
From Interaction to Co-Association —A Fisher r-To-z
Transformation-Based Simple Statistic for Real World
Genome-Wide Association Study
Zhongshang Yuan1, Hong Liu2, Xiaoshuai Zhang1, Fangyu Li1, Jinghua Zhao3, Furen Zhang2,

Fuzhong Xue1*

1 Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China, 2 Shandong Provincial Institute of Dermatology and

Venereology, Shandong Academy of Medical Science, Jinan, China, 3 MRC Epidemiology Unit and Institute of Metabolic Science, Cambridge, United Kingdom

Abstract

Currently, the genetic variants identified by genome wide association study (GWAS) generally only account for a small
proportion of the total heritability for complex disease. One crucial reason is the underutilization of gene-gene joint effects
commonly encountered in GWAS, which includes their main effects and co-association. However, gene-gene co-association
is often customarily put into the framework of gene-gene interaction vaguely. From the causal graph perspective, we
elucidate in detail the concept and rationality of gene-gene co-association as well as its relationship with traditional gene-
gene interaction, and propose two Fisher r-to-z transformation-based simple statistics to detect it. Three series of
simulations further highlight that gene-gene co-association refers to the extent to which the joint effects of two genes
differs from the main effects, not only due to the traditional interaction under the nearly independent condition but the
correlation between two genes. The proposed statistics are more powerful than logistic regression under various situations,
cannot be affected by linkage disequilibrium and can have acceptable false positive rate as long as strictly following the
reasonable GWAS data analysis roadmap. Furthermore, an application to gene pathway analysis associated with leprosy
confirms in practice that our proposed gene-gene co-association concepts as well as the correspondingly proposed
statistics are strongly in line with reality.

Citation: Yuan Z, Liu H, Zhang X, Li F, Zhao J, et al. (2013) From Interaction to Co-Association —A Fisher r-To-z Transformation-Based Simple Statistic for Real
World Genome-Wide Association Study. PLoS ONE 8(7): e70774. doi:10.1371/journal.pone.0070774

Editor: Zhaoxia Yu, University of California, Irvine, United States of America

Received March 18, 2013; Accepted June 21, 2013; Published July 29, 2013

Copyright: � 2013 Yuan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from National Natural Science Foundation of China (31200994, 31071155). (http://www.nsfc.gov.cn/nsfc/cen/00/
download.html) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xuefzh@sdu.edu.cn

Introduction

Since the first successful genome-wide association study

(GWAS) for age-related macular degeneration published in 2005

[1], numerous loci associated with complex human disease or traits

have been identified. Despite high expectations, the genetic

variants identified by GWAS, though providing valuable insights

into genetic architecture, generally only account for a small

proportion of the total heritability for complex disease [2,3].

Potential explanations may include underestimation of the effects

of alleles identified, the existence of gene-gene joint effects, the

contribution of rare variation, the possibility that inherited

epigenetic factors lead to resemblance between relatives, and

possible overestimation of heritability of the complex traits

[2,3,4,5]. Moreover, recent technological advances in high-

throughput sequencing platforms enables the acquisition of

genomic data at unprecedented speed and amounts, in fact, the

capacity to generate the data greatly outpaces our ability to

analyze and interpret. It is, therefore, quite desirable to further

develop more efficient data mining strategy to extract more

information from huge GWAS data, rather than put them aside.

Among the data analysis demand, one major issue refers to the

joint effects of multiple genes contributing to the interested disease

or trait. The joint effect of two genes included their main effects

and co-association. We have proposed the concept of gene-gene

co-association in previous studies [6,7], which refers to the extent

to which the joint effect of two genes on disease (or trait) differs

from the main effects of each gene. Traditional methods

customarily put gene-gene co-association into the framework of

gene-gene interaction. To determine the presence of interactions

between two genes, regression-based approaches are still regarded

as the most natural first-line approach, though some alternative

methods have been developed [8,9,10,11,12,13,14,15]. A product

term is usually added to the logistic regression model (LRT)

Logit(P)~b0zb1Azb2Bzb3A|B for the popular case-control

design in GWAS, which implies a nearly independence assump-

tion, at least not much correlation, between gene A and gene B for

inferring the interaction (b3). Nevertheless, one common sense is

that the development of most common diseases is attributed to

complex gene network system. Genes (or SNPs) are often

correlated with each other in the following situations: 1) genes

(or SNPs) within pathways or networks contributing to a disease; 2)

SNPs with linkage disequilibrium (LD) located in two or more

linked genes within one chromosome; 3) SNPs with LD in one

gene. Hence the above assumption is rarely satisfied. It will be

inevitable to lose efficiency using LRT blindly when high
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correlation existed between SNPs. Actually, the genetic pathway

or network, even SNPs co-association within one high LD genome

region, can be deemed as a graph and studies should be conducted

under graphical framework [16]. Specifically, taking 2 SNPs for

simplicity, from a causal diagram perspective (Fig. 1 in Methods),

suppose the main effects for SNP1 and SNP2 are b1 and b2

respectively, and the correlation between them is r, which is

usually far away from zero (e.g., SNPs with LD or two SNPs

within one pathway). Then the total effects for SNP1 and SNP2

will be b1zb2zr(b1zb2)zb3, and the term (r(b1zb2)) is

obviously attributed to the correlation between the two SNPs,

which would not be detected efficiently by LRT.

The argument is that, for two genes, the extent to which the

joint effects differs from the main effects (i.e. gene-gene co-

association), are not only refer to the traditional interaction (b3)

but the correlation between two genes (r(b1zb2)). While

traditional LRT only provide one way to identify the part under

the nearly independent condition, with less power for the left

attributed to the correlation. To solve this problem, in the context

of a standard case-control design, three gene-based statistics, CCU

[6], KCCU [7] and PLSPM-based statistic [17], have been

developed in our former work based on the difference of

correlation of two genes between cases and controls. Actually,

similar idea has already been employed to develop new statistics

recently [9,11,12]. However, these statistics do not yet jump out

from the scope of gene-gene interaction. Particularly, the statistics

recently proposed by Rajapakse [11] will be invalid when heavy

multicollinearity (strong LD) between SNPs existed as the

algorithm needs the computation of the inverse of covariance

matrix. For GWAS in practice, at least five aspects for gene-gene

co-association should be considered: 1) the theory basis and

rationality; 2) efficient and robust statistics to detect it; 3) simple

and universally accessible statistics, just like Armitage trend test

[18]; 4) the acceptable false positive rate in real world GWAS; 5)

the feasibility for computation challenge.

Although various novel statistics for gene-gene interaction or

gene-gene co-association have been proposed few of them are

successfully used in real world full GWAS data analysis. This is not

only due to their elusive statistical model for general geneticist and

epidemiologist, but their unrealistic computation burden attribut-

ed to some non-parametric methods (e.g., bootstrap or permuta-

tion). In this paper, the concept and rationality of gene-gene co-

association is elucidated by a simple causal graph. Based on the

difference of correlation of two genes between cases and controls,

two simple statistics (UW and UF ) for detecting gene-gene co-

association are proposed using Fisher r-to-z transformation

[19,20]. The former was constructed according to the asymptotic

distribution theory of the empirical product-moment correlation

coefficient for counting variables [21], while the latter is developed

by empirically calibrating Fisher r-to-z transformation-based

simple statistic[19,20]. Various simulation studies are firstly

conducted to assess the type I error rate and power, and to clarify

the relationship between gene-gene co-association and gene-gene

interaction. And then simulations are carried out to evaluate

whether the proposed statistics can be affected by strong LD

between SNPs. Furthermore, based on the experimental strategy

of gain-of-function in functional genomics [22,23], simulations are

performed by mimicking real world GWAS roadmap to assess

their false positives. Finally, we analyze a GWAS real data from a

plausible biologic network underlying susceptibility to leprosy [24],

and the computation time is also reported.

Methods

Fisher r-to-z transformation-based statistics
For GWAS in case-control design, SNP1 and SNP2 denote the

two markers, In the framework of causal graph (Fig. 1), no matter

whether they are independent or correlated (within same pathway

or with LD between them), the total effects for SNP1 and SNP2

can be illustrated by b1zb2zr(b1zb2)zb3 the co-association

between them can be defined as r(b1zb2)zb3, where r(b1zb2)
denote the effect on the disease attributed to the correlation, and

b3 the part under independence condition and often be detected

by LRT. Let rD denote the sample correlation coefficient between

SNP1 and SNP2 among cases, and rC between them among

controls. We use rD{rC to measure the co-association between

the two SNPs contributing to the disease. A Fisher r-to-z

transformation was proposed earlier for testing the difference

between two correlation coefficients [19,20]. This transformation

was done to rD and rC , i.e. zD~
1

2
log(1zrD){log(1{rD)ð Þ and

zC~
1

2
log(1zrC){log(1{rC)ð Þ, furthermore, Wellek and Zieg-

ler [21] have derived the asymptotic distribution of the empirical

correlation for counting variables, our proposed statistic UW for

detecting gene-gene co-association was defined as

UW ~
zD{zCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(zD)zvar(zC)
p

Where var(zD) and var(zC) denote the variance estimator from

their work. Although UW is theoretically accurate, the variance

formula in the denominator cannot be obtained quickly since it

needs the estimation of population frequencies for various

combinations of two specific loci, and we may have to compute

it one SNP pairs one time, which is inadvisable for enormous real

world GWAS data. Therefore, it is critical to develop a further

simpler and more efficient statistic to improve the feasibility and

practicability. Fisher has provided a well-known statistic for

comparing the correlation coefficients from two samples for data

from a bivariate normal distribution, which can be used to detect

gene-gene co-association by

Figure 1. A causal graph framework for two SNPs affected the
disease. b1 and b2 represents main effects, b3 denotes the traditional
interaction, the nondirectional arc between SNP1 and SNP2 (correlation
r) indicated that the two variables are associated for reasons other than
affecting one another.
doi:10.1371/journal.pone.0070774.g001

A Fisher r-to-z Simple Co-Association Statistic
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U~
zD{zCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1{3
z

1

n2{3

r

where n1 and n2 represent the sample size for case and control

respectively. Simulations (data not shown) show this simple statistic

can have good performance in gene-gene co-association detection

for SNPs without much correlation. Nevertheless, when the

correlation between SNP pairs is high, the statistic is normal but

with variance far from 1 under the null hypothesis. Therefore, an

empirically calibrated statistic UF was further proposed as

UF ~
zD{zC

f (z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1{3
z

1

n2{3

r

where f (z)~I(DzDƒ0:5)zI(DzDw0:5)|e({0:176z0:09|zz0:315|z2), and z

is the corresponding Fisher transformation for pooled sample

correlation between SNP1 and SNP2. f (z) is obtained by empirical

simulation based on the fitted functional relationship between

correlation coefficients and their variance. Under the additive

genetic model, using 88 SNP pairs with various correlation chosen

from simulated 100 SNPs on chromosome 21 for 100000

individuals (Fig. S1 for scatter plot), we get the empirical

variance formula (log(var iance)~{0:176z0:09|zz0:315|z2,

R2~0:84,pv0:0001), where linear regression is applied by treating

the logarithm of empirical variance as response variable, and z and

z2 as independent variables. Bearing in mind to correct the variance

when the correlation is high, we propose the aforementioned f (z).

Simulation
Our first series of simulation studies were designed to evaluate

the type I error rate and power, to clarify the relationship between

gene-gene co-association and gene-gene interaction, and to

compare the performance of UW , UF and LRT under different

sample size, main effects, co-association effect (including the

following three scenarios: co-association under nearly independent

condition between gene A and gene B, co-association only caused

by correlation between gene A and gene B and co-association

caused by both correlation and independent term A|B between

gene A and gene B; abbreviate to Type I co-association, Type II

co-association and Type III co-association). We chose the first

1000 SNPs on chromosome 21 to simulate genotypes based on

HapMap phase II CEU data, and a large population of 100000

individuals was obtained via the software Hapgen2 [25]. Case-

control status was generated from a logistic regression

Logit(P)~b1|(SNP1)zb2|(SNP2)zb3|(SNP1|SNP2),
where SNP1 and SNP2, correlated with coefficient r, were causal

SNPs chosen from the 1000 SNPs so that the MAF can always be

kept about 20% and 30% respectively. Three different scenarios

were considered (Fig. 1). r~0, b3=0 indicated the case that Type

I co-association, b3~0, r=0 for Type II co-association, and

b3=0, r=0 for Type III co-association. Three different main

effects were set to make our simulations more practical, no

marginal effects (b1~b2~0), one marginal effect

(b1~0,b2~log(1:3)), and two marginal effects

(b1~log(1:5),b2~log(1:3)). Different b3 and r are specified to

evaluate the type I error (b3~r~0, or b1~b2~b3~0,r=0) and

power. A total of 3000 simulations were repeated for each

scenario, and we randomly sample 3000 individuals from the

whole 100000 population for each simulation.

For gene-gene co-association, it might give rise to an illusion

that SNP pairs would be detected powerfully as long as they were

highly correlated (e.g. high LD). Therefore, our second series of

simulation studies were devoted to evaluate whether the proposed

statistics can be affected by strong LD between SNPs. Two

neighbored genes on chromosome 17q21 (ZPBP2 gene and

GSDMB gene (Fig. S2 for LD plot), which has been confirmed

to be associated with asthma [26,27], were chosen to simulate

genotypes similarly as the aforementioned design. First, the 7th

SNP (rs4795400, MAF = 46%) on GSDMB gene was defined as the

causal SNP with various odds ratio (1.1 to 1.5), and the co-

association between the 5th SNP (rs2290400) and 9th SNP

(rs7216389) was detected. Second, the 3th SNP (rs12150079,

MAF = 26%) on ZPBP2 gene and the 5th SNP (rs2290400,

MAF = 48%) on GSDMB gene were specified as causal SNPs, and

we fixed odds ratio 1.3 for the second causal SNP, while ranging

the odds ratio of the first causal SNP from 1.1 to 1.5. The co-

association between the 1th SNP (rs11557466) on ZPBP2 gene and

the 9th SNP (7216389) on GSDMB gene was detected. We

randomly sample 6000 individuals for each simulation (totally

3000 simulations).

We designed the third series of simulation studies by mimicking

real world GWAS roadmap to assess their false positives. Similar

as above, the first 1000 SNPs on chromosome 1 were chosen to

simulate genotypes. Four situations were considered: two neigh-

bored SNPs within one gene, two SNPs located in two linked

exons within one gene, two SNPs located in two linked genes

within one chromosome, and two SNPs located in two genes

within one pathway from two different chromosomes. For the first

situation, we chose the 9th (rs11030107, MAF = 31%) and 15th

SNPs (rs10835211, MAF = 30%) from BDNF gene (totally 19

SNPs) on chromosome 11 as the causal SNPs with correlation

0.96, then we embeded the gene into the 1000 SNPs on

chromosome 1 generated above to mimic 500000 SNP pairs.

Three independent sample with sample size 3000, 3000 and 6000,

were generated to mimic the GWAS roadmap and to see whether

the three samples reported the same false positive SNP pairs under

b1~log(1:3),b2~log(1:5),b3~0:5. We aim to see how many

false positives emerge under the premise that the true causal SNP

pairs have been discovered. SNP pairs with P-value less than that

for the true causal SNP pairs, will be recorded as false positives if

they are not located within the BDNF gene. The idea behind this

design stems from the gain-of-function technique which is usually

taken to study the function of a gene [22,23]. Here the BDNF gene

can be deemed as the gain-of-function causal variants that affect

the function of specified protein, then leading to the final disease.

In a similar vein, the 1th (rs7124442, MAF = 36.7%) and 18th

SNPs (rs1013402, MAF = 35.9%) with correlation 0.95 for the

second situation, the 5th SNP (rs12936231, MAF = 31%) from

ZPBP2 gene and 9th SNP (rs7216389, MAF = 30%) from the

GSDMB gene from chromosome 17q21 for the third situation, and

the 51th (rs12111180, MAF = 31%) SNP from PARK2 gene on

chromosome 6 and 60th SNP from the LRRK2 gene (rs11564205,

MAF = 30%) on chromosome 12 within the pathway (conferring

susceptibility to leprosy [24]) for the fourth situation.

Application
Based on the GWAS of leprosy [24], using Ingenuity Pathways

Analysis knowledge database (Ingenuity Systems), a plausible

biologic network underlying susceptibility to leprosy was created

for depicting the functional relationship between the identified five

susceptibility genes (together with five other genes). To further

confirm the relationship between the genes in the network, we

attempt to detect the co-association between SNP pairs within 9

A Fisher r-to-z Simple Co-Association Statistic
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susceptibility genes (2257 SNPs) by the proposed statistics UF and

UW , using the initial GWAS data with 706 cases and 514 controls.

These 9 genes locate on different chromosomes and totally

contained 2257 SNPs (Table S1). Meanwhile, to compare the

computation time of all three statistics (UW , UF and LRT), a

desktop computer (Intel Core i3-2100 with 3.10 GHz CPU using

4 GB of RAM) was used to do calculations by R 2.14.0.

Results

Simulation studies
Shown in Table 1 were the estimated type I error rates of LRT

and the two proposed statistics under b3~r~0, It revealed that all

type I error rates were close to nominal level 0.05 as a function of

sample sizes. When b1~b2~b3~0,r=0, though stable for LRT

and UW , the type I error was slightly higher for UF under

correlation 0.4 or 0.6 (Table 2). This might be due to UF

essentially do modifications for high correlation and kept the same

as Fisher test when correlation was relatively small.

Fig. 2a showed the performance with r~0 and b3=0 (Type I

co-association) when b3 was set to be 0.1, 0.2, 0.3, 0.4. It indicated

that the power of all three methods increase monotonically with

the interaction effect (b3). Both UW and UF had almost

comparable power with LRT, which was the gold standard in

this case. Shown in Fig. 2b was the power for the situation of Type

II co-association (b3~0 and r=0), we set r to be 0.2, 0.4, 0.6, 0.8.

The power for the two proposed statistics kept relatively high and

increased slowly as the correlation coefficient (r) increases, while

LRT had completely lost the power. Furthermore, the power for

the situation with two main effects was higher than that for the

situation with only one main effect. Fig. 2c showed the power for

the situation of Type III co-association with fixed b3~0:2, the

power for LRT was relatively lower and decreased as the

correlation increases, this might be partly due to the high variance

for b3 attributed to the increasing correlation. The proposed two

statistics had higher power. For the situation with one main effect,

though r(b1zb2) increased, the power for co-association de-

creased as correlation increases from 0.2 to 0.8, which might be

due to the power for detecting the interaction b3 decreased as

correlation increased. Fig. 2d presented the power for the situation

of Type III co-association under fixed correlation 0.4. The power

for all statistics increased as the interaction effect increase from 0.1

to 0.4, and the two proposed statistic always had higher power

than LRT. All results illustrated that, under medium correlation,

the power for UF seems a little higher than that for UW .

Fig. 3a showed the results for the second series of simulation

studies, the 5th and 9th SNP on GSDMB gene, though had some

indirect main effects due to LD with the causal SNP (7th SNP),

showed no co-association between them, indicating that no power

gained when the indirect main effects of two SNPs originated from

only one causal variant. While for the situation with two causal

SNPs, the 1th SNP on ZPBP2 gene and the 9th SNP on GSDMB

gene, with each having indirect main effect due to LD with the

causal SNPs (the 3th SNP on ZPBP2 gene and the 5th SNP on

GSDMB gene), showed some co-association between them. These

elucidate that the proposed statistics cannot be affected by LD,

and the co-association indeed represented nothing but the effect

contributing to the disease.

Following up the real world GWAS data analysis roadmap (with

sample size 3000, 3000, 6000 respectively), the 1000 SNPs on

chromosome 1 with nearly 500000 SNP pairs are simulated 100

times. Among the nearly 100*500000 tests under the four

situations designed in the third series of simulation, the total false

positive rate was about 1:2|10{7 for UW , 8:4|10{7 for UF and

2|10{7 for LRT respectively.

Real data
Fig. 3b–3d and Table 3 showed the results of gene-gene co-

association analysis for 2257 SNPs within 9 susceptibility genes

belonging to the pathway associated with leprosy [24]. For ease of

visualization, only SNPs within SNP pairs whose p-value less than

1|10{7 in at least one of the three methods were presented. For

SNP pairs in two different genes, all three statistics had similar

results. The co-association between PARK2 and LRRK2 was

detected at a~1|10{7 by UF and UW , 1|10{6 by LRT, the

correlation coefficient between the two SNPs of PARK2

(rs6904305) and LRRK2 (rs12814017) is 0.13. The co-association

between NOD2 and IFNG, IFNG and PARK2 was also detected at

a~1|10{4 by UF and UW , 1|10{3 by LRT; between IFNG

and CARD6 at 1|10{3 by UF , 1|10{2 by UW and LRT. The

marked genes with self-regulation in the network [24] were also

detected by both UF and UW at 1|10{7 level, while nothing

appeared by LRT due to the stronger LD between SNPs within

one gene. This indicated that the results from UF and UW strongly

agreed with that from the Ingenuity Pathways Analysis knowledge

database, while not from LRT in the framework of traditional

gene-gene interaction. In addition, all three statistics showed there

was some co-association between IFNG and PARK2

(a~1|10{4), both UF and UW suggest that self-regulation

within LRRK2, PARK2, TNFSF15, and CARD6 may also exist

(a~1|10{7), though these were not marked in the network. The

computation time for UW takes nearly 25 hours, and about

28 hours for LRT, while only 3 minutes for statistic UF using the

Table 1. Type I error for three statistics without correlation
and interaction.

LRT UW UF

Sample
size Typea Typeb Typea Typeb Typea Typeb

1000 0.050 0.050 0.047 0.050 0.051 0.051

2000 0.046 0.049 0.049 0.047 0.052 0.047

3000 0.052 0.055 0.055 0.054 0.053 0.053

4000 0.050 0.049 0.054 0.049 0.050 0.049

5000 0.050 0.046 0.055 0.050 0.047 0.053

aFor case with one main effects (b1~0, b2~log(1:3)),
bFor case with two main effects (b1~log(1:5), b2~log(1:3)).
doi:10.1371/journal.pone.0070774.t001

Table 2. Type I error for three statistics without main effects
under sample size 3000 and 5000.

LRT UW UF

Correlation
coefficient 3000 5000 3000 5000 3000 5000

0.2 0.050 0.050 0.040 0.056 0.055 0.058

0.4 0.046 0.049 0.045 0.055 0.076 0.071

0.6 0.052 0.055 0.048 0.044 0.073 0.066

0.8 0.050 0.049 0.058 0.056 0.058 0.056

doi:10.1371/journal.pone.0070774.t002

A Fisher r-to-z Simple Co-Association Statistic
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same desktop computer (Intel Core i3-2100 with 3.10 GHz CPU

using 4 GB of RAM).

Discussion

The rationality and significance of gene-gene co-
association

From the causal graph perspective [16], we elucidated the

concept and rationality of gene-gene co-association, and clarify its

relationship with the traditional gene-gene interaction. Simulation

studies further confirm our viewpoint. Fig. 2a shows that the co-

association is almost the same as the interaction in the situation co-

association with standalone interaction. Fig. 2b demonstrates that

the co-association still exists in the situation co-association without

interaction. Fig. 2c and 2d illustrate the situation of Type III co-

association, indicating that it will be lost some power when

replacing co-association with interaction. Actually, these relation-

ships have also been supported by a gene-gene interaction study

[11], though it does not yet jump out from the scope of traditional

gene-gene interaction. The statistic they proposed based on the

difference of the covariance matrix between cases and controls,

showing much power than the LRT, indeed measure the co-

association between two genes essentially, rather than their

interaction. Specifically, simulation indicated that their proposed

statistic showed no power when the two genes only have marginal

effect on the disease (case 1 in their work). This is actually the

situation of Type II co-association (Fig. 2b in our simulation), the

reason why no power emerge is that the two selected gene region

(EXT2 and LRRC4CX2) in their simulation are far away from each

other and can be considered to be independent. In summary,

gene-gene co-association refers to the extent to which the joint

effects of two genes differs from the main effects, not only due to

the traditional interaction under the nearly independent condition

but the correlation between two genes, while the part attributed to

the correlation has usually been neglected in traditional interaction

model using regression method. Genetically, most diseases are

caused by multiple genes acting together through pathways or

network that can lead to a common final disease or trait. In

practice, when constructing a priori topological structure for

establishing genetic networks that contribute to diseases of interest,

Figure 2. Simulations for clarifying the relationship between co-association and interaction. a for Type I co-association; b for Type II co-
association; c for Type III co-association given fixed interaction effect 0.2 and different correlation; d for Type III co-association given fixed correlation
0.4 and different interaction effects. The case with no main effects (b1~b2~0), one main effects (b1~0, b2~log(1:3)) and two main effects
(b1~log(1:5), b2~log(1:3)) are shown by blue, red and black lines respectively.
doi:10.1371/journal.pone.0070774.g002

A Fisher r-to-z Simple Co-Association Statistic
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we often need to test whether significant relationships between any

two nodes in such networks exist. It seems more reasonable to

solve this by detection for gene-gene co-association rather than

traditional interaction.

Fisher r-to-z transformation-based simple statistics for
gene-gene co-association

Wellek and Ziegler [21] derived the asymptotic distribution of

the empirical product-moment correlation coefficient for counting

variables. One statistic we here proposed, based on the strict

theory from their work, is UW . Alternatively, from the feasibility

and practicability perspective, we empirically calibrate the

traditional Fisher r-to-z transformation-based simple statistic U
and proposed UF , which is not only prone to easy understanding

and universally accessible to everyone, but compute fast in

practice. Simulation showed that the proposed two statistics are

stable, though the type I error of UF slightly deviates from the

nominal level due to the empirical approximation (Table 2). There

seems a tradeoff between the accuracy and the computation

burden, the theoretical statistic UW was accurate but with high

computation burden, while UF could reduce the computation

burden substantially but might lose some accuracy. Both UW and

UF have comparable power with LRT under Type I co-

association, while more powerful than LRT under Type II co-

association and Type III co-association no matter what the

correlation between the SNPs is (Fig. 2). This indicates that the

two proposed statistics have good performance for detecting gene-

gene co-association. Intuitively, it might give rise to an illusion that

the co-association between SNP pairs would be detected

powerfully as long as they were highly correlated (e.g. high LD).

However, our results illustrate that both UW and UF cannot be

affected by LD, and co-association indeed represents nothing but

the effect contributing to the disease (Fig. 3a). It is important to

guard against possible heterogeneity caused by some other

Figure 3. Simulation for assessing the effect of LD and application to gene pathway analysis associated with leprosy, a simulation
results for assessing the effect of LD, red line for the case with one causal SNP, black line for case with two causal SNPs; b pathway
analysis by UF ; c pathway analysis by UW ; d pathway analysis by LRT.
doi:10.1371/journal.pone.0070774.g003
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covariates (e.g. age, gender, smoking). One possible solution for

this is Mantel-Haenszel method, which may suffer small sample

size problem when the number of covariates is quite large.

Another possible way is to calculate the partial correlation

conditional on the covariates in cases and controls respectively.

The advantages of statistics UW and UF in real world
GWAS data analysis

For real world GWAS data analysis, one way to search for co-

association (or interaction) is arguably by exhaustive search, which

consider all possible pairs of loci and perform the desired co-

association test for each pair (e.g. about 500000 SNP pairs for

1000 loci). Therefore, whether one statistic can be used in real

world GWAS data analysis depends on two key aspects at least, the

acceptable false positive rate and computation burden. Simulation

following up the GWAS data analysis roadmap indicates that the

false positive rate of the proposed two statistics (UW and UF )

together with LRT are all at about 1|10{7 order of magnitude.

Also, it indicates that the false positives can be acceptable and

control well as long as researchers strictly followed the reasonable

GWAS data analysis roadmap. As an example, all three statistics

were used to analyze 2257 SNPs (2545896 SNP pairs) within 9

susceptibility genes belonging to the pathway associated with

leprosy using a desktop computer (Intel Core i3-2100 with

3.10 GHz CPU using 4 GB of RAM), the computation time for

UW takes nearly 25 hours, and about 28 hours for LRT, while

only 3 minutes for statistic UF , which may be currently the most

realistic and feasible statistic.

Application to gene pathway analysis associated with
leprosy

The GWAS for leprosy showed that variants of genes in the

NOD2-mediated signaling pathway (which regulates the innate

immune response) are associated with susceptibility to infection

with M. leprae, and a further plausible biologic network was created

for highlighting the functional relationship between the suscepti-

bility genes by Ingenuity Systems. In this paper, the co-association

analysis between the genes (or SNPs) in this network indicate that

the results from UF and UW strongly agree with that from the

Ingenuity Pathways Analysis knowledge database, while not from

LRT in the framework of traditional gene-gene interaction

(Fig.3b–3d and Table 3). This further confirm in practice that

our proposed gene-gene co-association concept as well as the

correspondingly proposed statistics are strongly in line with reality.

In addition, the pathway between IFNG and PARK2may also

exist as the co-association between them was detected significantly

by all three statistics at a~1|10{4 level. So as the self-regulation

within LRRK2, PARK2, TNFSF15, and CARD6, since the co-

association between multiple SNP pairs within them were also

detected significantly by UW and UF at a~1|10{7. Further

replication need to be done to confirm these findings.

Limitations
One has to realize that the implications of gene-gene interaction

are scale-dependent, we here just illustrate gene-gene co-associa-

tion by comparison with multiplicative interactions in LRT, where

the final term expresses a departure from a simple additive model

on the logit scale. As one reviewer suggested, we have also assessed

the performance for rare variation (MAF,0.05) and found that

the type I error is unstable, which suggested that the proposed

methods was invalid for rare variation. In addition, although the

proposed empirical statistic UF has nearly same performance with

the theoretical statistic UW , its type I error deviates slightly from

the given nominal level (Table 2) after all, this may elevate a little

false positive rate. We want to emphasize that different empirical

fitness methods may generate different function f in the

denominator of UF , the basic rule for UF , we think, is to improve

the computation efficiency and feasibility, meanwhile keep the

performance nearly the same as UW .
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