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Abstract: Microcellular injection moulding is an important injection moulding technique to create
foaming plastic parts. However, there are no consistent conclusions on the impact of processing
parameters on the cell morphology of microcellular injection moulded parts. This paper investigates
the influence of the main processing parameters, such as melt temperature, mould temperature,
injection pressure, flow rate, shot volume and gas dosage amount, on the average cell size and
weight reduction of a talc-reinforced polypropylene square part (165 mm × 165 mm × 3.2 mm),
using the commercial software Moldex 3D. The effect of each parameter is investigated considering a
range of values and the simulation results were compared with published experimental results. The
differences between numerical and experimental trends are discussed.
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1. Introduction

Microcellular injection moulding (MuCell®) has drawn significant industrial atten-
tion, as it allows for the production of plastic parts with large weight reduction [1,2].
Applications include foaming parts for automotive, aerospace and medical applications
among other sectors [3,4]. During the MuCell® process, melted polymer and supercritical
fluid (SCF) are mixed under high-pressure conditions in a barrel before the filling stage.
During the filling process, a large number of bubbles is formed in the mould cavity as
a consequence of the significant pressure drop, which contributes to the formation of a
sandwich-like structure (parts with solid skins and foamed core) [5]. Figure 1 presents
the MuCell® machine system, including the SCF metering system, SCF interface kit, SCF
injector and front and back non-return valve.

However, microcellular injection moulding presents some limitations, such as silver
marks on the part surface, caused by some bubbles trapped between the mould cavity
and the melt and poor mechanical properties, which limit the wider use of this technology.
Two approaches have been proposed to prevent the silver mark formation. The first is to
increase the mould temperature in the filling stage to mix the trapped bubbles with the melt.
Techniques, such as the rapid mould heating and cooling (RMHC) system [6], dynamic
mould temperature control system [7,8], electromagnetic induction heating technology [9]
and mould surface coating [10–12], were developed based on this principle. The second
approach is to stop bubbles from getting trapped between the mould cavity and melt in the
filling stage. Techniques, such as gas counter pressure (GCP) system [13–18], gas-assisted
microcellular injection moulding (GAMIM) [19] and pressure-temperature (P-T) control
system [20,21], were developed based on this principle by increasing the mould cavity
pressure to a certain level at the beginning of the filling stage. It was also reported that both
GCP technology [22] and GAMIM [19] can improve mechanical properties by increasing
solid skin thickness. Though all these methods can effectively improve part of the surface
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and mechanical properties, they require additional equipment to assist, which increases
manufacturing costs.
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Figure 1. MuCell® machine system [14].

Generally, both silver mark formation and mechanical properties are related to the cell
morphology on the microcellular injection moulded parts. Gómez et al. [23] found that the
surface roughness can be influenced by changing injection moulding parameters, such as
mould temperature, injection velocity, shot volume and gas content. Similar observations
were reported by other authors [6,9,24–30]. Results showed that the surface quality of
injected parts increases by increasing both the mould temperature and the injection velocity,
while decreasing the mould temperature, the injection velocity and the shot volume or
increasing the gas content have a negative impact on the surface quality [20,22,31]. However,
Kastner et al. [31] reported that the increase in gas content decreases the average cell size.
Moreover, Gómez-Monterde et al. [32] found that the influence of the shot volume on the
morphological properties of injected parts, such as skin thickness, cell density and cell
size, is not significant. Li et al. [33] found that the increase in the shot size resulted in
weight reduction, a decrease in the size and an increase in cell density. These authors also
observed that both cell size and cell density increase by increasing the injection velocity [33].
A non-linear impact of mould temperature and cell size was also reported, with results
indicating that by increasing the mould temperature, the cell size initially decreases and
then increases [33]. Contrarily, Lohr et al. [34] found that the influence of the injection
velocity can be neglected. Liu et al. [35] concluded that the cell density decreases in a linear
way by decreasing the shot volume and that the effect of gas content on the cell density can
be neglected. Mi et al. [36] investigated the influence of several process parameters, such as
mould temperature, gas content, injection velocity and shot volume, on cell morphology.
They found that, among all considered parameters, the gas content was the most important
one regarding the impact on both cell size and cell density and that both mould temperature
and injection velocity had a significant influence on skin thickness and cell density. The
same trend was also reported by Yoon et al. [37]. Volpe et al. [38] found that the injection
temperature decreases the cell size but increases the cell density, while Yuan et al. [39]
found that the shot size has a higher impact on both cell size and cell density than the
melt temperature, the gas content and the injection velocity. These different studies reveal
that there are no consistent conclusions regarding the influence of these parameters on cell
morphology [40].

To address this limitation, a systematic simulation study is conducted in this paper to
investigate how simulation parameters influence cell morphology and weight reduction
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in MuCell® parts. A simple model, designed for future experimental validation, and the
corresponding cooling system were numerically modelled using the software Moldex 3D.
The relationship between key MuCell® process parameters, such as melt temperature,
mould temperature, flow rate, injection pressure, shot volume and gas dosage amount,
with cell morphology and weight reduction are studied. The obtained relationships are
compared with reported experimental results and their differences are analysed. Rather
than developing a novel finite element simulation tool, the authors decided to use Moldex
3D as it is a well-accepted software by industry.

2. MuCell® Simulation
2.1. Part Design and Materials

The plastic part considered for simulation purposes is presented in Figure 2a. The
dimensions of the model are 165 mm × 165 mm × 3.2 mm (L×L×H). The injection gate is a
pin gate located at the centre of the part. A high-performance talc-reinforced polypropylene,
Sabic PP (PHC27), commonly used for automotive applications, was selected for the
simulations. This material presents a melt flow rate (MFR) of 14 g/10 min at 230 ◦C and
2.16 kg (ISO 1133) and a density of 0.905 g/cm3 (ISO 1133). To investigate, in more detail,
cell morphology inside the part from the injection gate along the horizontal flow direction,
a selected region highlighted in Figure 2a was selected and its cross-section is presented in
Figure 2b. Eleven points in the middle of the cross-section were considered for simulation
analysis and the distance between them was kept constant.
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Figure 2. (a) The model dimensions and injection gate location and (b) selected cross-section area
and points considered for analysis. The distance between two consecutive points is 8.25 mm.

2.2. Cooling System

The cooling channel layout is presented in Figure 3. It consists of four cooling channels
with a diameter of 16 mm, which are located 49.68 mm above and under the part. The
distance between the cooling channels is 57 mm. The coolant is water (density: 1.0 g/cm3,
thermal conductivity: 5.9 × 104 erg/s·cm·K ◦C, heat capacity: 4.1 × 107 erg/g·K ◦C) and
both the inlet and outlet of the coolant are indicated in Figure 3 as dark-blue and light-blue
colours, respectively. The mould material is P20 steel with 7.75 g/cm3 of density, heat
capacity of 4.62 × 106 erg/g·K and thermal conductivity of 2.9 × 106 erg/s·cm·K.
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2.3. Processing Conditions and Nucleation Model

Simulations were conducted to investigate the effect of different processing parameters
(melting temperature, mould temperature, flow rate, injection pressure, shot volume and
gas dosage amount) on both the morphology (cell size) and part’s weight. For each
processing parameter, three different values were considered, as shown in Table 1. The
middle values in Table 1 are considered as the reference values for the selected material,
machine and part geometry (default values).

Table 1. Processing conditions.

Processing Parameters Value Range

Low Middle (Reference) High

Melt temperature (◦C) 200 220 240

Mould temperature (◦C) 20 40 60

Flow rate (cm3/s) 295.5 (30%) 492.5 (50%) 689.5 (70%)

Injection pressure (MPa) 10 20 30

Shot volume (%) 85 90 95

Gas dosage amount (%) 0.1 0.3 0.5

A commercial plastic injection moulding simulation software, Moldex 3D (CoreTech
System Co., Ltd., Zhubei City, Taiwan), was used to simulate the MuCell® process. The
mesh type used was the 3-layer Boundary Layer Mesh (BLM), which will generate a three-
layer prism mesh from the part surface and fill in the rest of the area with a tetrahedral mesh.
The machine selected was the ENGEL-DUO 16050/1700-120, with 120 mm screw diame-
ter. The heat transfer coefficient between the mould base and the melt was automatically
calculated by the software solver based on the process conditions. Nitrogen, with molec-
ular weight of 28 g/mol, solubility of 4 × 10−11 mol/cm3Pa and diffusion coefficient of
8.07 × 10−5 cm2/s, was selected as it allows for high foaming levels [41].

There are five bubble growth models to simulate the MuCell® process: the Han and
Yoo, the Payvar, the Shafi, the Rosner and the modified Han and Yoo models. The Han and
Yoo model describes the mass transfer at the interface of the gas bubble as follows [42]:

dPD
dt

=
1

R2
6D
(

RgT
)
(c− cR)

−1 +
{

1 + 2/R3

RgT

(
PD R3−PD0R3

0
c−cR

)}1/2 −
3PD

R
dR
dt

(1)



Polymers 2022, 14, 4215 5 of 22

where PD is the bubble pressure, t is the injection time, R is the bubble radius, PD0 is the
saturation pressure, T is the temperature, D is the diffusion coefficient, cR is the dissolved
gas concentration at the bubble surface, c is the average dissolved gas concentration and
Rg is the gas constant.

According to the Payvar model, the bubble growth is described as follows [43]:

dPD
dt

=
3D
(

RgT
)
(c− cR)

R2

1 +
1

−1 +
{

1 + 1/R3

RgT

(
PD R3−PD0R3

0
c−cR

)} 1
2

− 3PD
R

dR
dt

(2)

Shafi et al. described the bubble growth according to the following equation [44]:

dPD
dt

=
36
5

R
(

RgT
)2
(c− cR)

2

PDR3 − PD0R3
0
− 3PD

R
dR
dt

(3)

Rosner et al. described the bubble growth and the shrinkage process by using a sgn
function [45]:

dPD
dt

= sgn(c− cR)
6R
(

RgT
)2
(c− cR)

2

PDR3 − PD0R3
0
− 3PD

R
dR
dt

(4)

The modified Han and Yoo model also takes into consideration the bubble shrinkage
as follows:

dPD
dt

=
1

R2
6D
(

RgT
)
(c− cR)

−1 +
{

1 + 2/R3

RgT

(
PD R3−PD0R3

0
sgn(c−cR)(c−cR)

)}1/2 −
3PD

R
dR
dt

(5)

Based on previous studies, the Payvar’s model corresponds to the fastest bubble
growth model, while the Shafi’s model corresponds to the slowest [46]. Both the Rosner
and modified Han and Yoon models consider high in-mould pressure conditions, which will
lead to bubble shrinkage with different convergence [46,47]. In this study, simulations were
conducted based on the dynamic bubble growth model proposed by Han and Yoo, as it was
reported to enable good consistency between simulation and experimental results [48,49].

2.4. Mathematical Models for MuCell® Simulation

The flow field can be modelled by considering the mass, momentum and energy
balance equations as follows [49,50]:

∂ρ

∂t
+∇·ρu = 0 (6)

∂

∂t
(ρu) +∇·

(
ρuu + pI − ï

(
∇u +∇uT

))
= ρg (7)

ρCP

(
∂T
∂t

+ u·∇T
)
= ∇(k∇T) + ï

.
γ

2 (8)

where ρ is the density of the polymer, t is the injection time, u is the velocity vector, ï is the
viscosity, p is the pressure, T is the temperature, CP is the specific heat, I is the unit tensor,
g is the gravity, k is thermal conductivity tensor and

.
γ is the shear rate.

In the case of bubble nucleation and growth process, the 3D numerical simulation is
applied to describe the dynamic behaviour of the bubble growth, which is coupled with
macroscopic molten polymer flow. The radius of bubble growth is given by the following
equation [48,51]:

dR
dt

=
R
4ï

(
PD − PC −

2γ

R

)
(9)
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where R is the bubble radius, PD is the bubble pressure, PC is the ambient pressure and γ is
the surface tension.

A thin boundary layer condition was assumed and the dissolved gas concentration
profile along the radial direction of a thin shell is described by the following diffusion
equation [48]:

∂c
∂t

= D
[

1
r2

∂

∂r

(
r2 ∂c

∂r

)]
(10)

where c is the dissolved gas concentration and D is the diffusion coefficient.
Bubble nucleation occurs because the flowing pressure of the molten polymer de-

creases from the sprue to the mould cavity during the filling process. The cell nucleation
rate is expressed through an exponential function of the concentration (mass conservation)
of dissolved gas, as follows [48]:

J(t) = f0

(
2γ

πMW/NA

)1/2
exp

− 16πγ3F

3kBT
(

c(t)
kH
− PC(t)

)2

NAc(t) (11)

where f0 and F are fitting parameters in the bubble nucleation rate equation, being, respec-
tively, 7.4 × 10−25 and 1 × 10−3 (default values in Moldex 3D). In this equation NA is the
Avogadro number, kB is the Boltzmann constant, kH is the solubility parameter and MW is
the gas molecular weight. The threshold of bubble nucleation rate is set as 0.1 cm−3 s−1,
which is the default value in Moldex 3D.

The average concentration of super critical fluid (SCF) dissolved in the polymer at a
time t is given by [48]:

c(t)VL0 = c0VL0 −
∫ t

0

4π

3
R3(t− t′, t′

)PD(t− t′, t′)
RgT

J
(
t′
)
VL0dt′ (12)

where VL0 is the volume of the polymer.
The viscosity of the polymer melt is influenced by the SCF dissolved in the poly-

mer melt. Thus, the modified cross model with Arrhenius temperature dependence was
considered to describe the viscosity [46]:

ïp
(
T,

.
γ
)
=

ï0(T)

1 +
(
ï0

.
γ/τ∗

)1−n (13)

ï0(T) = Bexp
(

Tb
T

)
(14)

where n is the power law index, which was set as 1 in the simulation, ï0 is the zero-shear
viscosity, τ∗ is a parameter that describes the transition region between zero shear rate and
the power law region of the viscosity curve and B is a pre-exponential factor. For simplicity,
the molten material was assumed to have a Newtonian behaviour. The accuracy of this
assumption was previously demonstrated by Taki [48] and Xi et al. [52].

3. Simulation Results
3.1. Reference Case

For the reference case (see processing conditions in Table 1), the cell size on the
MuCell® part surface is presented in Figure 4a. As the results at the top and bottom
surface are the same, only the results on the top surface are presented. From Figure 4a, it is
possible to observe that the cell distribution can be divided into three main areas around
the injection gate: centre, main and corner. At the centre, the cell size is around 100 µm,
which corresponds to the smallest cell size on the part surface. In the main area, cell sizes
range from 100 µm to 130 µm. Finally, the largest cells are located at the corner areas, far
from the injection gate, with sizes ranging from 130 µm to 180 µm. These differences are
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due to the cell formation process in those areas, which occurs at different stages in the
injection moulding cycle [5]. The cells at the main and corner areas start forming at the
filling stage, while the cells at the centre area only start forming at the cooling stage due to
high pressure. Overall, the average cell size is 129.4 µm and the weight reduction of the
part, in comparison to a solid one, is 25.5%.
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Figure 4. The cell distribution at the surface (a) and cross-section (b) of the MuCell® part considering
the reference processing conditions.

Figure 4b presents the cell distribution at the cross-section. As observed, the cross-
section exhibits a typical sandwich structure, with unfoamed (small cells) skin and foamed
core. Moreover, cells far from the injection gate tend to be larger. Values of cell size at
different points across the cross-section (Figure 2b) are presented in Figure 5. Similar to
what was observed for the part’s surface, a gradient of pore sizes is visible and two main
regions can be identified. Points from 1 to 5 (centre area) show the smallest cell sizes
(130 µm at point 1). Points from 6 to 10 (main area) show the largest cell sizes (151 µm at
point 8). From point 8, cell size starts to slightly decrease as those points are approaching
the mould surface. Finally, a significant reduction in pore size was observed at point
11 (103 µm), which is located at the mould surface.
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3.2. The Effect of Changing the Mould Temperature

Figure 6 shows the cell size values at both the part surface and cross-section consid-
ering the two different mould temperatures (20 ◦C and 60 ◦C), lower and higher than the
reference. All the other parameters were kept constant assuming the reference values. By
comparing these results with the reference case (Figure 4), it is possible to observe that the
effect of changing the mould temperature on cell size can be neglected. The cell size average
is 128.9 µm for a mould temperature of 20 ◦C and 129.3 µm for a mould temperature of
60 ◦C. Figure 7 presents the cross-section variation in the cell size for different mould
temperatures. Results show no significant differences in cell sizes as a function of mould
temperature, with the results obtained for 60 ◦C being quite close to those obtained for the
reference conditions. However, for a mould temperature of 20 ◦C, the cell size values near
the injection gate (point 1) and at point 8 (maximum cell size values) are lower than the cell
size values at the same positions for both 60 ◦C and reference conditions. The effect of the
mould temperature on the part weight reduction seems also to be neglectable, as shown
in Figure 8.
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These results require further experimental validation as they are not in agreement with
experimental results, suggesting that the mould temperature is a key factor determining
the cell morphology of MuCell® parts [6,7,9,20,23,29]. Moreover, it was reported that high
mould temperatures result in significant weight reduction [20].

3.3. The Effect of Gas Dosage Amount

The effect of three different gas dosage amount values, 0.1%, 0.3% (reference) and
0.5%, on the cell size was investigated and the results are presented in Figure 9, except
for the gas dose amount of 0.1%, which is not presented due to the short shot (Figure 10).
As observed, the cell size significantly changes by increasing the gas dosage amount from
0.3% to 0.5%. Results show that, for a gas dosage amount of 0.3%, the average cell size at
the surface is 140 µm and the overall cell size average is 129.4 µm, while for a gas dosage
amount of 0.5% the cell size at the surface is 100 µm and the overall cell size average is
78.9 µm. In comparison to the reference case (Figure 4), the centre area is smaller, while
the main area is bigger. This can be explained by the fact that when the amount of gas
mixed with the melted polymer increases, the number of bubbles formed during the filling
stage also increases. However, as a large number of bubbles grows in a limited area, which
contributes to increasing the interactions between bubbles, suppressing the growth of their
surrounding bubbles. Moreover, large cells are forming in the main area. Figure 9b shows
the cell size variation at the cross-section when the gas dosage amount is 0.5%, while
the cell size variation for different gas dosage amounts is presented in Figure 11. In this
case, different trends can be observed. Overall, cell size values decrease by increasing the
gas dosage amount. For high gas dosage amounts, the largest cell sizes seem to occur in
cross-section regions near the injection gate (point 5 for a gas dosage amount of 0.5% and
point 8 for a gas dosage amount of 0.3%), while the lowest cell size value occurs at point
2 (near the injection gate). However, despite these morphological differences, the overall
weight reduction (25.5%) is the same for the two different gas dosage values, as shown
in Figure 12.
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3.4. The Effect of Changing Melt Temperature

The effect of melt temperature on cell morphology was investigated considering three
different temperatures (200 ◦C, 240 ◦C and the reference melt temperature of 220 ◦C).
Figure 13(a1,b1) and (a1,b2) show the cell distribution on the part surface and cross-section
for melt temperatures of 200 ◦C and 240 ◦C, respectively. In comparison to the reference
condition, it is possible to observe that cell morphology changes can be ignored when
the melt temperature decreases to 200 ◦C, while the average cell size slightly increases to
133.4 µm by increasing the melt temperature to 240 ◦C. A comparison of the effects of melt
temperature on the cell size across the cross-section of the part is presented in Figure 14.
As shown, the cell size at points close to the injection gate (points 2 to 4) and the mould
wall (points 9 to 11) is the same in both melt temperature conditions. However, for points
in the middle of the cavity (points 5 to 8), the cell size increases by increasing the melt
temperature, as high melt temperatures provide more time for cell growth. The weight
reduction as a function of melt temperature is summarised in Figure 15. As observed, the
weight reduction slightly increases when the melt temperature increases to 240 ◦C. This
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phenomenon might be associated with the longer cooling time, which provides more time
for the bubbles to grow.
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3.5. The Effect of Changing the Injection Pressure

The effect of injection pressure on cell morphology was investigated considering two
different injection pressures (10 MPa and 30 MPa) and the results were compared with
the reference injection pressure (20 MPa). Figure 16(a2) shows the cell morphology at the
surface of the MuCell® part for an injection pressure of 30MPa. As observed, the average
cell size is equal to the values obtained for the reference injection pressure (129.4 µm).
Figure 16(a1,b1) show the cell morphology on both the part surface and the cross-section
for a lower injection pressure (10 MPa). In this case, results show a region between the
main and centre areas of the mould, where the cell size is significantly higher. This can also
be observed in Figure 17, describing the cell size variation for different injection pressures
along the cross-section of the plastic part. As observed, for low injection pressure, the cell
size significantly increases to 201.4 µm from point 3 to 5 and then decreases to 138.9 µm at
point 10. At low injection pressures, the bubbles near the injection gate can start growing
earlier and keep growing during both the filling and cooling stages. This contributes to the
formation of large cells near the injection gate. However, it was not possible to observe any
significant effect of the injection pressure on the weight reduction, as shown in Figure 18.
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3.6. The Effect of Changing the Flow Rate

The effect of flow rate on cell morphology was investigated considering the following
flow rates: 295.5 cm3/s and 689.5 cm3/s. Results were also compared with the reference
flow rate of 492.5 cm3/s. Figure 19(a1, b1) and (a2, b2) show the cell morphology of the
MuCell® part (surface and cross-section) considering the flow rates of 295.5 cm3/s and
689.5 cm3/s, respectively. As observed, the average cell size slightly increases (142.1 µm)
by decreasing the flow rate to 295.5 cm3/s concerning the reference conditions. However,
by increasing the flow rate up to 689.5 cm3/s, the average cell size decreases to 127.0 µm.
This trend can be also observed in Figure 20. Moreover, the centre area becomes larger
by increasing the flow rate. Generally, the effect of flow rate on cell morphology is the
same as the injection pressure, as both parameters are related to the pressure. This can be
observed by comparing Figures 17 and 20. However, as indicated in Figure 21, results show
no significant impact of the flow rate on weight reduction.
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3.7. The Effect of Changing the Shot Volume

The effect of the shot volume on cell morphology was investigated considering shot
volumes of 85% and 95% and the results were compared with the reference shot volume of
90%. When the shot volume is 85%, the short shot occurred (Figure 22), so the relevant results
are not presented. Figure 23 shows the cell morphology of the MuCell® part at both the
surface and cross-section for a shot volume of 95%. As observed in both Figures 23 and 24,
the cell size significantly decreases (115.6 µm) in comparison to the reference conditions
(129.4 µm), because more material is injected into the mould cavity, making difficult the
bubble growth process due to a packing effect. Moreover, the weight reduction also decreases,
as shown in Figure 25, indicating that the weight reduction can be directly controlled by
adjusting the amount of shot volume.
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4. Conclusions and Future Work

An extensive simulation experiment investigating the effect of processing conditions
on cell morphology and weight reduction in a MuCell® part was presented and discussed.
A summary of the obtained results is presented in Table 2, together with published experi-
mental results for comparison.

As observed from the simulation results, the gas dosage amount and shot volume are
the most important factors determining cell morphology. Simulation results show that by
increasing the gas dosage amount, the cell size considerably decreases and this trend is
aligned with published experimental results [23,35,36], except for some results reported for
polyetherimide (PEI) [33]. This difference is due to the use of high mould temperature to
cause cell coalescence as they grow. Similar results were also obtained by increasing the
shot volume and the results were also in agreement with experimental results [5,33,35,39],
except in one reported case based on the use of acrylonitrile butadiene styrene (ABS) [23].
However, this difference can be attributed to the high SCF content considered in that study
that causes cell coalescence. The injection pressure and flow rate also have an impact, but
less significant on the cell morphology than gas dosage and shot volume. Both injection
pressure and flow rate influence the cell morphology by changing the cavity pressure. The
decrease in both injection pressure and flow rate decreases the pressure cavity during the
filling stage, providing more time for cells to grow. These observations are also aligned
with previously reported experiments [23,33].

The melt temperature is, among the considered parameters, the least impactful on cell
morphology. As shown, the cell size slightly increases by increasing the temperature. A
similar trend was reported for experiments using thermoplastic polyurethane (TPU) [36],
while researchers who investigated polyamide 66 and glass fibre (PA66/GF) obtained the
opposite result [38]. Finally, the mould temperature seems to have a neglectable effect on
cell morphology. However, this is not aligned with what was previously reported based on
experimental results [20,22,23], which can be attributed to the narrow range of temperatures
considered in this research.

Regarding the weight reduction, simulation results show that the shot volume is an
impactful parameter, with the weight reduction increasing by decreasing the shot volume.
These observations are aligned with previously reported experimental results [23,33,42].
However, all the other parameters show a neglectable effect on the weight reduction, a
result that is not aligned with previously reported experimental results [33,38]. These
differences might be caused by material differences and the corresponding impact on the
material rheological behaviour.
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Table 2. The summary of simulation results and published experiment results (PPS: poly (phenylene sulfide), PA6: polyamide-6, PS: polystyrene).

Name Material

Parameters, Their Changes and Corresponding Results

Mould
Temperature

Gas Dosage
Amount

Melt
Temperature Injection Pressure Flow Rate Shot Volume

Changes Average
Cell Size Changes Average

Cell Size Changes Average
Cell Size Changes Average

Cell Size Changes Average
Cell Size Changes Average

Cells Size

Simulation PP ↑ ↓ no ↑ ↓ ↑ ↓ ↑ no ↑ ↓ no ↑ ↑ ↓ ↓ ↑ ↑ ↓
Gómez-Monterde

et al. [23] ABS ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↓

Kastner et al. [31]
and

Gómez-Monterde
et al. [53]

PP/GF

Li et al. [33] PEI ↑ ↑ ↑ ↓ ↑ ↓
Liu et al. [35] PPS ↑ ↓ ↑ ↓
Mi et al. [36] TPU ↑ ↓ ↑ ↑

Volpe et al. [38] PA66/GF ↑ ↓
Yuan et al. [39] PA6 ↑ ↓

Chen et al. [20] and
Chen et al. [22] PS ↑ ↑
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In the future, the simulation conditions will be experimentally tested to understand if
the reasons for some of the differences in terms of the trends of the impact of the different
processing parameters on both cell size and weight reduction are related to material differ-
ences or related to the range of values considered in this study. Such experimental results
will also allow us to understand how reasonable the assumption was of considering the
molten material as a Newtonian fluid, which can be an eventual limitation of the software.
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