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ABSTRACT

The ETS family of transcription factors exemplifies
current uncertainty in how eukaryotic genetic regu-
lators with overlapping DNA sequence preferences
achieve target site specificity. PU.1 and Ets-1 repre-
sent archetypes for studying site discrimination by
ETS proteins because their DNA-binding domains
are the most divergent in sequence, yet they share
remarkably superimposable DNA-bound structures.
To gain insight into the contrasting thermodynamics
and kinetics of DNA recognition by these two pro-
teins, we investigated the structure and dynamics
of site discrimination by their DNA-binding domains.
Electrophoretic mobilities of complexes formed by
the two homologs with circularly permuted binding
sites showed significant dynamic differences only
for DNA complexes of PU.1. Free solution measure-
ments by dynamic light scattering showed PU.1 to
be more dynamic than Ets-1; moreover, dynamic
changes are strongly coupled to site discrimina-
tion by PU.1, but not Ets-1. Interrogation of the
protein/DNA interface by DNA footprinting showed
similar accessibility to dimethyl sulfate for PU.1/DNA
and Ets-1/DNA complexes, indicating that the dy-
namics of PU.1/DNA complexes reside primarily out-
side that interface. An information-based analysis of
the two homologs’ binding motifs suggests a role
for dynamic coupling in PU.1’s ability to enforce a
more stringent sequence preference than Ets-1 and
its proximal sequence homologs.

INTRODUCTION

Members of the ETS family of transcription factors are di-
verse in their interactions with target genes and chromatin

in vivo. For example, the ETS-family member PU.1 is a pi-
oneering transcription factor (1,2): it can bind DNase I-
inaccessible chromatin and methylated DNA, initiate nu-
cleosomal remodeling by promoting local histone modifica-
tions, and direct other transcription factors by cooperative
recruitment (3-7). The capability to resolve nucleosomes is
not a class property of ETS proteins, however, as another
ETS member, Ets-1, is not a pioneer (8). This and other
functional differences reflect the profound variation in the
amino acid sequences that encode the eponymous DNA-
binding domains of ETS proteins, with PU.1 and Ets-1 rep-
resenting the extremes of sequence divergence (~30% ho-
mology) (9). Nevertheless, ETS proteins share broadly over-
lapping DNA site preferences around a 5-GGA(A/T)-3
consensus (10) and strong structural homology. The back-
bone trajectories of PU.1 and Ets-1 with high-affinity DNA
(11,12) are superimposable well within the precision of the
respective co-crystal structures (Figure 1)(13). Thus, given
their distinct functional profiles and divergent primary se-
quences on the one hand, yet strong structural conservation
and overlapping sequence preferences in the other, PU.1
and Ets-1 represent excellent models for understanding how
functionally non-redundant transcription factor homologs
execute member-specific DNA site recognition.

To better understand the mechanisms of DNA recogni-
tion by ETS proteins, we have been studying the thermo-
dynamics and kinetics of DNA binding by the ETS do-
mains of Ets-1 and PU.1 to high- and low-affinity sequence-
specific sites. We found that the high- and low-affinity DNA
complexes exhibit markedly differentiated hydration and
electrostatic properties in the case of PU.1, but not Ets-1
(14,15). These differences are experimentally manifest by
way of the complexes’ sensitivity to water and ion activities:
whereas high-affinity PU.1/DNA complexes are destabi-
lized by osmotic stress, low-affinity complexes are only very
weakly sensitive to the osmotic environment, as are both
high- and low-affinity Ets-1/DNA complexes (14,15). Sim-
ilarly, the DNA complexes of PU.1 are sensitive to monova-
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Figure 1. The sequence-divergent ETS domains of PU.1 and Ets-1 map to highly homologous structures. (A) Structural alignment of the ETS domains
of PU.1 (PDB: 1PUE) and Ets-1 (1K79) in their high-affinity DNA co-crystal structures using the RAPIDO algorithm (13). The two ETS domains were
flexibly aligned to optimize overlap of matching sets of secondary structure elements (termed rigid bodies), colored blue and purple for PU.1 and Ets-1.
Non-aligned, flexible segments are colored red (PU.1) and magenta (Ets-1). Sticks connect matched C* atoms. The two domains align to a global RMSD
of 1.4 A for C* atoms, well within the resolution of the source structures (IPUE: 2.1 A; 1K79: 2.4 A). If only the rigid bodies are considered, the alignment
improves to 0.84 A. The choice of asymmetric units made no meaningful differences in the alignment. DNA (shown only for PU.1) is rendered as lines.
(B) Domain structure of human PU.1 and Ets-1. Unlike PU.1, the ETS domain of Ets-1 is flanked by helices (yellow) that unfold upon DNA binding
and attenuate DNA-binding affinity; the loss of either flanking segment abolishes autoinhibitory effects such that Ets-1 AN331 behaves as a minimal ETS
domain (19). A primary sequence alignment of the ETS domains of the two proteins is also shown, with assigned secondary structure elements in brackets.

lent ion concentrations in a markedly sequence-dependent
manner, but not for Ets-1/DNA complexes (15). Finally,
salt perturbs the kinetics of site recognition by the two pro-
teins in opposite directions (15,16). These sharp contrasts
in the coupling of their DNA complexes to the solution en-
vironment suggest a profound heterogeneity in the mech-
anisms of DNA discrimination between the two ETS par-
alogs and, by implication, within the broader ETS family.

Currently, the structural underpinnings for the differen-
tial properties among ETS transcription factors remain elu-
sive. Structures of ETS/DNA complexes are limited mostly
to high-affinity species (reviewed in 17), which show uni-
versally strong conservation for the DNA-bound proteins.
However, high-affinity structures alone cannot fully inform
the basis of site discrimination without comparative data on
low-affinity complexes, particularly in light of the sequence-
dependent properties of PU.1/DNA complexes (14,18). A
direct comparison of high- and low-affinity complexes for
different ETS proteins is therefore essential for understand-
ing site recognition by ETS transcription factors. Here, we
report a comparative characterization of high- and low-
affinity DNA complexes formed by the ETS domains of
PU.1 and Ets-1 in solution. The data show that DNA
site identity unmasks major changes in the dynamics in
PU.1/DNA complexes that do not accompany their Ets-1
counterparts, and point to conformational dynamics as a
novel differentiator in DNA site discrimination by ETS pro-
teins.

MATERIALS AND METHODS
Protein expression and purification

The recombinant ETS domains of murine PU.1 (residues
167-272, termed AN167) and Ets-1 (residues 311-440,
termed AN311, denoting the minimal ETS domain (19);
and residues 280-440, a gift from Dr Lawrence P. Mcln-
tosh termed AN280, denoting the autoinhibited form)
were expressed and purified as previously described (14,15).
Briefly, BL21*(DE3) Escherichia coli harboring the ap-
propriate plasmid was grown to ODgy ~0.6 and in-
duced with 0.5 mM Isopropyl B-D-1-thiogalactopyranoside
(IPTG) at 30°C for ~4 h. After purification on Co-
NTA, thrombin cleavage, and size-exclusion chromatogra-
phy, protein was eluted in 10 mM Tris—-HCI (pH 7.4) con-
taining 0.5 M NaCl and (for Ets-1 constructs) 0.5 mM
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP). Pro-
tein concentrations were measured spectrophotometrically
at 280 nm using the following extinction coefficients: 22 460,
32430 and 39 880 M~ cm~! for PU.1AN167, Ets-1AN331
and Ets-1AN280.

DNA constructs

The high- and low-affinity sites used for PU.l1 are
5-AGCGGAAGTG-3 and 5-AAAGGAATGG-3
(consensus in bold) (20). The sites used for Ets-1
are GCCGGAAGTG (termed SCI1, high-affinity) and
TCCGGAAACC (SC12, low-affinity) (21). ETS binding
sites were assembled from synthetic oligonucleotides at
~0.5 mM duplex, and their concentrations determined
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spectrophotometrically at 260 nm using nearest-neighbor
methods (22).

DNA circular permutation

As detailed in SM1 of Supplementary Methods, pBendS5-
based plasmids (23) were digested with specific restriction
endonucleases to yield eleven distinct fragments of constant
length (143 bp) in which an ETS binding site occurs at de-
fined intervals along the fragment. Each fragment was end-
labeled with [y-*?P]-ATP using T4 polynucleotide kinase
and purified by agarose gel electrophoresis. The fragments
were incubated to equilibrium with sub-saturating amounts
of their target ETS domain (between 0.1 and 10 uM) and
resolved in 12% non-denaturing polyacrylamide gels (5% C,
I x Tris-borate-EDTA (TBE)) at 20 V /cm for 3 h. Gels were
digitized by phosphorimagery using a Storm 860 instru-
ment (GE Healthcare). Quantitative analysis of the elec-
trophoretic data to determine the mobilities of the bound
and unbound DNA, as well as model-dependent parameter
estimation and statistical inference, are detailed extensively
in SM2 and SM3 of Supplementary Methods.

Dynamic light scattering (DLS)

ETS domain (200 wM) was extensively dialyzed against
phosphate-buffered saline alone or mixed with duplex oligo
DNA at a 1:1 molar ratio, filtered (0.45 wm), and measured
at 25°C with a Zetasizer Nano ZS instrument (Malvern).
For each sample, back-scattering at 173° was integrated for
4 h to ensure overall signal convergence to within 1%, ana-
lyzed using the Stokes—Einstein equation, and fitted to log-
normal distributions.

DNA footprinting

DNA fragments (206 bp) harboring ETS binding sites were
PCR-amplified from pUCI19 plasmids as described (14),
except the forward and reverse primers were fluorescently
end-labeled at the 5’ end with Alexa Fluor 488 and 6-HEX
for capillary electrophoresis (24,25). Gel-purified amplicons
were incubated to equilibrium with saturating concentra-
tions (up to 10 wM) of ETS domains in 10 mM Tris—-HCI
(pH 7.4) containing 150 mM NaCl, 0.1 mM ethylenedi-
aminetetraacetic acid (EDTA), 0.5 g/l bovine serum albu-
min (BSA) and 0.1 g/1 salmon sperm DNA in a final vol-
ume of 50 pl. For dimethyl sulfate (DMS) footprinting,
0.25 pl of neat DMS was thoroughly mixed into the sample
for 30 s, then quenched with 150 pl of a guanidine thio-
cyanate quench buffer. For DNase I footprinting, MgCl,
was added to 2.5 mM immediately before 1 U of DNase
I, and quenched after 30 s as above. Samples were purified
with spin columns (Thermo Scientific). For DMS-treated
samples, purified DNA was eluted in 10% (v/v) piperidine,
heated at 90°C for 5 min, and ethanol-precipitated with 20
wg of glycogen. The pellets were dissolved in water and re-
purified with spin columns. For all samples, the final elu-
tion volume was 10 pl in TE. Capillary electrophoresis was
performed by the University of Missouri DNA Core Facil-
ity with an ABI 3730x] DNA Analyzer. Peaks were indexed
with GeneMarker software (version 1.97, Softgenetics) (26)
and numerically integrated as previously described (14,27).

Statistical procedures

Statistics and least-square model fitting were performed
using Origin (version 9.1, OriginLab). Hypothesis testing
for differences between means was performed by ¢ tests
with adjustment for multiple comparisons to control the
false discovery rate (28). Fitted estimates of parameters are
given with 95% joint confidence limits and inferences on
goodness-of-fit to datasets were performed by Fisher’s F
tests on residual sums of squares.

RESULTS AND DISCUSSION

Circular permutation of sequence-specific ETS binding sites
reveals distinct structures of PU.1/DNA and Ets-1/DNA
complexes

In reported structures of site-specific ETS/DNA complexes,
the protein contacts and neutralizes phosphates on one side
of the DNA backbone, leading to asymmetric collapse of
the helix (29). Our solution studies have revealed signifi-
cant heterogeneity in counter-ion release upon site bind-
ing by PU.1 and Ets-1 (15): whereas Ets-1 binding affinities
to high- and low-affinity sites respond identically to bulk
salt concentration, in quantitative agreement with the num-
ber of phosphate contacts, the corresponding affinities for
PU.1 are salt-sensitive in a markedly site-dependent man-
ner. Therefore, we were initially interested in whether the
sequence preferences of these ETS homologs might be re-
lated to their induction of DNA curvature.

To probe the curvature of ETS/DNA complexes, we mea-
sured the electrophoretic mobilities of circularly permu-
tated ETS binding sites that have been fractionally bound
by the ETS domain of PU.1 or Ets-1 (Figure 2). We gen-
erated a series of eleven 143-bp DNA fragments that har-
bor a single 10-bp ETS binding site ranging from one end
to the other (SM1, Supplementary Methods), and exam-
ined site-specific complexes formed by PU.1 and Ets-1 with
the same set of high- and low-affinity sites whose thermo-
dynamics and kinetics we have recently reported (15). Lo-
calized DNA curvature induced by protein binding led to
position-dependent mobilities for the complex (relative to
the unbound fragment) that were highest for fragments with
terminal binding sites, and lowest for fragments with cen-
tered sites. Samples were resolved in gels prepared from
the same batch of acrylamide and buffer solutions to elim-
inate gel-to-gel variation in the electrophoretic matrix. Un-
der these conditions, the standard errors in relative mobility
measurements from quadruplicate experiments are +0.005
or better (Supplementary Table S1), similar to the analytical
resolution of the procedure used to quantitate the mobilities
(SM2, Supplementary Methods).

Differences in relative mobility between corresponding
high- and low-affinity complexes of a given ETS domain, at
each flexure-to-end distance (flexure displacement, x), were
inferred by ¢ tests with adjustment for multiple comparisons
(Supplementary Table S1) (28). Under identical conditions,
the relative mobilities of high- and low-affinity sequence-
specific complexes formed by the ETS domain of PU.1
(PU.1AN167; Figure 2, Panel I) varied systematically in
a position-dependent manner. Specifically, the low-affinity
PU.1/DNA complex migrated with progressively lower mo-
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Figure 2. DNA circular permutation reveals structurally distinct site-
specific complexes formed by the homologous ETS domains of PU.1 and
Ets-1. The high- and low-affinity complexes formed by PU.1AN167 (I),
Ets-1AN331 (II; minimal ETS domain), and Ets-1 AN280 (III; autoinhib-
ited ETS domain) were probed by polyacrylamide electrophoresis (repre-
sentative data shown) using circularly permuted DNA fragments as de-
tailed in SM1 of Supplementary Methods. Flexure displacement (x), the
position of the center of the ETS binding sites relative to the length of the
entire fragment, is shown for each ETS/DNA complex. To illustrate the
relative mobilities of the fragments bound by each protein, intensity traces
of two fragments with terminal (x = 0.92) and centered (x = 0.52) bind-
ing sites are shown, offset slightly along the abscissa to align the unbound
bands. Quantitation of relative mobilities is detailed in SM2, Supplemen-
tary Methods.

bility than the high-affinity complex for binding sites sit-
uated increasingly nearer the ends of the DNA fragments
(i.e. x approaching 0 and 1). PU.1 complexes with bind-
ing sites near the center of the DNA (x near 0.5) showed
negligible differences in mobility, regardless of high- or low-
affinity binding. For the minimal ETS domain of Ets-1 (Ets-
1AN331; Figure 2, Panel II), no mobility differences were

Nucleic Acids Research, 2015, Vol. 43, No. 8 4325

observed between the high- and low-affinity complexes, af-
ter statistical adjustment for multiple testing (Supplemen-
tary Table S1). Unlike PU.1, the ETS domain in Ets-1 is
flanked by autoinhibitory helices (cf. Figure 1B) that at-
tenuate DNA binding affinity. Regardless of site location,
the corresponding high- and low-affinity complexes formed
by autoinhibited Ets-1 (Ets-1AN280; Figure 2, Panel III)
showed indistinguishable mobilities from each other. These
qualitatively different results for the three ETS domains
argue strongly against their origin in artefacts of elec-
trophoresis. In particular, the mobility differences cannot
be attributed to dissociation of low-affinity complexes dur-
ing electrophoresis. Dissociation of low-affinity complexes
would cause mobility to increase and approach that of un-
bound DNA, but many low-affinity complexes exhibit sim-
ilar mobilities as their high-affinity counterparts. There-
fore, the relative mobilities represent intrinsic differences in
the electrophoretic properties among the ETS/DNA com-
plexes.

To interpret the contrasting results between PU.1 and
Ets-1 more mechanistically, we analyzed the mobility data
with a quantitative model (30) based on the Lumpkin—
Zimm reptation theory (31,32). The model considers
protein-induced bending as a fixed point-kink (Figure 3A
and SM3, Supplementary Methods), an approximation ap-
propriate for our constructs in which the binding site spans
only 7% of the fragment length. For each ETS/DNA com-
plex, the model fits relative mobility as a quadratic function
of flexure displacement, x; mobility is minimized at the frag-
ment’s midpoint (x = 0.5) where flexure causes the greatest
deviation from linearity. The key advantage of this model is
its ability to separate effects on mobility due to site bend-
ing (angle #) and non-bend-related interactions with the gel
matrix (K). This parameterization is therefore well-suited to
quantifying the degree of bending as well as testing if ad-
ditional interactions contribute to the differential mobili-
ties of high- and low-affinity complexes formed by the same
ETS protein. On the one hand, if complexes differ only in
their interactions with the gel matrix and are identical in
bending angle, a uniform shift in mobilities results at all flex-
ure displacements (Figure 3B). On the other hand, if com-
plexes differ exclusively by a difference in DNA bending,
the dispersion in their mobilities would be manifest in frag-
ments with centered sites, and vanish in fragments with ter-
minal sites (Figure 3C).

When applied to the high- and low-affinity DNA com-
plexes of PU.1AN167, the model clearly distinguishes the
two complexes (P < 0.00001, F test on residual sum of
squares; Supplementary Table S2). Differences in both
bend- and non-bend-related effects account for the diver-
gent electrophoretic mobilities as x approaches 0 and 1 (Fig-
ure 3D). In contrast, the model does not distinguish com-
plexes formed by the minimal (Ets-1AN331, P = 0.15; Fig-
ure 3E) or the auto-inhibited (Ets-1AN280, P = 0.98; Fig-
ure 3F) ETS domain of Ets-1. Importantly, Ri(x = 0) =
Ri(x = 1) = K independently of the bending angle (SM3,
Supplementary Data); the functional value at x = 0 and
x = 1 therefore provides a direct assessment of the non-
bend-related properties from the fitted mobility data. While
the difference in non-bend-related effects between the high-
and low-affinity complexes of PU.1AN167 are well beyond
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Figure 3. Model-dependent analysis of PU.1/DNA and Ets-1/DNA electrophoretic mobilities suggests a dynamic component in DNA site discrimination
by ETS proteins. (A) The geometric model used showing the definitions of the bending angle (¢) and flexure displacement (x). The parabolic relationship
between relative mobility and x is detailed in (30) and SM3 in Supplementary Methods. The model’s parameterization of site bending () and non-bend-
related interactions (K) enables a direct assessment of the two factors from the differential mobilities of high- and low-affinity complexes formed by the
same ETS protein. In particular, the functional value at x = 1 or 0 is equal to K regardless of 6. (B) If 0 is constant, the model predicts a vertical shift with
no change in curvature. (C) If K is constant, the model predicts a position-dependent difference in relative mobility that is maximal for centered binding
sites but vanishes for terminal sites. Unconstrained least-square fits of the model to the data for PU.1AN167 (D), Ets-1AN331 (E) and Ets-1AN280 (F)
with 95% confidence bands. Symbols represent mean & SE of quadruplicate experiments (Supplementary Table S1). Parametric estimates and statistics
are given in Supplementary Table S2. For Ets-1AN280, a global fit to both datasets is shown.

experimental uncertainty (cf. the 95% confidence bands in
Figure 3D and Supplementary Table S2), those of either
Ets-1 variant are not. In summary, circular permutation
discerns non-bend-related determinants of structural het-
erogeneity among sequence-specific complexes of PU.1 and
Ets-1.

Site-specific changes in conformational dynamics are
strongly coupled to DNA binding by the ETS domain of
PU.1, but not Ets-1

In the reptation model (SM3, Supplemental Data), the di-
mensionless non-bend parameter K describes the electro-
static and frictional properties of the protein-bound (b) and
unbound (u) DNA (30,31):

Ko Db & "

‘i:b Qu %'b

where Q and & represent the total effective charge and fric-
tional constant. For complexes formed by the same pro-
tein and DNA fragments of fixed length, O, and Q, are
constant, and given the 2 x 144 = 288 total phosphates
in our duplex DNA fragments, nearly identical. Reptation
analysis therefore implies interactions that frictionally cou-
ple with the polyacrylamide gel matrix contribute differen-
tially to PU.1-bound, but not Etsl-bound complexes, in a
site-dependent manner. One mechanism for such frictional
coupling would be via conformational dynamics. To exam-
ine this notion further, we probed the two proteins in solu-
tion (with no gel), with and without DNA duplexes harbor-

ing the same high- and low-affinity binding sites introduced
above, by dynamic light scattering (DLS).

DLS analysis for the unbound proteins showed simi-
lar median hydrodynamic diameters for PU.1AN167 and
the minimal ETS domain of Ets-1 (Ets-1AN331), but
significantly smaller than the autoinhibited Ets-1AN280
(Figure 4). However, PU.1IAN167 exhibits a significantly
broader size distribution than both Ets-1AN331 and Ets-
1AN280. The broader PU.1 distribution is not due to poly-
dispersity arising from impurities in the preparation of
PU.1AN167, as evidenced by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) analysis of
the purified protein (Supplementary Figure S1). The data
therefore indicate a significantly broader ensemble of struc-
tures in PU.1 than Ets-1 at the ps or longer timescale to
which the optical mixing system of our DLS instrument is
sensitive. This result is consistent with a previous solution
NMR study of PU.1 showing significant relative motion be-
tween secondary structure elements in the same time régime
(33).

To quantitatively generate 1:1 ETS/DNA complexes
(27), site-specific duplex oligos were mixed at equimolar
concentrations to form 100 wM complexes. High-affinity
DNA caused slight downward shifts of the median hydro-
dynamic diameter for PU.1ANI167 and Ets-1AN331, as
well as a significant tightening of the distribution in the
case of PU.1AN167 only. Conversely, a 1:1 molar mix-
ture with low-affinity DNA increased the median hydrody-
namic diameter for Ets-1AN331 and significantly more so
for PU.1AN167, in addition to a broadening of the latter’s
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deviation (o g) are shown for each species; the standard error in each parameter is +0.01 unit or lower. A range for Dy is obtained by multiplying and
dividing ¢ by 0. For each protein, the peak (modal) diameter for the unbound species is marked by a dashed line to guide the eye for comparison with

the bound states.

size distribution. Low-affinity DNA binding may therefore
trigger partial melting of folded elements in PU.1, but not
Ets-1, causing increased fluctuations in the former. Both
high- and low-affinity DNA complexes of Ets-1 AN280 ex-
hibit right-shifted and broadened size distributions relative
to the unbound protein, reflecting the unfolding of the auto-
inhibitory helices upon DNA binding (34). The qualita-
tively varied scattering by the three ETS constructs indicate
that they reflect intrinsic dynamic heterogeneity in site bind-
ing, rather than simple contributions from the added DNA,
which shows essentially identical profiles in the unbound
state (Supplementary Figure S2).

In summary, DLS supports the reptation analysis in ad-
vancing the idea that conformational dynamics strongly dif-
ferentiate PU.1/DNA and Ets-1/DNA complexes. Both ap-
proaches show a dynamic coupling in the formation of site-
specific complexes by PU.1 that is far less pronounced in the
minimal ETS domain of Ets-1, and altogether undetectable
when autoinhibitory helices are present. The amino acid di-
versity among ETS domains therefore encodes structurally
homologous structures with divergent dynamic properties.
Interestingly, solution NMR studies have revealed that ele-
ments N-terminal to the auto-inhibited helices, which are
themselves intrinsically disordered (35-37), modify DNA
binding through local interactions with the ETS domain.
The present data indicate, however, that interactions in-
volving only the auto-inhibitory helices do not significantly

modify the global dynamics rooted in the minimal ETS do-
main of Ets-1.

The heterogeneous dynamics of ETS /DNA complexes are not
localized at the contact interface

Since the divergent dynamics between the ETS domains
of PU.1 and Ets-1 are coupled to DNA site discrimina-
tion, we were interested to see if they are manifest locally
at the protein/DNA interface. Specifically, if the ensemble
of PU.1/DNA structures include highly transient interfacial
interactions, their interfaces should be, on average, more
solvent-exposed and susceptible to small chemical probes
relative to Ets-1/DNA complexes. Dimethyl sulfate (DMS),
which selectively methylates N7 positions of guanines via
the DNA major groove, is well-suited to probe the inter-
facial accessibility at the 5'-GGAA-3" consensus. Although
DMS footprinting has been extensively used to map bind-
ing sites of individual ETS proteins, to our knowledge, it
has not been used to compare DNA complexes of different
ETS members.

We saturated fluorescently-labeled DNA fragments har-
boring various ETS binding sites with their protein targets
at 10-fold or higher concentrations (0.1-10 wM) over their
respective equilibrium dissociation constants, before reac-
tion with DMS. Cleaved fragments were resolved by capil-
lary electrophoresis (Figure 5). To verify the formation of
site-specific complexes, each mixture was separately probed
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Figure 5. Differences in accessibility of the protein/DNA contact interface to dimethyl sulfate do not track the dynamic coupling to DNA site discrimina-
tion by PU.1 and Ets-1. DNA fragments harboring high- or low-affinity ETS binding sites, alone or incubated to equilibrium with saturating concentrations
of PU.IAN167, Ets-1AN331 or Ets-1 AN280, were subjected to limited methylation with DMS and subsequent strand scission with piperidine. Shown
are capillary electropherograms excerpted around the ETS binding sites of the 5-GGAA-3’ strand, normalized to the intensity of a distal control peak
(marked with *). Additional peaks whose areas differ by >20% between the bound and unbound states are marked with A. Reactivity to DMS of the two
consensus guanines indicates accessibility of the ETS/DNA core interface, while the major grooves of flanking guanines face outward from the protein.
Numbers indicate the fractional integrated peak area for the two core guanines relative to that of the control peak, with a precision of £0.1 in all cases.

with DNase I. Hypersensitivity to DNase I, detected in the
5-TTCC-3' strand, is diagnostic for site-specific ETS/DNA
complexes (38) in which the protein widens the DNA mi-
nor groove at the core consensus, but is absent in non-
specific binding (14). Since all complexes are DNase I-
hypersensitive (Supplementary Figure S3), DMS sensitivity
represents the kinetic accessibility of the major groove in
each site-specific ETS/DNA complex.

To quantify the reactivity to DMS and to account for
differences in recovery from purification steps, integrated
peak areas corresponding to the two consensus guanines
were normalized to a well-defined peak outside the bind-
ing interface (marked with “*’ in Figure 5) (39,40). We ob-

served that the high-affinity interface for PU.1AN167 is es-
sentially as well protected against DMS modification as Ets-
1AN331 (~90% relative to unbound). Thus, the broader
ensemble of high-affinity PU.1/DNA structures does not
significantly differ in interfacial accessibility from their Ets-
1/DNA counterparts. In contrast, the interface of the low-
affinity Ets-1AN331/SC12 complex is not only more acces-
sible to DMS than its high-affinity counterpart, but unex-
pectedly also relative to the low-affinity PU.1/DNA com-
plex. With respect to Ets-1 autoinhibition, the high-affinity
complex formed by Ets-1 AN280 is significantly more sen-
sitive to DMS than Ets-1AN331. In addition, guanines
flanking the core consensus, which are completely solvent-
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Figure 6. PU.1 extracts higher DNA site specificity than Ets-1 in vivo and in vitro. DNA site preferences in vitro by Ray-Gallet et al. (48) for PU.1 and
Woods et al. (49) for Ets-1 were chosen among alternatives (21,46) for their larger sample sizes and sequence spaces. ChIP-Seq data for genomic preferences
in vivo were as curated by the HOMER Motif Database for murine PU.1 (4) and human Ets-1 (50), the JASPAR Database for murine Ets-1 (MA0098), and
the human ENCODE Consortium for human PU.1 (51). The data were analyzed for their information content (IC) and presented as DNA logos (47). The
height of each stack represents the IC for that position, and summed to give the total IC for the 10-bp binding site. Although the total ICs differ depending
on the experimental context, each matched pair of binding motifs differs by ~2 bits.

exposed at the major groove, are differentially methylated
(marked ‘A’) between the autoinhibited and minimal Ets-
1/DNA complexes. Finally, the high- and low-affinity Ets-
1AN280 complexes differ in DMS sensitivity by a much
smaller margin than their minimal Ets-1 domain coun-
terparts (Ets-1AN331). Thus, interfacial perturbations in-
duced by Ets-1 AN331 are abrogated by the auto-inhibitory
helices, suggesting an allosteric effect of autoinhibition on
the protein/DNA interface in solution.

In summary, accessibility of the contact interfaces in
PU.1/DNA and Ets-1/DNA complexes to DMS does not
track the heterogeneous dynamics captured by the circular
permutation and DLS studies. We therefore infer that, al-
though the dynamic differences between the two ETS do-
mains are coupled to DNA site discrimination, they are
not localized at their DNA contact interface. The robust
protection of the high-affinity contact interface by PU.1,
despite its global dynamics, is in agreement with our ear-
lier observation that PU.1 forms a kinetically persistent
high-affinity complex (15,16). In addition, we have observed
that the high-affinity PU.1/DNA complex is quantitatively
destabilized by osmotic stress to an extent ~10-fold greater
than afforded by the sequestration of water molecules at
the contact interface alone (14). If the dynamic changes
in site discrimination by PU.1 are delocalized among ele-
ments distal to the DNA contact interface, the attendant
changes in preferential hydration at mobile accessible sur-
faces may account for the magnitude of PU.1’s osmotic sen-
sitivity. Accordingly, the weak dynamic coupling by Ets-
1 in DNA binding complements the osmotic insensitivity
of Ets-1/DNA complexes (15). Thus, PU.1’s osmotic sen-
sitivity appears to represent the emergent property of an

induced-fit mechanism involving the direct participation of
water molecules in site recognition.

Dynamics, heterogeneity and DINA site selectivity

Increasing awareness that co-expressing ETS members reg-
ulate distinct genetic networks in vivo (41-45) highlights the
need for understanding how structurally homologous ETS
proteins resolve their overlapping DNA sequence prefer-
ences. The current paradigm of site discrimination by ETS
proteins posits a ‘direct’ readout of specific protein-DNA
contacts at the 5-GGA(A/T)-3' core consensus and an ‘in-
direct’ readout of sequence-dependent backbone properties
at the flanking bases that together define the broad sequence
variation in ETS binding sites (46). While a dynamic com-
ponent may be implied in this model, the present data show
that dynamics are explicitly coupled to DNA site discrimi-
nation by PU.1, but not its structural homolog Ets-1.
What is the functional significance of the differential dy-
namic coupling to DNA site discrimination by ETS ho-
mologs? Although PU.1 and Ets-1 share overlapping se-
quence preferences, binding motifs for PU.1 and Ets-1 in
vivo and in vitro show clear though non-exclusive differences
in the bases flanking the consensus as well as Ets-1’s toler-
ance for T at 5-GGA(A/T)-3’ (Figure 6). Notably, the two
homologs’ preferences are conserved whether determined
in vivo by ChIP-sequencing or under cell-free conditions by
selection experiments, indicating that their sequence prefer-
ences are intrinsic to their corresponding ETS domains.
Relative to Ets-1, we propose that dynamic coupling in
DNA discrimination affords PU.1 distinct and more strin-
gent sequence selectivity. To assess the site stringency of
PU.1 and Ets-1, we computed the information content of
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their binding motifs (47,48-51). Assuming all four bases are
equiprobable in nonspecific binding, the information con-
tent (IC, in binary bits) at each position of a specific bind-
ing site ranges from 0 if all bases remain equiprobable (i.c.
maximum informational entropy), to 2 if a single base is ab-
solutely preferred. The total IC for a binding site is the sum
of its positional ICs. Our analysis shows that, while the total
ICs for in vivo binding motifs are higher than in vitro bind-
ing, the binding motifs for PU.1 are consistently associated
with higher total ICs than their Ets-1 counterparts by ~2
bits (Figure 6). Since the primary data were obtained inde-
pendently using different technologies, it is highly improb-
able that this agreement represents experimental artefacts.

To extend the analysis, the difference in the total ICs be-
tween the sequence motifs for two proteins (A and B) is re-
lated to their energetics of site discrimination (52):

K. K.
o —log, S"’B> @)
Kns,A Kns,B

A(total IC),_g = &, <10g2

The parenthetic factor on the right side of Equation (2)
represents the maximum information (in bits) that can be
gained as the proteins transition from nonspecific to spe-
cific binding (characterized by the equilibrium binding con-
stants Ky, and Kp), with a maximum efficiency of &, = In
2 ~ 0.7 under isothermal conditions (52). We used Equa-
tion (2) to compare PU.1 and Ets-1 using reported values of
specific and nonspecific binding. Under physiological saline
conditions (150 mM Na%), high-affinity binding by PU.1
and Ets-1 are similar (1071 M) (15). However, nonspecific
binding by PU.1 (107> M) (14) is significantly weaker than
Ets-1 (10~7 M) (21,53), a phenomenon that may be demon-
strated directly (Supplementary Figure S4). Equation (2)
shows that PU.1 can extract >2 additional bits of sequence
selectivity by suppressing non-specific binding relative to
Ets-1 (Supplementary Table S2), in agreement with the dif-
ference in total IC based on binding motifs (cf. Figure 6).
Such a correspondence assumes that the two proteins are
optimized DNA discriminators, a supposition supported by
the overwhelming sequence conservation of their orthologs
among high-order metazoans (54).

Thus, evidence from experimental and theoretical ap-
proaches supports the notion that PU.1 is a more sequence-
selective protein that Ets-1. This feature is intuitively con-
sistent with PU.1’s status as a pioneer transcription fac-
tor, a function not shared by Ets-1 (8). Our present data,
which show that the two proteins also differ strongly in con-
formational dynamics and its coupling to DNA site dis-
crimination, suggest dynamics as a key component in the
DNA site selectivity of the two ETS homologs. In conclu-
sion, the interplay between dynamics, preferential interac-
tions, kinetic persistence, and sequence selection presents a
promising line of investigation into the biophysical mech-
anism of DNA site discrimination among co-expressing
ETS proteins, and ultimately, how they specifically regulate
their target genes in key developmental programs such as
hematopoiesis and neurogenesis.
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