. The resulting

system of differential equations reads

dnkγ
dt
¼ wk

X

i

biniγ þ wk
X

i

γinig � gknkg ð1Þ

where nkγ is the expected number of agents at a site with resource level k and phenotype γ. The

parameter bk is the per-capita birth rate of resource level k, a constant of the environment, and

γk is the hopping rate out of state k, determined by the phenotype. Again, we note that in this

approximation the dynamics of different phenotypes are decoupled, such that there is a system

of differential equations of the form Eq (1) for each phenotype γ. For practical calculations we

must discretize the phenotype space, giving a finite system of differential equations. Finally,

the weights wk correspond to the probability that a site in the agent-based model has resource

level Sk. For resource levels drawn from a discrete uniform distribution, which we investigate

first, wk = 1/5 for all k = 1 to 5.

The first term, wk∑i biniγ, in Eq (1) is the number of new agents being birthed into state k by

agents in all other states. The second term wk∑i γiniγ is the number of agents hopping into

resource level k from all other resource levels, formally including resource level k itself to

account for the possibility of an agent hopping from a site of resource level k to a neighboring

site that also has resource level k. The last term −γknkγ is the number of agents hopping out of

resource level k.
The system of differential Eq (1) can be written down in matrix form as

dngðtÞ
dt ¼MgngðtÞ,

which has a solution in terms of the matrix exponential, ngðtÞ ¼ expðtMgÞngð0Þ. The between-

catastrophe dynamics of each phenotype are therefore dominated by the eigenvectors and
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eigenvalues ofMg. Although the dynamics of the phenotypes are independent, they are cou-

pled through the periodic catastrophes, which reduce the population down to its original size

after a time T. Let Λγ be the maximum eigenvalue ofMg, which we interpret as a function of

the phenotype parameters γ = (γ1, γ2, γ3, γ4, γ5). In the Methods we show that the matrixMg

has purely real eigenvalues and only the maximum eigenvalue Λγ is positive. Therefore, the

phenotype γ that yields with the largest maximum eigenvalue Λγ overall will be the only phe-

notype to survive after a large number of catastrophes, with coexistence possible only if differ-

ent phenotypes have the same value of Λγ. Because the hopping rates γ are just parameters in

this formulation of the model, the eigenvalues ofMg will simply be functions of the phenotype

parameters (as well as environmental parameters), and therefore the maximal eigenvalue

serves as an effective objective function of the system in the low-density limit.

If the maximal eigenvalue of this minimal model acts like an effective objective function,

then we would expect the lack of selection pressure on the hopping rate γ4 to be reflected in an

insensitivity of this eigenvalue to varying γ4, i.e., there would be a range of values of γ4 for

which the maximum eigenvalue approximately takes on its largest value. This is indeed what

we find but only when the birth rate in the highest resource site b5 is close to a particular critical

value B5c. As shown in S2 Fig, when b5 > B5c we find that the competitive population dynamics

drive γ4! γmax, and the eigenvalue Λγ is insensitive to variations in the value of γ4 around this

point. When b5 < B5c and is close to b4, the birth rate in sites of resource level S4, we instead

find that selection drives γ4! γmin, again with little variation in the maximal eigenvalue. This

makes sense: if the birth rates b4 and b5 are close then there is little advantage in leaving a site

with resource level S4 to search for a site of level S5. That is, the maximal eigenvalue predicts a

transition from γ4! γmin to γ4! γmax as b5 increases from b4 and crosses B5c. Near the transi-

tion at b5� B5c the maximum of the eigenvalue is less sensitive to γ4—equivalently, fluctua-

tions in γ4 are large, as is often observed near phase transitions and bifurcations [24], such that

selection is weak, resulting in coexistence of a range of γ4 values near this transition, at least in

a finite population. See S3A–S3C Fig for the distributions of phenotypes around this transition

point.

Fig 3A, upper panel, demonstrates that the predicted transition occurs in both our minimal

mean-field model and our full agent-based simulations. The critical value B5c is different for

the full stochastic simulation and the mean-field model, but this is to be expected due to the

simplifications of the mean-field model as well as the lack of demographic noise. As seen in

Fig 3A, upper panel, the distributions of γ4 are indeed narrower when b5 is far from the critical

value B5c, reflecting that the selection pressure indeed increases when there is a clear advantage

to exploring (b5 > B5c) versus exploiting (b5 < B5c). In principle, we might expect to see similar

transitions in the other hopping rates γ1, γ2, and γ3 if we adjust the value of b4, b3, etc. Instead

of varying these parameters to investigate whether such transitions exist, we shift focus to

another ecologically important scenario in which these transitions will occur: the effect of the

distribution of resources throughout the environment.

Distribution of resources shapes exploration-exploitation trade-offs

The distribution of resources throughout an environment will have an impact on the most suc-

cessful phenotypes. For instance, when high resource sites are scarce, it may be advantageous

to settle for lower resource locations. To explore this effect, we vary the distribution of resource

levels within the random environment, in particular by selecting distributions in which the

high-resource sites are much rarer than lower resources sites. In the previous sections, the

probability that any site has resource level Sk, denoted wk, was chosen to be wk = 1/5; i.e., a dis-

crete uniform distribution of the 5 resource levels. A simple choice of distribution in which
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high resources sites become rarer than low resource sites is an exponential probability wk =

Ae−ck, where A� 1 ¼
P5

k¼1
e� ck is the normalization constant and c is a parameter that deter-

mines the steepness of the distribution. The factor wk is the same factor that appears in Eq (1).

Note that c = 0 results in wk = 1/5; a positive c results in a distribution that resource level rarity

increases with k, that is, the high resource levels become rarer than the low resource levels.

As shown in Fig 3A, lower panel, our agent-based simulations confirm that the transition

from an average value of hγ4i = γmin = 0 to γmax = 10 still exists when c is, e.g., 0.5, but occurs at

a much larger value of b5� 11. Indeed, as seen in Fig 3B, there exists a transition line in the b5-

c plane that separates hγ4i � γmin from γmax = 10. The orange dashed curve is the boundary

predicted by evaluating the maximal eigenvalue of the low-density model Λγ as c varies from 0

to 1 and solving for the value of b5 that yields γ4 = (γmax + γmin)/2 = 5 as the most competitive

phenotype. This curve represents the line along which the population achieves a balance of the

exploration-exploitation costs. See S1D–S1F Fig for examples of the phenotype distributions

in different realizations of environments with exponentially distributed resource levels and

S3D–S3F Fig for the phenotype distributions around the transition point.

Fig 3. The most competitive phenotypes are shaped by the rarity of the highest-resource sites. The abundance of the five resource levels distributed

with frequency wk/ e−ck, where k 2 {1, 2, 3, 4, 5} and the exponential coefficient c determines the rarity of levels. The most competitive phenotype

changes as a function of birth rates and resource rarity: A, top. For resources drawn from discrete uniform distribution (c = 0), the fourth component of

the most competitive phenotype γ4 transitions from low to high as the birth rate b5 increases. All other phenotype components remain steady as γ1,2,3!

γmax and γ5! γmax. The agent-based stochastic simulation and the mean-field prediction transitions are qualitatively similar, though the transition

occurs at different values of b5. A, bottom. A similar transition in γ4 occurs for a resource distribution with exponential coefficient c = 0.5, which has

rare high resource level sites. The transition persists but at a higher birth rate b5. B. A heatmap plot of the fourth phenotype component γ4 as a function

of the exponential coefficient c and the birth rate b5. The orange dashed line is the predicted transition boundary from the mean-field model, where γ4 =

5 maximizes the effective fitness function derived in the low-density limit. The two white dotted lines show the range of b5 for c = 0 and 0.5 in panel A.

https://doi.org/10.1371/journal.pcbi.1009934.g003
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Intuitively, agents staying at low resource levels need sufficient incentives to leave their cur-

rent locations and start to explore new sites, at the risk of missing out reproductive opportuni-

ties while exploring. These results demonstrate that rarity of high resource sites can drive

selection of phenotypes that settle for sites with lower resource levels.

Importantly, here the rarity of sites is only due to the intrinsic environmental distribution

of resources. However, high resource sites could also become dynamically rare and unavailable

as they become occupied, preventing multiple individuals from exploiting the same sites. So

far we have been working within a low-density regime, such that it is relatively rare for organ-

isms’ movements to be blocked by other individuals, and such that a sufficient fraction of high

resource sites remain available for discovery and occupation. We now turn to investigating

how the competitive phenotypes change with organism density.

Ranges of population density allow for long-lasting phenotype coexistence

In order to investigate how population density impacts the most competitive phenotype

changes, we return to our agent-based stochastic simulations with resource levels drawn from

a discrete uniform distribution. The simulations presented previously had 500 agents on a

128 × 128 2d lattice, resulting in an initial occupancy level of 3.1%. To study the effect of popu-

lation density we keep the initial number of agents fixed and decrease the lattice size L × L to

L = 96, 80, 64, 48, 40, 35, 32, 28, 26, 25, 24, and 23, giving initial occupancies of 5.4%, 7.8%,

12.2%, 21.7%, 31.2%, 40.8%, 48.8%, 63.8%, 74.0%, 80.0%, 86.8%, and 94.5%, respectively. One

could of course also vary density by increasing the initial agent number and keeping the lattice

size at 128 × 128, but increasing the number of agents dramatically increases the simulation

load.

For each density we ran 20 independent trials of the agent-based stochastic simulation, the

results of which are summarized in Fig 4. We found that as density—and hence interactions

among agents—increases, the most competitive phenotypes also change. Notably, these

changes qualitatively mimic the effects of increasing the rarity of high resource sites: the mean

hopping rate hγ4i saturates at a value γmin < hγ4i � 5< γmax with a large variance at 12.2% ini-

tial density, and drops to hγ4i � γmin with small variance at higher densities. See S4 Fig for

examples of the phenotype distributions at increased densities, which show this transition take

place.

The results observed in our stochastic simulations are replicated by a 5-state mean-field

model that incorporates the effects of site occupation:

dnkγ
dt
¼ wk 1 �

P
γ0nkγ0
wkM

� �
X

i

ðbi þ γiÞniγ �
X

i

wi 1 �

P
γ0niγ0
wiM

� �

gknkg; ð2Þ

where nkγ is again the number of agents at sites of resource level k andM = L2 is the total num-

ber of sites, with wkM the expected number of sites of resource level k, which sets a maximum

occupancy for each state. Note that when

P
γ0
nkg0

wkM
� 1 this model reduces to Eq (1). Impor-

tantly, Eq (2) is nonlinear, and unlike the low-density approximation of Eq (2), all phenotypes

are dynamically coupled. Not only does this preclude writing down an analytical solution, but

the dynamical coupling between phenotypes also suggests there may be no effective objective

function of a single arbitrary set of the phenotype parameters γ = (γ1, . . ., γ5) that predicts the

most competitive phenotype simply by maximizing it with respect to these values.

As in the low-density model, we solve Eq (2) for a discretized set of phenotypes. Solving the

high density model is comparatively computationally demanding due to the necessity of solv-

ing for all phenotypes simultaneously, but is still feasible for the set of discretized phenotypes
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Fig 4. Higher initial densities alter the most competitive phenotypes. A-D. The evolution course for populations of agents starting with different

initial densities: 12.2%, 21.7%, 48.8%, and 86.8%, respectively; c.f. Fig 2E at 3.1% density. The initial density is varied by fixing the initial population size

at 500 and decreasing the environment size L × L with L = 128, L = 64, 48, 32, and 24. We observe a systematic shift of the most competitive phenotypes;

in particular, the fourth phenotype component γ4 decreases as the initial density increases. E. Mean values of γ4 after 20000 iterations in the agent-based

model as a function of the initial density, showing the change in the most competitive phenotype. At ultrahigh densities, e.g. 94%, there is no space for

agents to move or give birth, resulting in little change in the initially uniform phenotype distribution. F. Mean-field model predictions of the most

competitive phenotypes as a function of initial density after 700 iterations. A birth rate of b5 = 5 is used in the mean-field model so that hγ4(t)i converges

to 10 at low densities.

https://doi.org/10.1371/journal.pcbi.1009934.g004
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chosen in this study. As shown in Fig 4F, the mean-field predictions are consistent with our

full stochastic simulations, and we indeed observe changes in the most competitive phenotype

as a function of initial density N0/M. At low densities the value of hγ4i is close to γmax (after

700 catastrophes), and as N0/M increases we see a coexistence region in which multiple pheno-

types are present at an observation time Tobs, before hγ4i drops to γmin at densities N0/M≳
20%. As N0/M increases towards 1, we observe an increase in hγ4i. This extreme high-density

limit represents the scenario in which the population is so dense that there is little room for

agents to give birth or move, leading to an extremely slow change in the composition of the

phenotypes. In the extreme limit N0/M = 1 we have hγ4(t)i = (γmax + γmin)/2 for all times t, due

to the fact that phenotypes are initially present in equal proportions and there is no room for

any agent to move or give birth.

The mean-field model is useful for dissecting the dynamics of the phenotype changes. Ini-

tially, we hypothesized that the dominance of γ4 = γmin phenotypes at high densities is due to

the S5 resource sites filling up, leaving any γ4 = γmax agents that did not find an S5 site to search

fruitlessly for resource-level 5 sites instead of producing offspring, allowing the γ4 = γmin phe-

notypes to gain the reproductive advantage. However, as shown in Fig 5, it turns out that early

Fig 5. Numerical solutions of the coupled mean-field model at different initial densities. A-D show the evolution of the fraction of the population

with each value of γ4 in the mean-field model; insets at 3.1% and 21.7% initial densities show a zooming in of the initial transient dynamics from

iteration 0 to 50. Initially in the evolution, γ4 = γmax = 10 agents show a reproductive disadvantage, intuitively because agents with larger γ4 tend to leave

S4 resource levels (with a relatively high birth rate) more often and produce less offspring, while later in the evolutionary process this disadvantage is

overcome by γ4 = γmax agents in low densities as they eventually find enough available S5 sites to overcome their initial disadvantage. However, as

density increases, other agents can quickly fill up S5 sites and leave little opportunities for γ4 = γmax agents to overcome that initial disadvantage. Note

that b5 = 5 is used in these numerical solutions so that hγ4(t)i converges to 10 at low densities.

https://doi.org/10.1371/journal.pcbi.1009934.g005
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in the evolutionary dynamics the γ4 = γmax agents lag behind the other phenotypes, as the γ4 =

γmax agents leave S4 sites more frequently and explore the neighboring locations while agents

with lower γ4 gain an advantage by tending to stay at S4 longer and produce offspring at a rela-

tively high birth rate b4. At low densities the γ4 = γmax agents eventually discover S5 sites and

their reproduction rate is able to overcome their slow reproductive start. However, at higher

densities the γ4 = γmax agents are increasingly less able to overcome the other phenotypes’ head

start, and are eventually outcompeted completely by the γ4 = γmin phenotypes at sufficiently

high densities.

Unlike the low-density model, we cannot tractably derive an effective objective function

similar to Λγ in the high-density regime—in particular, it is not clear whether there exists a

function C(γ) of a single phenotype vector γ whose optima predict the most competitive phe-

notypes. We discuss this issue further in Evolution as an optimization or learning process.

Even if no such cost function for the phenotypes exists, one might wonder whether the dynam-

ics for the (expected) population sizes can be written as a dynamical system that follows the

gradient of some cost function C(n),
dnk;γ
dt ¼ �

@

@nk;γ
CðnÞ. In evolutionary models, the negative

of the cost function −C(n) is often interpreted as fitness. However, the vector field defined by

the right hand side of Eq (2) is not conservative, and therefore cannot be written as the gradi-

ent of an objective function C(n) (see The mean-field dynamics are not gradient-based in

Methods). The evolution of the population sizes therefore cannot be interpreted as optimiza-

tion problem, at least using gradient dynamics.

Discussion

Summary and interpretation of results

In this work we have used a population dynamics approach to explore the evolution of the

innate foraging behaviors of a population of organisms exploring an environment with ran-

domly distributed non-consumable resources. These organisms have limited sensory capabili-

ties and no memory, and must take actions to either continue exploiting the resources at their

current location or leave in search of locations with more resources (i.e., more favorable to

reproduction). The phenotype of the organisms comprises the rates at which the agents

attempt to relocate. While an “intuitive” prediction—the agents should leave low-resource

sites as quickly as possible and not move from the highest resources sites—is indeed correct

when the population density is low and high resource sites are readily available or have high

enough birth rates to compensate their scarcity, this intuitive prediction becomes incorrect

when the difficulty of finding high resource sites increases due to intrinsic scarcity or occupa-

tion by other organisms in high-density populations. In particular, as the initial population

density varies, we not only observe a change in the dominant phenotype at long times, but we

also observe long-lived periods of phenotype coexistence.

We have used a combination of stochastic agent-based simulations and a simplified mean-

field model to gain insight into the basic phenomenology of the evolutionary dynamics. In the

low-density limit we derived an effective fitness function that predicts the dominant phenotype

at long times, but could not identify such a function that predicts the dominant phenotypes in

higher density environments. Similarly, the resulting dynamics of the average population sizes

are not interpretable as gradient-based learning dynamics, as might be obtained from a nor-

mative approach in which the organism phenotypes are predicted by optimizing a hypothetical

objective function. Thus, there is no guarantee that one can in general derive a function of the

phenotype parameters that predicts the optimal phenotype—or distribution of phenotypes—

without running the dynamics of the model.
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We will discuss some of these points in detail in the following subsections, along with

detailed remarks on Comparisons to related work and Limitations of the study, and we close

with a brief discussion of Future directions.

Comparison of the agent-based and mean-field models. Overall, the outcomes of the

full stochastic agent-based model and the minimal 5-state mean-field model we used to gain

further insight were in qualitative agreement. This is often the case in statistical physics mod-

els; for example, mean-field approximations of Ising models of magnetism correctly predict

the qualitative features of the phase diagram of the model, but overestimate the critical temper-

ature at which a transition from zero to non-zero net magnetization of the material occurs

[24], similar to the overestimate of the critical birth rate for the transition shown in Fig 3. This

discrepancy may also be due to the well-mixed assumption made during the reduction of the

full 2dmodel to the 5-state model, discussed in the next paragraph. Despite some quantitative

discrepancies in predicting the values of the critical birth rates B5c(c), the low-density mean-

field model accurately predicts the transition boundary from hγ4i � 10 to hγ4i � 0 as a func-

tion of the resource scarcity c, as shown in Fig 3.

The primary source of quantitative discrepancies between stochastic models and mean-

field models is the neglect of fluctuations and the necessity of choosing a carrying capacity that

takes continuous inputs (which gives rise to the factor 1 − ∑γ0 nkγ0/(wk M) in Eq (2)). In many

mean-field approximations of master equation models, upon which our 5-state model is

based, the variance of these fluctuations eventually invalidate the mean-field approximation at

long times or when the mean population sizes are small. As discussed in Limitations of the

study, we avoid these causes of mean-field breakdown by using a periodic catastrophe to

reduce the population size to a fixed level, rather than stochastic death. Additional discrepan-

cies are caused by the reduction from the mean-field approximation for the full 2d environ-

ment to the 5-state model (see Numerical solution and analysis of the 5-state mean-field

model for details). Some of the discrepancy in Fig 3 may also reflect the effects of population

density, particularly in our simulations with scarce resources, as the transition occurs at rela-

tively large values of b5 (compared to the discrete uniform distribution of resource levels),

which could lead to the population growing large enough before each catastrophe that interac-

tions between individuals are not negligible, reducing the validity of the low-density model

used to predict the transition boundary in Fig 3B.

The largest qualitative discrepancy between the stochastic simulations and the mean-field

model is the timescale of the evolutionary dynamics. Saturation of the hopping rates in the sto-

chastic model appears to take *30 times longer than in the mean-field model, despite the

birth rates, hopping rates, and catastrophe period parameters being nearly the same across the

models. We believe this discrepancy is due to the well-mixing assumption of the mean-field

model, which posits that the spatial variability of agents throughout the environment is negligi-

ble, allowing our reduction to the 5-state model; we quantify the magnitude of this approxima-

tion in S5 Fig. This conjecture is supported by direct simulations of a 5-state agent-based

model, which shows a convergence time similar to the mean-field model predictions (see S6

Fig). We therefore expect that in a mean-field model that takes into account spatial variation

of agents and resources we would get convergence times more similar to the full 2d agent-

based simulations.

Metastability of phenotype coexistence. In both our stochastic simulations and mean-

field model we observed long-lived coexistence of different phenotypes (Figs 4 and 5). In the

low-density limit of the mean-field model we could show analytically that this coexistence is

almost-surely transient: only the phenotypes with the largest eigenvalues Λγ will survive in the

limit of infinitely many catastrophes, ℓT!1. The exceptions in which coexistence is possible

in this long time limit are fine-tuned conditions under which multiple phenotypes have the
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exact same values of Λγ. Therefore, outside of this special fine-tuned condition, at low-density

coexistence ismetastable in the sense that phenotypes may coexist for long durations of time

but the ultimate fixed point is survival of only a single phenotype (we remind the reader that

extinction is not possible in our setup; in practice the fate of any model with a finite number of

agents and stochastic death is extinction [25]). In the stochastic agent-based model the repro-

duction noise prevents any one phenotype from being the only survivor, but the distribution

of phenotypes will be narrow around a dominant phenotype if it exists. In contrast, long-lived

coexistence is represented by a wide distribution of phenotype that persists across a large num-

ber of catastrophes. In both the mean-field model and the agent-based simulations the time-

scale of this phenotype coexistence depends strongly on the value of b5: when b5� B5c the

distribution of γ4 remains wide for a long time, while the distribution quickly converges when

b5� B5c or b5� B5c. This long-lived phenotype coexistence is again somewhat fine-tuned,

requiring b5 to be close to B5c.

In the high density regime (Eq (2)), on the other hand, we observed a range of densities for

which multiple phenotypes coexist for long times and do not show clear signs of a trend

towards a single dominant phenotype. This form of phenotype coexistence appears more

robust—requiring less fine-tuning of the initial density—than the coexistence observed in the

low-density regime when the birth rate b5 is close to the critical value B5c. However, it is diffi-

cult, if not analytically intractable, to determine whether the phenotype distribution would

ultimately converge to a single dominant phenotype if run for a much longer time, or if there

is a broader range of parameter space for which coexistence occurs in the infinite time limit.

Inspection of the average hopping rate dynamics hγk(t)i in the mean-field model (Fig 4F)

seems to suggest there will be fine-tuned values of the initial density N0/M at which two or

more phenotypes may coexist in the long-time limit, but deviations from these values result in

a single surviving phenotype in the long time limit, rendering coexistence of phenotypes in the

high-density regime similar to low-density coexistence near b5� B5c. However, because the

mean-field model does not include reproduction noise, it is possible that the reproduction

noise could stabilize coexistence states, preventing any one phenotype from dominating at

long enough times in the full stochastic model—the trends of hγ4(t)i in Fig 4A and 4B could be

reflecting such a behavior.

Evolution as an optimization or learning process. In this work we investigated the evo-

lution of innate foraging behaviors using evolutionary population dynamics [4], in contrast to

the more common normative approaches in which evolution is assumed to act like an optimi-

zation process that extremizes some objective function subject to constraints [6, 26, 27]. One

of our original motivations for doing so was to better understand conditions under which we

might expect such normative approaches to be mimicked naturally by the population dynam-

ics, either through the population dynamics being interpretable as gradient dynamics or by

deriving an effective “fitness function” that predicts the dominant phenotype, or conditions

under which typical normative approaches might need to consider “multi-agent” interactions

to properly predict emergent phenotypes, a growing trend in deep reinforcement learning

[28]. While normative methods have proven valuable for developing insight into biological

structure in many areas of application [12, 17], conditions under which evolutionary dynamics

can be expected to optimize abstract quantities such as “information” have not been exten-

sively explored, and our goal was to gain insight into such limitations with a simple population

dynamics model.

We found that at low initial population densities we could effectively capture the evolution

of the agent phenotypes with a mean-field model that neglects interactions between different

agents, and hence different phenotypes. Effectively, agents of different phenotypes only inter-

act through the periodic catastrophe we use in our model to drive phenotype selection. In this
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regime it turns out that the overall growth rates of each phenotype are independent, and the

catastrophes ultimately select for the phenotype with the largest growth rate. Thus, in this

regime the maximum eigenvalue of the linear dynamics serves as an effective fitness function

for the population that predicts the dominant phenotype at long times. This result is non-triv-

ial, because a priori it was not obvious that the catastrophes, which nonlinearly couple the phe-

notypes, would not change the predictions of the linear eigenvalues. We might therefore

hypothesize that organisms that evolved under low-density conditions in which individuals

were not often competing for resources or space may be more amenable to normative

approaches that aim to predict the optimal phenotype through the use of objective functions of

only a single representative agent. This said, in a more realistic stochastic model with asyn-

chronous death rather than a synchronous selecting catastrophe, there is no mechanism (other

than extinction or limited resources) for keeping the population size from eventually growing

large enough to invalidate the low-density approximation. In an environment with a very large

carrying capacity the low-density approximation may still be valid on the relevant evolutionary

timescales, and the eigenvalues (growth rates) of such a mean-field model could still predict

the phenotype that comprises the largest fraction of the population.

When the population density is sufficiently high that interactions between agents cannot be

neglected, then interactions between individuals can alter which phenotypes dominate the

population at long times, or lead to long-lived coexistence, and there does not appear to be an

obvious single-agent objective function that can be derived to predict the phenotype distribu-

tions observed in our simulations or mean-field model. In light of this, one might wonder

whether the dynamics of the expected numbers of agents of each phenotype might follow gra-

dient dynamics, but this is not the case for the model studied here. This suggests it may not be

possible to derive a function of a single representative phenotype parameter to exist in the

interacting regime.

While the conditions under which evolution acts as an optimization process are not gener-

ally clear, and may not be valid in some circumstances [20, 29–31], evolution can perhaps still

be interpreted as a kind of learning process. While the individual agents in our model do not

possess any ability to learn, the population effectively “learns” the structure of the environment

over the course of its evolution: the phenotype structure of the population after a long time

depends on the structure of the environment and the dynamics of the agents. Even though

there is not necessarily any well-defined fitness or objective function being optimized, the

adaptation of the population to the environment displays some of the hallmarks of learning.

Comparisons to related work

Several lines of work have used population dynamics approaches based on master equation

models to study the evolution of species under various ecological situations [25, 32], including

competition for resources [33–36], prey and predation [37–40], evolutionary arms races [41,

42], and more. Our model follows this methodology, and may be viewed as a generalization of

logistic population growth to a spatial environment with multiple possible phenotypes com-

peting for the same limited resources.

Because our model considers only organisms of the same trophic level (i.e., similar organ-

isms compete for a common pool of resources, as opposed to, e.g., predator and prey dynam-

ics), it is similar to the context of the neutral theory of biodiversity [35, 43–45]. The neutral

theory of biodiversity assumes that the relative abundances of different species occupying the

same environment is not necessarily due to relative evolutionary advantages or disadvantages,

but potentially simply due to stochasticity of birth-death dynamics—or “luck.” This idea has

been a subject of debate in ecology [35], but neutral models have been successful in explaining
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some observed trends in experimental data, although a more complete picture of ecological

dynamics is thought to require non-neutral effects [33, 43]. While our model population has

no intrinsic differences in terms of their raw birth rates, and hence may superficially be consid-

ered neutral, different phenotypes do have emergent advantages over one another because

some phenotypes are certainly more successful than others at finding high resource sites and

producing more offspring, and is therefore effectively not neutral.

Beyond master-equation based models, there are many other studies that take normative

approaches to understanding the behaviors and structures of organisms performing similar

foraging tasks. Work in this vein may take several forms of abstraction, ranging from models

in which the quantities to be optimized are directly relevant quantities—such as expected

numbers of offspring [5] or the expected time it takes organisms to find a stockpile of food [6,

7]—to more abstract “rewards” such as the information an organism has extracted from its

environment [11, 17, 27, 46, 47]. In some cases these normative models consider just a single

representative agent and its associated parameters that determine its dynamics over the course

of a specified task, and hence phenotype. More recent work has considered the dynamics of

multiple agents performing tasks through the lens of evolutionary game theory [17, 48–51],

sometimes taking the limit of a continuous population density, effectively reducing the indi-

vidual agent-based dynamics to a coarse-grained statistical description [27]. Many similar

approaches are being developed in machine learning applications [28]. We note that the

dynamics in these normative approaches are typically a single instantiation of a task, such as a

single catastrophe period in our model, not a full evolutionary dynamics, though some studies

do use evolution-inspired “genetic algorithms” [52], in which the parameters of a population

are remixed and inherited by the next generation after a certain amount of simulation time

(i.e., there are typically no mechanistic birth-death events as in the model considered in this

work). Relatedly, multiple independent lines of work have begun formulating Bayesian

approaches to bridge mechanistic and normative approaches to understanding biological

structure [6, 9, 10]. As investigation of biological evolution from this multitude of approaches

continues to develop, it would be interesting for future studies to directly investigate the align-

ment of the outcomes of agent-based birth-death dynamics and normative approaches in such

multi-agent settings, especially as increases in computational efficiency allow for simulation

and investigation of increasingly complex agents.

Limitations of the study

As with any model, there are many aspects of the phenomena we seek to study that cannot be

fully captured by our approach or assumptions, and warrant discussion. We focus on discuss-

ing how some of the important model simplifications could potentially be relaxed, and con-

sider possible implications for empirical data at the end of this section.

Disparity between evolutionary timescales and individual agent lifetimes. One of the

most challenging aspects of modeling the evolutionary process is that the actions of individual

organisms take place on time scales orders of magnitude shorter than the timescales over

which significant phenotypic change occurs. This discrepancy is even more extreme for time-

scales over which accumulated mutations and reproduction result in radiations of new species.

This separation of timescales presents an obstacle to modeling the evolution of complex behav-

iors and structures, motivating our choice of modeling agents with a very simple repertoire of

available actions. Even relatively “simple” organisms like C. Elegans are capable of much more

complicated behaviors than simply relocating based on the conditions at the organism’s cur-

rent location [22]. While it is possible to consider models of more complex agents, for example

with internal states that process environmental information, accounting for both the fast
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internal timescales and long evolutionary timescales in a single model is a significant challenge.

Other modeling strategies for bridging these timescales will be necessary for the foreseeable

future, such as the timescale separation approximation of Mann [27].

Selection by catastrophes versus stochastic death. We have implemented selection in

our model by an unorthodox choice (in population dynamics models) of implementing a peri-

odically occurring catastrophe that reduces the population down to a fixed size, rather than the

more common and realistic scenario of having stochastic death in which agents randomly per-

ish according to an asynchronous death rate (or set of death rates). This said, this method of

removing agents is similar to approaches used in evolutionary game theoretic models [17, 48–

51]. The reasons for this modeling choice in our population dynamics approach are largely

technical: in any stochastic model with a finite population size and stochastic death, the ulti-

mate fate of the population is always extinction. While this may not be a problem in practice

for simulations, as the extinction time can be quite large [25] and only a few simulations might

terminate in extinction, it complicates analytic analyses. In particular, the mean-field approxi-

mation in a model with stochastic death will always predict that the extinction fixed point is

unstable and the non-zero population size is stable, which is qualitatively invalidated at long

times: the variance of the stochastic process grows with time, owing to the fact that eventually

a large enough fluctuation will occur to drive the system to the extinction fixed point, from

which it cannot escape. By only allowing agents to perish via a periodically occurring catastro-

phe that resets the population size to the initial number of agents we allow our model to

remain close to the mean-field regime throughout the entirety of the simulation. One can

imagine a hybrid scenario in which the catastrophes do not occur periodically, but with sto-

chastic timing (e.g., with Poisson-distributed arrival times), which would retain the technical

advantages of the period catastrophes while also re-introducing stochasticity to the selection

that could be interesting to investigate in future iterations of this model.

Sexual versus asexual reproduction. We considered only asexual reproduction in our

model for simplicity, in which the phenotypes inherited by offspring are noisy copies of the

parent’s phenotype (or direct copies in the mean-field model). One could introduce sexual

reproduction into the model by allowing agents at adjacent sites to mate and produce an off-

spring onto one of the unoccupied sites adjacent to the parent that gives birth, with the child’s

phenotype determined by some combination of the parents’ phenotypes.

The most significant impact that adding sexual reproduction would have on our results is

the complication of the low-density approximation that we used to derive the effective cost

function Λγ. Because sexual reproduction requires interactions between individuals, a mean-

field model that includes sexual reproduction is necessarily nonlinear. As a consequence,

deriving an effective cost function like Λγ in this case is not straightforward, similar to the high

density regime studied in this work. This could suggest that single-agent normative models

may be most applicable not simply to organisms that evolved in low density conditions, but

also organisms that reproduce primarily through asexual reproduction—or perhaps organisms

that reproduction via external fertilization, such as many aquatic animals [53–56]. However, a

more thorough analysis of phenotype dynamics in populations with sexual selection is

required to test these possibilities.

Complexity of agents and environment in population dynamics models. The organ-

isms we have considered in this work are rather simple in terms of their ability to process sen-

sory information and take actions: an organism can only detect the resource level at its current

location and move to a neighboring location at a fixed attempt rate. The agents have no mem-

ory, nor can they change their behavorial strategies, capabilities that even “simple” organisms

like C. Elegans have been found to display after short periods of local exploration [22].
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Even within the restricted repertoire of sensory processing and behavioral actions, we con-

sider only relatively low-dimensional phenotype spaces, which in turn imposes a restrictions

on the environmental structure: keeping the phenotype space constrained to 5 components

requires we have only 5 resource levels. We could in principle have more resource levels while

retaining a low-dimensional phenotype space by defining a function γ(s) parametrized by a

small set of abstract parameters, but the choice of this functional form imposes additional

structure, which could result in different competitive behavioral strategies for different

choices.

Implementing even more complex agents will thus require even larger phenotype spaces;

while this is feasible in single-agent normative approaches to evolutionary modeling, having a

large number of dynamic complex organisms is extremely computationally expensive. We

therefore opted for the more parsimonious choice of a simpler environmental structure with a

1-to-1 correspondence with the (directly interpretable) hopping rate parameters.

Depleting versus non-depleting resources. In this study we have considered only non-

depleting resources (also called “non-destructive resources”), such that the resource levels Sk
are not modified by the dynamics of the organisms in the environment. This restricts the inter-

pretation of these resource levels to “conditions favorable for reproduction,” such as tempera-

ture or shelter, or consumables that are so plentiful that consumption by agents does not

appreciably change the resource level of a site. Consumption of resources with replacement

(e.g., continued growth of food sources or rainfall) would allow for a feedback loop between

organisms and the environment, as the actions of the organisms change the environment,

which in turn can alter which behavioral phenotypes are most successful at finding sites with

plentiful resources. In such a scenario the dominant phenotype could be constantly changing,

unless the statistics of resource consumption of and agent dynamics achieve an equilibrium.

Such a scenario could give rise to the evolutionary dynamics similar to those observed in popu-

lations of turtle ants, in which the head shapes of soldier ants have repeatedly reappeared

through evolution [20], though the specific case of soldier ants likely involves additional envi-

ronmental selective pressures that change with time, not just changing resource distributions.

Modeling such systems from a normative perspective would require defining a fitness land-

scape that changes with time. Investigating these possibilities within frameworks like ours will

be an interesting avenue for future work studying the evolution of organism behaviors and

sensory capabilities.

Metabolic costs of reproduction and relocation. In our model we have not explicitly

implemented any metabolic penalty for giving birth or hopping to a new location. The

phenomenological effects of such metabolic costs are implicit in the resource level dependence

of the birth rates and the imposition of maximum hopping rate γmax. A more complex agent-

based model could give each agent its own metabolic budget. Agents would acquire energy

from the environment—e.g., high resource sites would provide more energy per unit time

than low resource sites, possibly through consumption of more plentiful resources—and then

agents would spend that energy to give birth (incurring a large metabolic cost) or relocate,

with the metabolic cost of moving depending on the speed (hopping rate) at which the agents

attempts to move. In such a formulation the hopping rate would not need to have an intrinsic

maximum per se, though there would be an effective maximum determined by the ability of

the agents to acquire enough food to support the high metabolic costs of moving quickly. A

metabolic budget could be incorporated into a master equation model or mean-field model by

treating the energy as an additional variable on par with the agent position and phenotype, i.e.,

by counting the number of agents at a particular location with a particular phenotype configu-

ration and specified amount of energy.
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We expect that in an environment with non-consumable resources that provide agents with

a fixed amount of energy per unit time, with higher rates conferred by higher resource levels,

one could choose the energy rates and metabolic costs of reproduction and relocation in such

a way that the results of our current study are qualitatively reproduced.

Comparison to empirical data. Owing to many of the simplifications of our model dis-

cussed above, it is difficult to directly compare our results to empirical data. Studies investigat-

ing the evolution of innate behaviors have focused on the interplay of the innate behavior

evolution and learning within an individual’s lifetime [57–59], a relationship that is difficult to

study in this sort of population-dynamics model due to the disparate timescales of evolution

and within-life learning.

The most promising means of comparing our model to empirical data would be to design

and perform an experiment that closely mimics the set-up of the model. For instance, one

could imagine an experiment with a population of organisms that a) are capable of self-pro-

pelled motion, b) have some means of detecting local nutrient level/temperature/etc., c) have

tools for genetic modification to create mutants representing an initial distribution the pheno-

type behaviors, and d) have relatively short reproduction times. These organisms would be

placed into a controlled environment in which nutrients or reproductively favorable condi-

tions are randomly distributed; consumable resources would need to be replenished at rates

comparable to the rate of uptake by the organisms. The organisms would be given time to

explore their environment and discover locations of high nutrient content, after which they

are culled back to the initial population size, mimicking the catastrophe in our model. By

using tracking software to monitor the organisms’ relocation rates out of each nutrient level,

one could observe over a large number of cullings whether there is a change in the distribution

of phenotyped behaviors over the course of the experiment.

This said, the implementation of such an experiment may not be pragmatic for the foresee-

able future, and would likely be limited to single-celled organisms. A more promising avenue

might be to compare the qualitative predictions of future extensions of this work modeling

more complex organisms. For example, experimental studies have observed selection-induced

genetic drift in a mixed population of wild-type mice and mice with a mutation that disrupts

their circadian rhythm [60]. One could model such an experiment by incorporating some of

the more complex features discussed above into a formalism like the one presented in this

work, with additional modifications to introduce a day/night cycle that interacts with agents’

internal circadian rhythms. It would be of great interest to model similar scenarios that investi-

gate the relative reproductive success of organisms with different perturbations to their sensory

modalities, to see if the outcomes can be assessed using various normative predictions com-

monly used in neuroscience.

Future directions

In this work we have focused on agents with relatively simple sensory capabilities and

behaviors in order to tractably compare agent-based simulations with mean-field approxi-

mations and calculate an effective fitness function in a tractable limit of the mean-field

model. Two main avenues for future investigations of the models that we have not

attempted to elucidate here include i) performing more advanced mathematical analyses of

master equation models, for example by investigating the effect of stochastic fluctuations on

the stability of phenotype coexistence in more detail, and ii) pushing the boundaries of

agent and environment complexity, along with implementing other more realistic features

of evolutionary dynamics.
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Investigating the effects of stochasticity requires tools to go beyond the mean-field models

introduced here. Several tools exist in the mathematical and statistical physics literature for

this purpose, such as the Wentzel–Kramers–Brillouin (WKB) approximation [25, 32] or field-

theoretic formulations of the master equation model [37–39, 61]. Because these cases explicitly

deal with beyond-mean-field effects it would be more natural to use stochastic death in this

setting, rather than the periodic catastrophe introduced in this work to control the efficacy of

the mean-field approximation. For example, the WKB approximation could allow for a direct

calculate of the large deviation functions determining the extinction transition. This large devi-

ation function may serve as an effective cost function of the population, potentially allowing

for the derivation of such a function, even in the high-density regime [61].

In terms of increasing organism complexity, a long-term goal of this line of work would be

to endow agents with “brains”—small neural networks that take in some sensory information

from the environment and then determine how the agent will attempt to move. In such a con-

text evolution would act on the structure of the brain, similar to the case of Braitenberg vehi-

cles [62, 63] (as opposed to determining the synaptic weights in neural network models such

as in [64]). In practice, this will be a challenging direction due to the large phenotype space

and the separation of timescales involved in sensory processing and evolution. A more tracta-

ble approach would be to endow the organisms with a simple “receptive field” that detects sen-

sory information in its immediate environment, down to a modest modification of the current

model that allows for agents to detect resource levels at neighboring sites in addition to its cur-

rent location. Straightforward increases in environmental complexity include adding spatial

correlations between resources levels at different locations, as well as introducing sensory sig-

nals distributed through the environment that are correlated with resource levels that agents

cannot detect directly. Modeling the impact of consumable resources is also of ecological

importance, and could be implemented in our models, e.g., by introducing a non-motile “spe-

cies” at each site that is consumed by agents and replenished at a fixed rate. In this way one

could also introduce more realistic metabolic limitations: actions such as giving birth or relo-

cating could incur energy costs that must be replenished by consuming food in the environ-

ment. This is one way we could formally remove the artificial restriction of a maximum

hopping rate γmax, allowing the organisms to move as fast as possible between sites if they can

acquire the necessary energy to maintain such a strategy.

Finally, one of the goals of this work was to attempt to derive functions that could serve as

effective cost functions in normative approaches to modeling the biological structures and

behavioral strategies that emerge from the more fundamental evolutionary dynamics. It would

be interesting to perform a more thorough comparison of the predictions of birth-death

dynamics and normative approaches to identify regimes where the predictions diverge, espe-

cially in approaches in which the objective functions are abstract quantities such as informa-

tion-theoretic quantities related to random variables in an organism’s environment [9–11].

Doing so will provide valuable insight into the relationships between fundamental evolution-

ary processes and the more parsimonious normative approaches useful for modeling complex

organisms.

Methods

Details of the agent-based stochastic simulations

In the agent-based stochastic simulation, we use an L × L lattice with periodic boundary

conditions, with a standard value of L = 128. The resource level at each location is drawn

from a discrete uniform distribution with 5 possible levels, labeled S1, S2, S3, S4, and S5. Each

agent has a phenotype vector γ = (γ1, γ2, γ3, γ4, γ5) where the ith component corresponds to
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the hopping or relocation rate when the agent is at a site with resource level Si. The birth

rate of agents at spatial coordinate x within the environment is a function of the resource

level at that location, b(sx) = b(Si)� bi if sx = Si. Initially, 500 agents are introduced to the

system, each of which has a random initial location and random initial phenotype vector

with each component ranging from γmax = 0 to γmax = 10. This bound is set considering that

the relocation rate cannot go negative and there are metabolic costs that constrain agents

from relocating too frequently. An offspring inherits its parent’s phenotype vector with

Gaussian noise added to each component. The noise term follows N ð0; s2I5Þ, with σ = 0.05

(arbitrary units) in all the stochastic simulations throughout this study. If the noise would

push a relocation rate component outside of the range [γmin, γmax] then the component is

set to the closest boundary value. Each location can hold at most 1 agent at any given time

and thus the reproduction process has to leave the offspring at one of the vertical or hori-

zontal neighboring locations in practice—if the agent attempts to give birth into an occu-

pied site then this reproduction attempt is considered as unsuccessful. Similarly, hopping

may only occur from an agent’s position to one of the four adjacent sites, with the hop being

unsuccessful if the target site is occupied.

Importantly, a system-wide periodic random culling is applied to the system after a dura-

tion of T = 0.3 (arbitrary time units), which reduces the number of agents back to its initial

state. This periodic catastrophe removes agents in a random manner without distinguishing its

phenotype or location, functioning as the selection in the evolutionary dynamics. We expect

that the most competitive phenotypes will be selected out after a series of growth and catastro-

phe events. A full iteration of the simulation consists of stochastic growth and relocation, as

well as a random culling at the end. The next iteration starts off with the survived agents from

the last iteration as the new initial condition.

As the carrying capacity of each location is set to 1, the 128 × 128 2d lattice can hold at

most 16384 agents. For a typical run, in 0.3 units of simulation time the number of agents

grows from 500 to around 850 before the random culling brings the number of agents back to

500. The initial density of agents is defined as initial number of agents divided by total possi-

ble number of agents in the system, which is 500/16384� 3.1% for this standard parameter

set. When investigating the high density regime, we kept the number of agents to be 500 in all

the initial conditions and reduced the lattice size from 128 × 128 to smaller size to achieve

higher initial densities.

To reduce the potential variability from stochastic simulations, we run 20 independent sim-

ulations with the same set of model parameters and resource background for all the agent-

based stochastic simulations in this study. Then the averaged phenotype components cross all

trials and their standard deviation were calculated as the solid lines and shaded areas in Figs

2E and 4A–4D.

The stochastic agent-based model was simulated in the Python programming language

using a direct method Gillespie algorithm [23]. The Gillespie algorithm computes the total

rates of the possible events that may take place in the system to determine when and what the

next “action” is. Here “action” refers to either birth or relocation of an agent in the system. The

total rate is the sum of the birth and relocation rates of all the agents in the system; the algo-

rithm first determines the time of the next action and then probabilistically chooses one of the

available actions based on the relative rate of each action compared to the total rate. That is, at

each step, the time of the next birth or relocation event is drawn from an exponential distribu-

tion with mean 1/total rate. The probability that the next event is agent A giving birth or relo-

cating is A0s birth rate/total rate or A0s relocation rate/total rate. The target location of the

birth or relocation event is then randomly chosen from one of the four possible neighboring

locations of the agent’s current position. If the chosen target location is already occupied, the
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birth or relocation attempt is considered unsuccessful. Note that in this implementation of the

algorithm, hopping or birth from site x to site y is a two-step process: the rates going into the

total rate are just b(sx) and γx, and then if one of these events is chosen to occur the target site

is drawn with probability 1/2d = 1/4 in our two-dimensional environment. However, an alter-

native way we could have implemented these dynamics is via a one-step process in which we

include the birth and hopping rates from site x to site y for all possible target sites as separate

rates into the total rate (all of which happen to have the same numerical values). In this second

possible implementation the birth and hopping rates must be scaled down by the number of

target sites (2d = 4) in order to match the results of the two-step implementation. This techni-

cal detail is important when developing the mean-field model, as the one-step implementation

corresponds more directly to the master equation formalism we introduce in Master equation

model of the stochastic dynamics and derivation of the mean-field approximation, and scaling

the birth and hopping rates is required to make the derived mean-field model match the

agent-based simulations.

Multiple Python packages were used in the stochastic simulations, mean-field model analy-

ses as well as data visualizations in this study, most notably, Numpy [65], Scipy [66], and Mat-

plotlib [67]. In the stochastic simulations, each stochastic trajectory was run in series on a

single CPU core. A computing server with two Intel Xeon Processor E5–2690 v4 CPU (14

cores for each CPU unit) was used to generate 20 stochastic trajectories for the same set of

parameters in parallel with the aid of the Python Multiprocessing module. Typically, each run

takes approximately 35 minutes for a system starting with 500 agents and b5 = 4 in Fig 2.

Higher b5 led to more agents being produced, resulting in a higher simulation load, and thus

simulations with higher b5 value take longer to run. For example, the simulations with b5 = 16

depicted in Fig 3 took over an hour to run.

Master equation model of the stochastic dynamics and derivation of the

mean-field approximation

Full model in a d-dimensional environment with random resources. Formalizing

agent-based stochastic simulations as mathematical models that allow for tractable analytic

analyses is often difficult [68]. Instead of keeping track of every agent individually, an equiva-

lent description that lends itself to a standard class of mathematical models is one in which we

only keep track of the number of agents with each phenotype at each spatial location in the

environment. In order to write down such a model we need to make a few simplifications:

1. We discretize the phenotype space γ so that there are a finite number of discrete phenotypes

and the number of agents with each phenotype can be enumerated. In principle, we could

work with a continuous phenotype space and define a density of agents with each pheno-

type, but for practical numerical calculations using the mean-field model it is necessary to

discretize the phenotypes.

2. We omit reproduction noise. In the mean-field model we will formally include all possible

phenotypes in the initial conditions, so we do not need reproduction noise to introduce any

phenotypes that were not initially present, as is the case in the agent-based simulations.

Now, let nx,γ be the number of agents at location x with a particular phenotype γ (i.e., a par-

ticular choice of values for each of the relocation rate components) and denote by n the collec-

tion of all of these variables into a single vector. The probability that the state of the system has

a particular configuration n at time t, p(t, n), is the solution to the system of differential
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equations

dpðt;nÞ
dt

¼
X

x;γ

X

y2VðxÞ

(

fxðn � êx;γÞbðsyÞnyγpðt;n � êxγÞ � fyðnÞbðsxÞnx;γpðt;nÞ

þ fxðn � êx;γÞγyðnyγ þ 1Þpðt;nþ êyγ � êxγÞ

� fyðnÞγxnxγpðt;nÞ

)

:

ð3Þ

We have suppressed the conditional dependence of p(t, n) on the configuration of resource

levels sx. The notation êxg represents a vector with a 1 at the element labeled by (x, γ) and 0 else-

where. The bare birth rate per capita at a site x is b(sx), explicitly denoting that the birth rate

depends only on the resource level of the current location. We assume that each site has a maxi-

mum occupancy of a single agent, so all births occur via an agent at some site y birthing a new

agent into an adjacent site x. The bare hopping rate out of a site y is denoted γy; the value of the

hopping rate is equal to the hopping agent’s value of the hopping rate at resource level sy. Both

birth rates and hopping rates into a site x are modulated by a factor fx(n), which is 0 if site x is

occupied and 1 if unoccupied. The possible target sites for hopping or birth by an agent at site x

are identified by the notation y 2 V(x), which means that site y is in the “vicinity” of x. By

assumption, x =2 V(x). For our 2d simulations, V(x) consists of the nearest neighbor sites y = x ±
(1, 0)T and y = x ± (0, 1)T.

The initial condition p(0, n) represents the initial configuration of the system. In many

applications the initial condition is deterministic, but one can choose an initial distribution as

well. In particular, we can ensure every phenotype is represented by choosing an initial distri-

bution of N0 agents and assigning each agent’s phenotype and location by drawing from the

possible phenotypes and sites with a uniform probability. This eliminates the need for repro-

duction noise in this model.

The dynamics of Eq (3) run from t = 0 up to t = T, at which point the catastrophe occurs.

N0 agents are randomly selected out of the agents alive at time t = T and retain their spatial

position and phenotype as we eliminate the remaining agents from the environment. The dis-

tribution of selected N0 agents forms the initial distribution for the next iteration. This proce-

dure repeats indefinitely, but we expect the distributions of the total number of agents of each

phenotype to converge after a large number of catastrophes, though it may not be the case that

the full spatial distributions p(0, n) and p(T, n) converge.

By summing Eq (3) over all possible configurations n, changing dummy indices, and using

the fact that p(t, n) = 0 if any nx,γ < 0, one can show that the right hand side vanishes, as it

must in order for probability to be conserved.

In practice, solving probability flow equations such as Eq (3) is intractable except for very

simple cases. Moreover, implementing the catastrophe at this level of description is challeng-

ing. A more common approach that lends itself to analytical and numerical analyses is to

instead derive a system of equations for the moments of the distribution and make a mean-

field approximation to close the system of equations (as moments are normally coupled to

higher order moments). For example, the “mean-field approximation” corresponds to deriving

a system of equations for the first moments of the distribution and assuming all higher order

cumulants vanish, such that averages over functions of n can be replaced by those functions

evaluated at the average hni. For Eq (3) the mean-field system of equations is

dhnx;γi
dt

¼
X

y2VðxÞ

"

fxðhniÞbðsyÞhny;γi þ fxðhniÞγyhnyγi � fyðhniÞγxhnxγi

#

; ð4Þ
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where we employed the mean-field approximation to replace products such as hfx(n)nx,γi with

the factored moments fx(hni)hnx,γi. Note that in order for this approximation to work with our

modulation function fx(n) we must specify the values that this function fx takes for continu-

ous-valued inputs, as hni will not be an integer. In this work we make the choice

fxðnÞ ¼ 1 �
X

g0

nx;g0 ; ð5Þ

which satisfies the desired boundary conditions of fx = 1 when the site is unoccupied and 0

when there is an agent at the site. This choice amounts to the assumption that hfx(n)nx,γi/hnx,γi

varies approximately linearly with ∑γ0hnx, γ0i. Although it appears that we should also impose a

threshold to prevent this choice of fx(n) from becoming negative, this is unnecessary in prac-

tice as long as the initial conditions respect the occupancy of the system, as once fx reaches 0 it

blocks any further increases in occupancy that would drive it to be negative. This is true in

both the full master equation model and the mean-field model (Eq 4).

These mean-field equations are still challenging to analyze due to the spatial variability of

the system. We simplify our analysis further by deriving an approximate system for the total

number of agents at sites of each resource level, detailed in the next section.

Reduction to a 5-state mean-field model. Rather than keeping track of the expected

number of agents of each phenotype at every location in the environment we will instead focus

only on the number of agents of each phenotype at sites of each resource level Sk. The total

expected number of agents at resource level k is

hnk;gi ¼
X

x

dðsx; SkÞhnx;gi;

where δ(sx, Sk) is an indicator function that is 1 if sx = Sk and 0 otherwise. We will denote spa-

tial sites by bold x and y indices while states will be denoted by italic k and i indices.

We can derive the system of equations for hnk,γi by multiplying Eq (4) by δ(sx, Sk) and sum-

ming over x. The restricted sum over y 2 V(x) poses a complication for this approach, and will

require an approximation to be discussed below. We detail the calculation for each term of Eq

(4) in turn.

The left-hand side of Eq (4) is trivial, and simply gives ddt hnk;gi, so we consider the birth rate

term ∑x δ(sx, Sk)fx(hni)b(sx)hnx,γi first. Note that we may write b(sy) = ∑i δ(sy, Si)bi, which essen-

tially just says that b(sy) = bi if sy = Si. Proceeding,

X

x

X

y2VðxÞ

dðsx; SkÞfxðhniÞbðsyÞhny;γi

¼
X

x

dðsx; SkÞfxðhniÞ
X

y2VðxÞ

(
X

i

dðsy; SiÞbi

)

hny;γi

¼
X

i

bi
X

x

dðsx; SkÞfxðhniÞ
X

y2VðxÞ

dðsy; SiÞhnx;γi:

The sum over y depends on the current value of x, and so cannot be easily evaluated. One

way to circumvent this problem would be to make the extreme approximation of allowing the

target sites to include not just nearest neighbors but all sites in the environment (a usage some-

times used synonymously with “mean-field approximation,” but this is due to the fact that the

mean-field approximation becomes exact on all-to-all graphs in many models). A slightly less

drastic approximation is to assume that the environment is “well-mixed,” such that the sum

over a local set of sites should just be a scaled down version of the sum over all sites.
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Specifically, we will assume

X

y2VðxÞ

Ay �
2d
M

X

y

Ay; ð6Þ

where the sum on the right-hand side is over all sites y and Ay is a general observable. The

ratio 2d/M is the number of target sites (nearest-neighbors) in d dimensions to the total num-

ber of sites in the environment. For Ay = δ(sy, Si)hny,γi we therefore obtain

X

y2VðxÞ

dðsy; SiÞhny;gi �
2d
M

X

y

dðsy; SiÞhny;gi ¼
2d
M
hni;gi:

In S5 Fig we quantify the standard deviation of the error of this assumption.

This approximation of the sum no longer depends on x, so we may now evaluate the sum

over the modulation function f(hni). For our choice of the modulation function we have

X

x

dðsx; SkÞfxðhniÞ ¼
X

x

dðsx; SkÞ

 

1 �
X

g0

hnx;g0 i

!

¼

 

wkM �
X

g0

hnk;g0 i

!

¼ wkM 1 �

P
g0
hnk;g0 i
wkM

� �

;

where ∑x δ(sx, Sk) = wk M is the expected number of sites of resource level k, withM the total

number of sites and wk the frequency of resource level k. We assume the number of sites is

large enough that the actual number of sites of each level is equal to its expected value. Thus,

the birth rate term evaluates to

X

x

X

y2VðxÞ

dðsx; SkÞfx hnið ÞbðsyÞhny;gi � 2dwk 1 �

P
g0
hnk;g0 i
wkM

� �
X

i

bihni;gi:

Next we consider the first hopping rate term. For this term it will be useful to use the iden-

tity γx = ∑i δ(sx, Si)γi, which like the similar identify for the birth rates just says that γx = γi if sx
= Si. Then,

X

x

X

y2VðxÞ

dðsx; SkÞfxðhniÞgyhnyγi

¼
X

x

dðsx; SkÞfxðhniÞ
X

y2VðxÞ

(
X

i

dðsy; SiÞgi

)

hnyγi

¼
X

x

dðsx; SkÞfxðhniÞ
X

i

gi

X

y2VðxÞ

dðsy; SiÞhny;γi

� 2dwk 1 �

P
γ0 hnk;γ0 i
wkM

� �
X

i

gihni;gi;

where we used the same approximations for the sums over y and x as in the approximation of

the birth rate term.
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For the final term we have
X

x

X

y2VðxÞ

dðsx; SkÞfyðhniÞgxhnxγi ¼
X

y2VðxÞ

fyðhniÞgk
X

x

dðsx; SkÞhnxγi

�
2d
M

X

y

fy hnið Þgkhnk;gi;

where the equality in the first line follows from using the fact that δ(sx, Sk)γx = δ(sx, Sk)γk, and

we used our approximation for the sum over nearest-neighbor sites as a fraction of the sum

over all sites in going to the second line. For our choice of f the sum over y is

X

y

fyðhniÞ ¼
X

y

 

1 �
X

g0

hny;g0 i

!

¼

 

M �
X

g0

X

y

hny;g0 i

!

¼

 
X

i

wi

!

M �
X

g0

X

i

hni;g0 i

¼
X

i

wiM 1 �

P
g0
hni;g0 i
wiM

� �

;

where we used the fact that ∑xhnx,γi = ∑ihni,γi (the total number of agents obtained by summing

over all sites must be equal to the total number of agents obtained by summing over all states)

and the total frequency of each state must be ∑i wi = 1. The final term of the mean-field equa-

tion is thus

X

x

X

y2VðxÞ

dðsx; SkÞfy hnið Þgxhnxγi �
X

i

2dwi 1 �

P
g0
hni;g0 i
wiM

� �

gkhnk;gi:

Putting everything together, the system of differential equations for our 5-state model is

dhnk;gi
dt

� 2dwk 1 �

P
g0
hnk;g0 i
wkM

� �
X

i

ðbi þ giÞhni;gi

�
X

i

2dwi 1 �

P
g0
hni;g0 i
wiM

� �

gkhnk;gi:
ð7Þ

This is nearly our final result for the mean-field model. One additional correction is neces-

sary to align it with our agent-based simulations.

Conditional-event correction and the low-density approximation. The 5-state model

Eq (7) describes the mean-field approximation to Eq (3), which would correspond to a direct

Gillespie simulation of the master Eq (3) that treats all of the possible events at any moment on

equal footing when calculating the total rate to determine the next event. For example, birth

from site x to x ± (0, 1)T and birth from x ± (1, 0)T are all treated as separate events, even

though they have the same rate (when the target sites are all unoccupied). The same is true for

the different hopping directions.

However, as detailed in Details of the agent-based stochastic simulations, our implementa-

tion of the agent dynamics uses the fact that the birth and hopping rates only depend on an

agent’s current location, not its target location, to calculate the total Gillespie rate using only a

single instance of the birth or hopping rates. Then, conditional on a birth or hopping event
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being determined to occur, the target site is chosen randomly from one of the possible targets

with equal probability.

These two implementations of the Gillespie dynamics are not equivalent. However, they are

simply related. The conditional birth/hopping implementation essentially reduces the birth

and hopping rates by a factor of the number of target sites. In a d-dimensional lattice this

means we should rescale the rates bi! bi/2d and γi! γi/2d in Eq (7), yielding the mean-field

dynamics that correspond to our implementation of the stochastic simulations,

dhnk;gi
dt

� wk 1 �

P
g0
hnk;g0 i
wkM

� �
X

i

ðbi þ giÞhni;gi �
X

i

wi 1 �

P
g0
hni;g0 i
wiM

� �

gkhnk;gi: ð8Þ

The mean-field equations given in the main text follow from this equation. In particular,

the low-density approximation follows from this system of equations by assuming that ∑γ0hnk,
γ0i � wk M, giving

dhnk;gi
dt
� wk

X

i

ðbi þ giÞhni;gi � gkhnk;gi: ð9Þ

for each phenotype γ. As this is a linear equation, we may also write it in matrix form,

d
dt
hngi ¼Mghngi;

where hnγi is a 5 × 1 vector of the expected number of agents of phenotype γ at each of the 5

resource levels andMg is the transition matrix involving the birth and hopping rates. This

equation can be formally solved in terms of the matrix exponential:

hngðtÞi ¼ expðtMgÞhngð0Þi, for each γ.

Note that although the phenotypes have become dynamically independent in this low-den-

sity approximation, the catastrophe still couples them together, as the fraction by which the

population size is reduced depends on all of the phenotypes. We give our mathematical analy-

sis of the effect of catastrophes in the next section.

Catastrophes in the mean-field model. We introduce catastrophes into the dynamics of

Eq (8) by running the mean field dynamics up to time t = T, at which point the catastrophe

occurs and we reset the population to its initial size N0 by uniformly reducing the size of each

phenotype:

nð‘þ1Þ
g
ð0Þ ¼

N0
P

i;g0n
ð‘Þ

ig0 ðTÞ
nð‘Þ
g
ðTÞ; ð10Þ

where ℓ indexes the number of catastrophes that have occurred and we have dropped the

angled brackets for convenience. Though this equation holds for any density, in the low-

density limit we can formally solve Eq (9) and use this iterative map to derive the effective

objective function Λγ, the growth rate of the phenotypes, as we show below.

At low-density the most competitive phenotype has the largest maximum eigenvalue.

We now prove that the most competitive phenotype in the reduced mean field model is that

whose hopping rates maximize the largest eigenvalue ofMg, denoted Λγ.

Our proof begins by using the explicit solution of Eq (9) in terms of the matrix exponential,

together with the reset condition Eq (10), to relate the final population sizes just before the
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next catastrophe by a system of iterative maps:

nð‘þ1Þ
g
ðTÞ ¼

N0
P
i;g0n

ð‘Þ

ig0 ðTÞ
exp TMg

� �
nð‘Þ
g
ðTÞ; ð11Þ

where nð‘Þ
g
ðTÞ is the vector of population sizes at the end of the ℓth iteration (i.e., just prior to

the ℓth catastrophe). As ℓ!1 this iterative map may converge to a fixed point, n�
g
ðTÞ, which

is the stable distribution of the population in this dynamical system. The fixed point equation

may be rewritten
P

i;g0n
�
ig0 ðTÞ
N0

I � exp TMg

� �
� �

n�
g
ðTÞ ¼ 0 ð12Þ

for each phenotype γ, and where I is the identity matrix. We expect the trivial solution

n�
g
ðTÞ ¼ 0 to be obtained for phenotypes that are outcompeted by other phenotypes, such that

these phenotypes comprise smaller and smaller fractions of the total population, eventually

vanishing as ℓ!1.

Because extinction is not possible in this model, at least one phenotype must achieve a non-

zero population size at the fixed point. For a non-trivial fixed point to exist, the determinant of

ð
P
i;g0n

�
ig0 ðTÞÞ=N0I � expðTMgÞmust vanish for some phenotypes γ. This implies that

ð
P
i;g0n

�
ig0 ðTÞÞ=N0 is an eigenvalue of the matrices expðTMgÞ and n�

g
ðTÞ is the corresponding

eigenvector. The eigenvalues and eigenvectors of expðTMgÞ are related to the eigenvalues λγ

and eigenvectors of the much simplerMg, which can be efficiently computed ([69]). As empiri-

cally observed in Fig 6, only one of the eigenvalues ofMg is positive; the rest are negative. As

the self-consistency condition requires that
P
k;gn

�
kgðTÞ ¼ N0elgT , the only possible choice of

eigenvector is that which corresponds to the largest, positive eigenvalue, which we denote Λγ,

as otherwise
P
k;gn

�
kgðTÞ would be less than N0, which is not possible in this model. (Moreover,

the eigenvectors with negative eigenvalues often have negative components, which does not

make sense as a population count).

Because we assume that all phenotypes are present in equal proportions in the mean field

model, it follows that the phenotype with the largest overall maximum eigenvalue Λγ will be

the sole survivor in the ℓ!1 limit. The fact that ð
P

i;g0n
�
ig0 ðTÞÞ=N0, a single scalar number,

must be an eigenvalue of expðTMgÞ for every γ implies that the only way multiple phenotypes

may coexist in the low-density limit is if their largest eigenvalues Λγ have the same value. In

such a case the relative proportions of those phenotypes will depend on the overlap of n(0)

with the eigenvector corresponding to Λγ, which could be different for different phenotypes

even if their eigenvalues are the same, leading to different relative proportions in the long time

limit.

The mean-field dynamics are not gradient-based

Here, we briefly prove the claim that the mean-field model cannot be written as a gradient-

based dynamics dndt ¼ �
@

@nCðnÞ for some effective fitness function −C(n). The proof uses the

fact that the right-hand side of Eq (2) is not conservative, and hence cannot be written as such

a gradient. Let the right-hand-side of Eq (2) be

Qkg � wk 1 �

P
g0
nkg0

wkM

� �
X

i

ðbi þ giÞnig �
X

i

wi 1 �

P
g0
nig0

wiM

� �

gknkg:
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If this vector field were conservative, then it must be the case that

@Qkg
@nja
�
@Qja
@nkg

¼ 0;

as if Qkγ = @C(n)/@nkγ then this quantity would vanish by equality of mixed partial derivatives.

We will demonstrate this is not the case. The derivative is

@Qkg
@nja

¼ �
djk

M

X

i

ðbi þ giÞniγ þ
gknkg
M

þ wk 1 �

P
g0
nkγ0

wkM

� �

ðbj þ gjÞdga �
X

i

wi 1 �

P
g0
niγ0

wiM

� �

gkdjkdga:

Fig 6. Empirical demonstration that the low-density coefficient matrixMg has only one positive eigenvalue. We

numerically calculate the eigenvalues of the matrixMg by randomly drawing all birth and relocation rates from a

uniform distribution in [0, 10). Across 50000 samples shown, we find that only the largest eigenvalue of this matrix is

positive and all the other eigenvalues are always negative.

https://doi.org/10.1371/journal.pcbi.1009934.g006

PLOS COMPUTATIONAL BIOLOGY Evolution of innate behavioral strategies through competitive population dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009934 March 14, 2022 31 / 38

https://doi.org/10.1371/journal.pcbi.1009934.g006
https://doi.org/10.1371/journal.pcbi.1009934


Then, the difference becomes

@Qkg
@nja
�
@Qja
@nkg

¼
djk

M

X

i

ðbi þ giÞðnia � nigÞ þ
gknkg � gjnjα

M

� �

þ wk 1 �

P
g0
nkγ0

wkM

� �

ðbj þ gjÞdga � wj 1 �

P
g0
njγ0

wjM

 !

ðbk þ gkÞdga:

This quantity is non-zero in general, and hence the vector field Qkγ is not conservative and

cannot be written as a gradient of a cost function that predicts the steady-state configuration of

the population. This holds true even in the low-density limit (M� ∑γ0 nkγ0), for which the dif-

ference reduces to

@Qkg
@nja
�
@Qja
@nkg

¼

�

wkðbj þ gjÞ � wjðbk þ gkÞ
�

dga:

Numerical solution and analysis of the 5-state mean-field model

With the simplified 5-state mean-field model we can evaluate the evolution of agents by

numerically solving the system of differential equations in Eq (8). To do so, we discretize the

continuous phenotype space γ = (γ1, γ2, γ3, γ4, γ5) with γi 2 [0, 10] into a space where each

component can take discrete values from the set {0, 2, 4, 6, 8, 10}. This discretized phenotype

space contains 65 = 7776 possible phenotypes.

We numerically solve Eq (9) with the ODE solver from Scipy package [66], using explicit

Runge-Kutta method of order 5(4). In practice, we solve the full mean-field model Eq (2) for

the fully coupled phenotype system, even in the low density limit. The number of agents is

reset following Eq (10) after a duration of simulation time T = 0.3, repeated for 2000 iterations.

A typical run takes around 2 hours to finish. Note that in all the numerical evaluations of the

mean-field model, the birth rates are taken to be [0, 1, 2, 3, 5] except for Fig 3 where the change

of b5 is explicitly investigated. This slightly different choice of b5 = 5 in the mean-field model

compared to the b5 = 4 in the stochastic model is to compensate the minor quantitative differ-

ence of the critical value of b5 at which the transition from hγ4i = γmax to γmin occurs, as shown

in Fig 3A, upper panel.

The mean phenotype and its standard deviation can be calculated from the fraction of

agents with different phenotypes

fgðtÞ ¼
NgðtÞP
g0
Ng0 ðtÞ

;

where Nγ(t) = ∑i niγ(t) is the total number of agents with phenotype γ. Because there are no

deaths in our model the numerator will never go to zero, and fγ is therefore bounded between

0 and 1, so we can treat it as a probability and calculate the mean phenotype by

hgðtÞi ¼
X

g

gfgðtÞ;

for each component of the vector γ. We similarly estimate the standard deviation by

sgðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

g

g2fgðtÞ � hgðtÞi
2

r
:
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Supporting information

S1 Fig. Different realizations of the resource distributions give consistent phenotype dis-

tributions. In evaluating the phenotype distributions shown in the main text, we average over

20 trials of the evolutionary dynamics, but we keep the random realization of the resource dis-

tribution the same across these 20 trials. To demonstrate that the specific realization of

resources throughout the environment does not strongly shape the ultimate phenotype distri-

bution, we run the agent-based stochastic simulations for additional unique random realiza-

tions of the resources throughout the environment. A-C. Phenotype distribution at 20000

iterations, for 3 different realizations of resource levels drawn from a discrete uniform distri-

bution. D-F. Phenotype distributions at 20000 iterations, for 3 different realizations drawn

from an exponential distribution wk/ e−ck with c = 0.5. In both cases, different realizations of

the resource give us consistent phenotype distributions.

(TIF)

S2 Fig. Maximum eigenvalue Λγ as an effective objective function. As discussed in the main

text, the maximum eigenvalue behaves as an effective objective function and predicts the tran-

sition of γ4 when b5 is varied. It also explains the large variability of the γ4 component, as the

maximum eigenvalue is insensitive to γ4 when b5� B5c. A. The maximum eigenvalue Λγ of the

low-density coefficient matrix Mg predicts the most competitive foraging strategies γopt. Typi-

cally, the optimal values are γ1,2,3 = 10 and γ5 = 0, but the value of γ4 depends on the birth rate

at resource level S5, b5. When b5 is above the critical value B5c, the phenotype with γ4! γmax

has the largest maximum eigenvalue and thus are predicted to be the optimal; however when

b5 is below B5c, the phenotype with γ4! γmin is predicted to dominate the population instead.

The same transition in the full agent-based stochastic simulation is shown in Fig 3. B. The

derivatives of the eigenvalue predict a range of γ4 values yield similar maximum eigenvalues

when b5 is close to B5c. The effective objective function is insensitive to changes of γ4, resulting

in a large variability of γ4 as seen in the simulation results shown in Fig 2E and 2F. When the

derivative is positive, larger γ4 leads to larger λγ and thus agents are better off leaving their cur-

rent location to explore (“go”). When the derivative is negative, smaller γ4 leads to larger λγ

and thus agents are better off exploiting their current location (“stay”).

(TIF)

S3 Fig. Phenotype distributions across the transition points. Changing the birth rate at the

highest resource level b5 leads to a transition in the most competitive phenotypes, primarily in

the fourth component γ4, as shown in Fig 3B. Here we show the full phenotype distributions

for some representative cases around and at this transition, for both discrete uniform and

exponentially distributed resource levels. A-C. Phenotype distribution at 20000 iterations for a

discrete uniform resource distribution, for b5 of 4, 5, and 6, respectively. D-F. Phenotype dis-

tribution at 20000 iterations for an exponential resource distribution c = 0.5, for b5 of 4, 10,

and 16, respectively. In all the cases, b1 = 0, b2 = 1, b3 = 2, b4 = 3.

(TIF)

S4 Fig. Phenotype distributions of agent-based stochastic simulations at different initial

densities. In the full agent-based stochastic simulation we observed that there exists a range of

initial densities with which different phenotypes coexist for an evolutionarily long time, at

least up to 20000 iterations of the full stochastic simulations shown in Fig 4. Here we present

the violin plots of the relocation rate distributions of the full agent-based stochastic simulations

at these different initial densities, showing the coexistence of phenotypes at a range of initial

densities, indicated by a large width of the distribution. At lower densities, coexistence occurs

when b5� B5c, while some degree of coexistence is observed for several initial densities
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without tuning b5. Note that the large degree of coexistence at 94% density is mostly due to the

environment being so dense that opportunities for relocation and birth are extremely rare.

(TIF)

S5 Fig. Spatial covariance and the well-mixed assumption error at different initial density

levels. In deriving the 5-state mean-field model from the 2dmaster equation model, we made

a “well-mixed approximation” (Eq (6)). The error introduced by this assumption (the differ-

ence of left and right hand sides of Eq (6)) has a zero mean when averaged across sites and

here we show how the standard deviation of this error changes over different initial densities.

To assess the spatial variation neglected by our 5-state approximation, we evaluated the spatial

cross-covariance of the agent numbers across different sites and then averaged across trials.

This cross-covariance is localized around the nearest neighbor sites at low-to-medium densi-

ties, but weakens at higher densities. Averaging the covariance of the 4 nearest neighbors

exhibits qualitatively similar behavior as the standard deviation of the well-mixed assumption

error as the initial density changes. A. The spatial covariance of the number of agents at loca-

tion (x, y) with the number of agents at sites (x + i, y + j), averaged across all sites with periodic

boundary conditions and then averaged over 20 trials of independent simulations. The center

of the covariance map (the variance) is suppressed for visibility. B. Green line and circle mark-

ers show the averaged spatial covariance of the 4 nearest neighbors in panel A (i.e., the mean

of the covariances at (1, 0), (-1, 0), (0, 1), and (0, -1)) at different initial density levels. Blue line

and triangle markers show the standard deviation of the well-mixed assumption error (the dif-

ference of left and right hand sides of Eq (6)) across 20 trials at different initial density levels.

Both quantities are small for very low or high densities, with peaks in a density range around

31% to 48%.

(TIF)

S6 Fig. The well-mixed assumption introduces a mismatch in timescales. The full agent-

based model has a population of agents navigating on a 2d environment. For analytical tracta-

bility, this full model is reduced to a 5-state model that eliminates spatial dependencies. How-

ever, it is observed in Fig 2E and 2F that the full model and the reduced model have a

qualitative mismatch in the order of magnitude of the convergence speed, as well as a quantita-

tive mismatch in the value of the transition point of b5. Here we show the comparison of the

two models at a shorter timescale (700 iterations) with different b5 values (4 and 5). The results

suggest that the well-mixed assumption introduces the discrepancy in timescales, as simula-

tions of a stochastic 5-state model agree with the mean-field 5-state model. A. The mean relo-

cation rates of the full 2d stochastic simulation with b5 = 4 have not converged by 700

catastrophes. B. Agent-based simulations of a 5-state model with b5 = 4 show a faster conver-

gence of γ5 to 0 and γ1,2,3 to high values near γmax = 10, within the same 700 catastrophes

shown in A (note the different scales of the horizontal axes in Fig 2E and 2F). C. The 5-state

mean-field model with b5 = 5 (which predicts γ4! 10 at long times) converges within 700

catastrophes, though the fate of γ4 is different from the stochastic 5-state model with b5 = 4. D.

The stochastic agent-based 5-state model with b5 = 5 largely converges within 700 iterations

and agrees slightly better with the mean-field model’s prediction for γ4.

(TIF)
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