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Abstract

Purpose: Clinicopathologic features and biochemical recurrence are sensitive, but not specific, predictors of metastatic
disease and lethal prostate cancer. We hypothesize that a genomic expression signature detected in the primary tumor
represents true biological potential of aggressive disease and provides improved prediction of early prostate cancer
metastasis.

Methods: A nested case-control design was used to select 639 patients from the Mayo Clinic tumor registry who underwent
radical prostatectomy between 1987 and 2001. A genomic classifier (GC) was developed by modeling differential RNA
expression using 1.4 million feature high-density expression arrays of men enriched for rising PSA after prostatectomy,
including 213 who experienced early clinical metastasis after biochemical recurrence. A training set was used to develop a
random forest classifier of 22 markers to predict for cases - men with early clinical metastasis after rising PSA. Performance of
GC was compared to prognostic factors such as Gleason score and previous gene expression signatures in a withheld
validation set.

Results: Expression profiles were generated from 545 unique patient samples, with median follow-up of 16.9 years. GC
achieved an area under the receiver operating characteristic curve of 0.75 (0.67–0.83) in validation, outperforming clinical
variables and gene signatures. GC was the only significant prognostic factor in multivariable analyses. Within Gleason score
groups, cases with high GC scores experienced earlier death from prostate cancer and reduced overall survival. The markers
in the classifier were found to be associated with a number of key biological processes in prostate cancer metastatic disease
progression.

Conclusion: A genomic classifier was developed and validated in a large patient cohort enriched with prostate cancer
metastasis patients and a rising PSA that went on to experience metastatic disease. This early metastasis prediction model
based on genomic expression in the primary tumor may be useful for identification of aggressive prostate cancer.
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Introduction

Over 240,000 men are diagnosed with prostate cancer in the

U.S. annually, and a majority of them harbor local or regional

disease where the long-term prognosis is excellent [1]. About half

of these men undergo radical prostatectomy (RP) and nearly 40%

will present with one or more clinicopathologic features such as

high Gleason score (GS), extra-capsular extension (ECE), positive

surgical margins (SM+), seminal vesicle invasion (SVI) or lymph

node involvement (N+) that are associated with increased risk of

clinical metastasis [2–4]. Although only a minority of these men

are truly at risk of dying of their cancer [5], many of these

"clinically high risk" patients will receive additional postoperative

interventions (e.g., adjuvant radiation) and often suffer treatment

morbidity. Conversely, many men present without adverse clinical

features and yet die of prostate cancer. Current tools have limited

capacity to identify, at time of RP, men that are most at risk of

metastasis and prostate cancer death - such patients are currently

treated aggressively only after the observation of rising PSA

(Prostate Specific Antigen) or biochemical recurrence (BCR).

Recent clinical trials suggest that these patients would likely have

more favorable outcomes if treated earlier post-RP [6–10]. Thus,

the limited performance of clinical factors for predicting men at

highest risk for metastasis leads to suboptimal patient manage-

ment.

Over the last decade, many studies have tried to address the

unmet clinical need for predicting aggressive prostate cancer using

individual biomarkers or gene expression signatures [11–30].

However, these prior efforts have not seen widespread implemen-

tation in clinical practice because none have convincingly

demonstrated improved prediction over established clinical factors

such as the GS. This is mainly due to limitations in sample size and

power, the lengthy clinical follow up required to observe

metastatic or lethal prostate cancer events and the use of BCR

as a surrogate endpoint; a sensitive, but non-specific, predictor of

disease progression [31]. Thus, most biomarker studies poorly

sample clinically-proven aggressive prostate cancer cases. In

addition, most gene expression signatures were developed with

assays that required fresh or frozen tissue, which is not routinely

available in clinical practice, and were limited to profiling protein-

coding genes - examining only a minority of the active genome

(i.e., transcriptome). In a previous report we obtained archived

formalin-fixed paraffin embedded (FFPE) primary prostate cancer

specimens from the Mayo Clinic tumor registry that included a

large number of patients that developed metastatic disease. With

long-term follow up we ascertained a biomarker signature that

could identify men at risk of progression to clinical metastasis and

lethal prostate cancer [20]. However, in validation we did not

demonstrate a significant improvement on performance in

comparison to clinical variables and we hypothesized that this

may be due to the limited focus on a set of about 1,000 protein-

coding genes.

Here we expand upon this work by re-profiling the patients of

the original study utilizing a high-density transcriptome-wide

microarray that assesses the expression of over 1.4 million RNA

features including the ,22,000 known protein-coding genes as

well as many thousands of non-coding RNAs. Such non-coding

RNAs are now recognized for their ability to regulate the activity

of oncogenes and tumor suppressor genes involved in the

development of disease recurrence and metastatic progression

[32,33]. We present the development and validation of a genomic

classifier (GC) for risk prediction of early clinical metastasis that is

enriched in non-coding RNAs. We demonstrate that GC provides

independent and statistically significant prognostic information

beyond clinicopathologic variables and show that GC outperforms

previously reported gene signatures.

Materials and Methods

Patient Population and Clinical Outcomes
Patients from this study were selected using a nested case-

control design from the Mayo Clinic Radical Prostatectomy

Tumor Registry, as described previously [20]. In brief, patients

that received radical prostatectomy (RP) for primary prostatic

adenocarcinoma as first line treatment at the Mayo Clinic

Comprehensive Cancer Center between 1987 and 2001 were

retrospectively classified into the following outcome groups:

N No evidence of disease (NED) progression group: Exhibited no

biochemical or other clinical signs of disease progression

following RP, with at least 7 years of follow-up.

N Prostate-specific antigen (PSA)-recurrence group: Experienced bio-

chemical recurrence (BCR), defined as two successive increases

in PSA measurements above 0.02 ng/mL (with the subsequent

measure 0.05 ng/mL above the first measurement) with no

detectable clinical metastasis (see below) within 5 years of

BCR.

N Clinical metastasis group (metastasis): Experienced BCR and

developed regional or distant metastases, confirmed by bone

or CT scan, within 5 years of BCR. This group was referred to

as Systemic Progression (SYS) in our previous study [20].

A total of 213 patients met the definition of metastasis group

and were designated as cases [20]. For each case, one patient each

from PSA and NED groups were selected based on the matching

criteria described previously [20] and were designated as controls.

Ethics statement. This study was approved by the Institu-

tional Review Board of Mayo Clinic and due to the archival

nature of the specimens, patient consent was waived by the board.

RNA Extraction and Microarray Hybridization
From the original study (n = 639), RNA was available for

microarray from 545 unique patients. As previously described,

after histopathological re-review by an expert genitourinary

pathologist, tumor was macrodissected from surrounding stroma

from 3–4 10 mm tissue sections from the primary Gleason grade of

the index lesion (the highest pathologic GS) for total RNA

extraction [20]. Total RNA was subjected to amplification using

the WT-Ovation FFPE v2 kit together with the Exon Module

(NuGen, San Carlos, CA) according to the manufacturer’s

recommendations with minor modifications. Amplified products

were fragmented and labeled using the Encore Biotin Module

(NuGen, San Carlos, CA) and hybridized to Human Exon 1.0 ST

GeneChips (Affymetrix, Santa Clara, CA) following manufactur-

er’s recommendations. Human Exon GeneChips profile coding

and non-coding regions of the transcriptome using approximately

1.4 million probe selection regions (PSRs), hereinafter referred to

as features.

Microarray Processing
Microarray quality control. Of the 545 patients with

available tissue and RNA, a total of 59 samples failed initial QC

(as assessed by Affymetrix Power Tools AUC metric [34]) and

were re-run. Additionally, a PC3 cell line (ATCC, Manassas, VA)

control was run with each batch and used to identify unreliable

features (see below). The Human Exon array data corresponding

to this study are available from the National Center for

Genomic Classifier Predicts Aggressive PCa
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Biotechnology Information’s Gene Expression Omnibus database

(GSE46691).

Microarray Normalization, Removal of Unreliable
Features and Batch Effect Correction

Feature summarization and normalization of expression values

were performed by frozen robust multi-array analysis (fRMA;

[35]), which is available through Bioconductor. A custom set of

frozen vectors were generated by randomly selecting 15 arrays

from each of the 19 batches across the whole study. Features

interrogated with fewer than four probes or any cross-hybridizing

probes (as defined by Affymetrix) were removed (http://www.

affymetrix.com). The variance of the feature expression values on

the PC3 cell lines was used to gauge the technical versus biological

variability. Features with the highest 10% variance in the PC3 cell

lines were removed from the expression matrix. Lastly, in order to

evaluate and remove batch effect, the data was decomposed into

its principal components and an analysis of variance model was

used. As suggested by a previous study [36], the first 10 principal

Table 1. Clinical characteristics of cases and controls among training and validation sets.

Training Validation

Cases Controls Cases Controls

Total Metastasis PSA NED Total Metastasis PSA NED

n n (row %) n (row %) n (row %) n n (row %) n (row %) n (row %)

Study Cohort 359 129 (36) 121 (34) 109(30) 186 63 (34) 63 (34) 60 (32)

Pathological Stage

pT2N0M0 145 36 (25) 46 (32) 63 (43) 74 16 (22) 31 (42) 27 (36)

pT3/4N0M0 168 60 (36) 70 (42) 38 (22) 85 35 (41) 28 (33) 22 (26)

pTanyN+M0 46 33 (72) 5 (11) 8 (17) 27 12 (44) 4 (15) 11 (41)

Pathologic Gleason Score

#6 45 4 (9) 18 (40) 23 (51) 18 2 (11) 9 (50) 7 (39)

7 174 44 (25) 70 (40) 60 (35) 97 26 (27) 29 (30) 42 (43)

8 45 17 (38) 16 (35) 12 (27) 23 10 (43) 9 (40) 4 (17)

9 87 57 (65) 17 (20) 13 (15) 47 25 (53) 15 (32) 7 (15)

10 8 7 (87) 0 1 (13) 1 0 1 (100) 0

Pre-operative Prostate-specific Antigen

,10 ng/mL 191 74 (39) 55 (29) 62 (32) 92 32 (35) 29 (31) 31 (34)

10–20 ng/mL 83 21 (25) 33 (40) 29 (35) 33 10 (31) 12 (36) 11 (33)

.20 ng/mL 81 12 (14) 32 (40) 37 (46) 50 16 (32) 18 (36) 16 (32)

Not available 4 1 (25) 1 (25) 2 (50) 11 5 (46) 4 (36) 2 (18)

Seminal Vesicle Invasion

Present 110 56 (51) 35 (32) 19 (17) 66 31 (47) 19 (28) 16 (25)

Surgical Margin Status

Positive 179 73 (40) 60 (34) 46 (26) 87 30 (34) 34 (40) 23 (26)

Extra-capsular Extension

Present 182 80 (44) 63 (35) 39 (21) 91 38 (41) 26 (29) 27 (30)

Biochemical recurrence

Event 260 129 (50) 121 (46) 10 (4.0) 128 63 (49) 63 (49) 2 (2.0)

Clinical Metastasis

Event 143 129 (90) 14 (10) 0 69 62 (90) 7 (10) 0

Prostate Cancer-specific Mortality

Event 96 86 (90) 10 (10) 0 36 32 (89) 4 (11) 0

Adjuvant Radiation

Administered 36 18 (50) 5 (14) 13 (36) 18 10 (56) 4 (22) 4 (22)

Adjuvant Androgen Deprivation Therapy

Administered 77 44 (57) 13 (17) 20 (26) 47 18 (39) 9 (19) 20 (42)

Salvage Radiation

Administered 57 23 (40) 34 (60) 0 25 10 (40) 15 (60) 0

Salvage Androgen Deprivation Therapy

Administered 119 67 (56) 52 (44) 0 53 23 (43) 30 (57) 0

doi:10.1371/journal.pone.0066855.t001
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components were examined for their correlation with batch effect.

From these 10 principal components (capturing 31% of the total

variance), the two components that were most highly correlated

with batch effect were removed.

Definition of Training and Validation Sets, Feature
Selection and Genomic Classifier Development

Training and validation sets. After assessing the molecular

differences among the three patient groups, very limited differen-

tial expression was observed between the NED and PSA-

recurrence groups. Differential expression of individual features

was obtained through pairwise comparisons of the outcome groups

(Crisan et al., manuscript in preparation). At a fold-change

threshold of 1.5 (after correcting for false-discovery), only 2 (out

of ,1.4 million) features were found to be differentially expressed

between NED and PSA groups, compared to 1186 and 887 in

metastasis outcomes compared to NED and BCR-only groups,

respectively [37]. Therefore, and in order to develop a signature

that predicts early clinical metastasis, these two groups were

combined into a single control group. The assignment of patients

into training (n = 359) and validation (n = 186) was as defined in

our previous study [20].

Feature selection. Given the initially large number of

features (,1.4 million), each feature was filtered using a t-test

(p,0.01) for complexity reduction on the training set (Figure S1).

Features were further vetted in subsequent selection steps. To

identify robust features, regularized logistic regression was applied

[38,39] with an elastic net penalty of a= 0.5. This procedure was

bootstrapped 1,000 times and the number of times a feature was

selected by the regularized regression was tallied. Features that

were selected at least 25% of the time were used for classifier

development.

Genomic classifier development. A random forest ma-

chine learning algorithm was used to assemble the selected features

into a classifier [40]. A final selection step was used to optimize the

feature set on the classification algorithm. Using the rfcv function

within the randomForest package [41], the 10-fold cross validation

mean squared error (MSE) of models with decreasing numbers of

features was plotted. In each iteration, features were excluded if

they had the lowest 10% Gini Index. Features that showed little

contribution to the performance of the model were not included in

Figure 1. Consort diagram. Study breakdown into cases and
controls. Training and validation sets are shown.
doi:10.1371/journal.pone.0066855.g001

Figure 2. Multidimensional scaling plot of (A) the training and (B) the validation sets. Controls are indicated in blue and cases in red. In
both the training and validation sets the controls tend to cluster on the left of the plot and the cases on the right of the plot. In this manner, most of
the biological differences are expressed in the first dimension of the scaling. Random forest proximity [http://www.stat.berkeley.edu/̃breiman/] was
used to measure the 22 marker distance between samples.
doi:10.1371/journal.pone.0066855.g002
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the final classifier, keeping those features above the knee of the

MSE curve (Figure S2). With this final feature set, the mtry and

nodesize random forest parameters were tuned with an accuracy-

optimizing grid search. The search of the parameter space was

pursued with the tune.randomForest function in the e1071

package [42]. Specifically, the training set (composed of 359

samples) was further split into 1/3 training and 2/3 testing and

used with 1000 iterations of bootstrapping to improve perfor-

mance estimates and control over-fitting. The final genomic

classifier (GC) outputs a continuous variable score ranging

Table 2. Summary description of the 22 markers in the genomic classifier.

Marker
Nearest
Gene/Locus Type of Marker Cytoband

Androgen
Regulated1 Biological Process(es)

Reference(s)

[PMID]

1 LASP1 CODING 17q12 Cell Proliferation,
Differentiation

Grunewald et al,
2007 [17211471];
Traenka et al, 2010

[20924110]

2 IQGAP3 3’ UTR 1q23.1 Cell Proliferation,
Differentiation

Nojima et al, 2008

[18604197]

3 NFIB INTRONIC 9p23 Cell Proliferation,
Differentiation

Qian et al, 1995

[7590749]; Dooley
et al, 2011 [21764851]

4 S1PR4 3’ UTR 19p13.3 Cell Proliferation,
Differentiation

Yamazaki et al,
2000 [10679247]

5 THBS2 3’ UTR 6q27 Cell Structure, Adhesion,
Motility

Volpert et al, 1995

[8526929]; Kyriakides
et al, 2001 [11583953]

6 ANO7 3’ UTR 2q37.3 Yes Cell Structure, Adhesion,
Motility

Das et al, 2008

[18676855]

7 NON-CODING TRANSCRIPT*

8 PCDH7 INTRONIC 4p15.1 Yes Cell Structure, Adhesion,
Motility

Yoshida, 2003

[12949613]

9 MYBPC1 CODING 12q23.2 Yes Cell Structure, Adhesion,
Motility

Gregg et al, 2010

[20426842]

10 INTRONIC

11 EPPK1 3’ UTR 8q24.3 Yes Cell Structure, Adhesion,
Motility

Yoshida et al, 2008

[18498355]

12 TSBP INTRONIC 6p21.32 Immune Response Liang et al, 1994

[7530381]

13 PBX1 CODING 1q23.3 Yes Immune Response Chung et al, 2007

[18093541]; Kikugawa
et al, 2006 [16637071];
Qiu et al, 2007

[17200190]

14 NUSAP1 3’ UTR 15q15.1 Cell Cycle Progression, MitosisRaemaekers et al,
2003 [12963707];
Ribbeck et al, 2007

[17276916]

15 ZWILCH 3’ UTR 15q22.31 Cell Cycle Progression, MitosisWilliams et al, 2003

[12686595]

16 UBE2C 39UTR 20q13.12 Yes Cell Cycle Progression, MitosisRape and Kirschner,
2004 [15558010]

17 CODING ANTISENSE

18 CAMK2N1 CODING ANTISENSE 1p36.12 Yes Cell Cycle Progression, MitosisWang et al, 2008

[18305109]

19 RABGAP1 EXON/INTRON JUNCTION ANTISENSE 9q33.2 Cell Cycle Progression, MitosisCuif et al, 1999

[10202141]

20 PCAT-32 NON-CODING TRANSCRIPT 5p15.2 Other, Unknown Function Prensner et al, 2011

[21804560]

21 GLYATL1P4/PCAT-
80

NON-CODING TRANSCRIPT 11q12.1 Other, Unknown Function Prensner et al, 2011

[21804560]

22 TNFRSF19 INTRONIC 13q12.12 Other, Unknown Function Eby et al, 2000

[10809768]

*Overlaps with an exon of a ’retained intron’ category.
1Based on Jiang et al. Mol Endocrinol 23:1927-33, 2009; Massie et al. EMBO Rep 8:871-8, 2007.
doi:10.1371/journal.pone.0066855.t002
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between 0 and 1, where a higher score indicates a higher

probability of clinical metastasis.

Clinical classifier and integrated genomic clinical

classifier. To benchmark the prognostic ability of GC, we

developed a ‘clinical-only’ classifier (CC), trained on the same

patients used to discover GC. CC combines pathologic GS, pre-

operative PSA (pPSA), SM+, SVI, ECE and N+ using logistic

regression. When scoring patients, CC produces a score between 0

and 1, analogous to GC. Additionally, in order to measure the

joint prognostic ability of the molecular signature and clinico-

pathologic variables, an integrated genomic-clinical classifier

(GCC) was constructed by combining the CC and GC models

using logistic regression.

Comparison Against External Biomarker Signatures
The performance of GC was compared to that of previously

published gene signatures [11–13,15,16,18–24,28–30] and indi-

vidual genomic markers associated with prostate cancer progres-

sion including CHGA [43], DAB2IP [44], GOLPH2 [45], PAP

[46], ETV1 and ERG [47], KI-67 [48], PSA [49], PSCA [50],

PSMA [51], AMACR [52], GSTP1 [53], PCA3 [54], B7-H3 [55],

TOP2A [14] and CAV1 [56]. Each genomic marker and gene in

the signatures were mapped to its associated Affymetrix core

transcript cluster (http://www.affymetrix.com/analysis/index.

affx) where available, otherwise the extended transcript cluster was

used. Based on the fRMA summarized expression values for the

individual genes, the signatures were modeled in the training set

using a random forest and tuned with the tune.randomForest function

from the e1071 R package. Tuning involved performing a 20 by

20 grid search to find the optimal ‘‘mtry’’ and ‘‘nodesize’’ model

parameters evaluated via 5-fold cross validation in order to

maximize accuracy.

Performance Assessment of Classifiers and Clinical
Variables

Statistical analyses were performed in R v2.14.1, and all tests

were two-sided using a 5% significance level. The prognostic

ability of all classifiers (GC, CC, GCC, and the external biomarker

signatures) were compared using area under ROC curves (AUC),

discrimination boxplots and univariable (UVA) logistic regression.

Importance of the classifiers relative to clinical information and

independent prognostic ability were compared using multivariable

(MVA) logistic regression.

Clinical variables were calculated, categorized or transformed as

follows. GS was dichotomized into groups with the threshold of

$8; although convention is to segregate GS into three groups (#6,

7, $8) the relative lack of patients with GS#6 prompted the

dichotomization of GS. The pPSA, measured immediately prior to

RP, was log2-transformed. The following variables were binary:

ECE, SVI, SM+, and N+. Hormone and radiation therapy were

included as separate binary covariates if administered in an

adjuvant (,90 days post-RP) or salvage (following PSA rise)

setting. Treatments administered subsequent to clinical metastasis

were not included.

Based on a majority rule criterion, the patients with GC, CC

and GCC scores greater than 0.5 were classified as high risk

whereas those with a score lower or equal than 0.5 were classified

as low risk. Kaplan Meier survival curves were generated for the

prostate cancer specific mortality (PCSM) and overall survival

endpoints. Lastly, all follow-up times were reported using the

method described by Korn [57].

Results

Clinical Characteristics of Study Population
From the study population of 639 patients [20], 545 (85%)

corresponding to 192 cases and 353 controls had available RNA

and were successfully hybridized to microarrays for analysis (see

methods). The median age of men in this study is 66 (IQR: 61–70)

years, with a median of 16.9 years follow-up. The clinical

characteristics of these patients are described in Table 1. Overall,

60% of cases (116/192) had GS $8 with only six GS #6, whereas

controls were predominantly GS 7 (57%) and GS #6 (16%). A

similar proportion of both cases and controls, (49% and 45%,

respectively) were pathological stage T3/4. Controls had 47% T2

disease (in contrast to 27% for cases), and 23% of cases were N+,

in contrast to just 8% for controls. A slightly higher rate of SM+
was observed in the cases (54%) in comparison to controls (46%).

As expected given the study design, the median time to BCR was

very similar between the cases (2.3 years) and PSA controls (1.7

years). While there were 21 clinical metastasis events among

controls, these occurred with a median of 9.39 (IQR: 7.5–10.95)

years, whereas cases experienced much more rapid events with a

median of 5.47 (IQR: 3.7–8.14) years post-RP. Overall, the

median time to PCSM (n = 132) was 10.5 years. In order to

characterize the true biological potential of tumors from patients

who progress early to clinical metastasis after rising PSA, we

performed transcriptome-wide differential expression analysis to

test the hypothesis that an expression signature in primary tumors

could better predict clinical metastasis than clinical variables

alone.

Figure 3. Performance of classifiers and individual clinicopathologic variables. For each predictor, the AUC obtained in the training and
validation sets, as well as the 95% Confidence Interval for this metric is shown. CC: clinical-only classifier. GC: genomic classifier. GCC: combined
genomic-clinical classifier.
doi:10.1371/journal.pone.0066855.g003
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Development of Models to Predict Early Clinical
Metastasis

Cases and controls were compared and used for the develop-

ment of a genomic (GC), clinical-only (CC) and integrated (GCC)

classifier models for predicting cases (i.e., early clinical metastasis

after rising PSA) as the primary endpoint (see methods). The 545

samples were assigned to training (n = 359, 39% cases) and

validation (n = 186, 37% cases) sets (Figure 1). GC was developed

from analysis of 1.1 million RNA features on the microarray in the

training set after removal of cross-hybridizing and unreliable

features (see methods). An initial feature selection step based on t-

tests for complexity reduction yielded 18,902 differentially

expressed features between cases and controls (Figure S1). Further

selection of these differentially expressed features by regularized

logistic regression reduced the list to a total of 43. As a final step,

these 43 differentially expressed features were further filtered to

only those that demonstrated to improve a random forest-based

performance metric (see methods). This resulted in a final set of 22

markers corresponding to RNAs from coding and non-protein

coding regions of the genome (Table 2). Multidimensional scaling

analysis depicts clustering of cases and controls based on

Figure 4. Score distributions of multivariable classifiers in
cases and controls in validation set. Distributions of scores are
plotted for A) CC B) GC and C) GCC for controls and cases. Median
scores and 95% confidence intervals are represented by a horizontal
black line and notches, respectively. Non-overlapping notches indicate
that differences in the distribution of scores between cases and controls
are statistically significant. Outliers are represented as points beyond
the boxplot whiskers.
doi:10.1371/journal.pone.0066855.g004

Table 3. Reclassification by GC of GS risk categories among
cases and controls in the validation set of patients.

GC #0.5 GC .0.5

Gleason
Category n

n METs
(%)

n PCSM
(%) n

n METs
(%)

n PCSM
(%)

GS #6 18 2 (11) 0 0 0 0

GS 7 69 12 (17) 4 (5.7) 28 14 (50) 4 (14)

GS 8 12 4 (33) 1 (8.3) 11 6 (54) 5 (45)

GS $9 17 3 (17) 2 (12) 31 22 (70) 16 (51)

Pathologic GS is categorized into four groups: #6,7, 8 and $9. Gleason groups
are re-classified by high (.0.5) and low GC risk scores. Total number of patients
in each category is further subdivided into the number of cases and those that
died of prostate cancer (PCSM).
doi:10.1371/journal.pone.0066855.t003

Figure 5. Distribution of GC scores among pathologic GS
categories in validation. GC scores are plotted with a jitter so as to
more easily differentiate the patients among each pathologic GS (x-axis)
groups. Case (red) and controls patients (blue) are shown for each
category. The dashed black line indicates the GC cutoff of 0.5. Trends
show the patients with high GC scores tend to have high GS as well.
doi:10.1371/journal.pone.0066855.g005
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expression of the 22 markers (Figure 2). A random forest machine-

learning algorithm was used to generate GC scores after

assembling the 22 markers with forest parameters to optimize

for highest accuracy in the training set. Logistic regression was

used to assemble the six clinicopathologic risk factors into a CC

and also integrated with GC to build a GCC.

Classifier Performance in Training and Validation Set
In the training set, ROC area-under the curve (AUC) values for

GC, CC and GCC were 0.90, 0.76 and 0.91 respectively, higher

than any individual clinical variable (Figure 3). In the validation

set, GC and GCC had the highest AUC of 0.75, and 0.74,

respectively for predicting cases. The clinical-only CC had an

AUC of 0.69, which was only marginally better than pathological

GS alone (0.65). The shape of the ROC curves for GC and GCC

shows that these models have the highest specificity and sensitivity

compared to clinical models above a threshold of ,50% specificity

(Figure S3). Discrimination box plots further show greater median

differences in GC and GCC scores between cases and controls

than for CC (Figure 4).

GC Reclassification of GS Groups
The distribution of cases and controls in the validation set by

both GC and GS [58] risk groups is illustrated in Figure 5 and

summarized in Table 3. Among GS #6 tumors (n = 18) none had

high GC scores, while among GS 7 tumors (n = 97), nearly a third

(29%) had high GC scores and half of these were cases that

developed early metastasis after rising PSA. While most patients

with high GS ($8) had high GC scores, among the 29 (40%) with

low GC scores there were only 7 cases with 3 deaths from prostate

cancer. Overall, 116 out of 186 (62%) validation set patients had

low GC scores of which only 21 were cases resulting in 7 deaths

from prostate cancer. Among the 70 (38%) patients with high GC

scores, there were 42 cases and 25 of these men died of prostate

cancer.

GC is an Independent Prognostic Variable
In order to test for the effect size of individual variables as well

as dependencies among these variables we performed univariable

and multivariable analyses using logistic regression on the

validation set (Table 4). In univariable analysis, we found GC,

CC, GCC, GS, SVI and ECE to be statistically significant

predictors of cases (p,0.05). The odds ratio for GC was 1.42 for

every 10% increase in GC score. When dichotomized into low and

high GC risk groups, as described above, the odds ratio was 6.79

(95% CI: 3.46–13.29), more than twice the odds ratio of GS (OR:

3.02 (95% CI: 1.61–5.68)) for predicting cases. In multivariable

analysis, after adjustment for post-RP treatment, GC remained the

only significant prognostic variable (p,0.001) with an OR of

1.36 for every 10% increase in GC score. The independent

significance of GC suggests that a more direct measure of tumor

biology (i.e., 22-marker expression signature) adds significant

prognostic information for prediction of early metastasis after

rising PSA, which is not captured by the clinical variables available

from pathological analysis.

Cases with High GC Scores Die Earlier from Prostate
Cancer and other Causes

We next compared the survival outcomes of cases and controls

in Kaplan-Meier analysis of low and high GC score groups. Cases

with lower GC scores had a median 6.9 year prostate-cancer

specific survival compared to median 2.9 years for cases with high

GC scores (p = 0.003) (Figure 6). For overall survival, there was a

significant (p = 0.03) difference in outcome, with median overall

survival after metastasis of 2.5 and 4.98 years for cases with high

and low GC scores, respectively. Among all controls, 21 patients

developed clinical metastasis outside of the study case-control

definitions (i.e. .5 years after rising PSA). We evaluated whether

GC was able to segregate patients that had late occurring

metastasis events among the PSA controls (Figure S4). GC was

able to significantly (p,0.05) separate those PSA patients that

would go on to experience later clinical metastasis, from those that

did not. This difference in outcomes further strengthens the notion

that GC measures a component of the biological potential for

metastasis and that those patients with the highest GC scores may

be most at risk for early metastatic progression post-RP.

Comparisons to External Biomarker Signatures
In order to compare the performance of GC to previously

reported gene signatures, we compiled the genes associated to

external signatures and combined them into a Random Forest

classifier (see methods). In addition, we evaluated the expression of

Table 4. Univariable and multivariable odds Ratios for CC, GC and GCC, and clinicopathologic variables.

Univariable Multivariable

Odds Ratio (95% CI) P Odds Ratio (95% CI) P

GC 1.42 (1.28–1.60) p,0.001 1.36 (1.16–1.60) p,0.001

GCC 1.36 (1.21–1.53) p,0.001 n.a n.a

CC 1.35 (1.15–1.59) p,0.001 n.a n.a

Pre-operative PSA 0.99 (0.77–1.26) 0.92 0.75 (0.52–1.07) 0.11

Pathologic Gleason Score $8 3.02 (1.61–5.68) p,0.001 1.91 (0.85–4.33) 0.12

Seminal Vesicle Invasion 2.44 (1.30–4.58) 0.01 1.93 (0.79–4.73) 0.15

Tumor Volume 1.02 (0.97–1.06) 0.44 0.97 (0.92–1.04) 0.42

Lymph Node Involvement 1.69 (0.74–3.88) 0.21 1.42 (0.41–4.96) 0.58

Positive Surgical Margins 1.05 (0.57–1.93) 0.87 0.93 (0.40–2.17) 0.87

Extra-capsular Extension 2.01 (1.18–3.73) 0.03 1.00 (0.45–2.20) 0.99

Odd ratios for multivariable classifiers are adjusted as indicated in the Materials and Methods. CC: clinical-only classifier. GC: genomic classifier. GCC: integrated
genomic-clinical classifier.
doi:10.1371/journal.pone.0066855.t004
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individual genes previously reported to be associated to prostate

cancer outcomes. The performance of the classifiers and the

individual genes was subsequently assessed in both training and

validation sets (Figures 7 and S5). As expected, we observe high

AUCs in training for nearly all the external signatures, similar to

what was observed with GC. When applied to validation, the

AUC for each model decreased. Among the 17 external signatures

that were modeled, 12 were statistically significant predictors of

metastasis (i.e., their 95% confidence intervals did not drop below

a threshold random chance AUC of 0.5) (Figure 7). The AUC of

GC was 0.08 points higher than the top performing external

signature, the 16-gene signature reported by Bibikova et al [12],

which had an AUC of 0.68 (95% CI : 0.60–0.76,). In contrast to

the expression signature models, the performance of the 16 single

genes tested were expected to be similar in the training and

validation sets. These genomic markers show an overall agreement

in performance, with differences in significance likely explained by

the smaller sample size of the validation set compared to the

training set (Figure S5). Of the 16 genomic markers, only B7-H3

(CD276), GSTP1 and PCA3 were statistically significant in both

the training and validation sets (Figure S5). Again, none of the

individual genomic markers outperform GC or the top performing

clinical predictor, GS (AUCs #0.64).

Discussion

This study was designed to test the hypothesis that biological

assessment of both coding and non-coding expression profiles in

primary tumors could predict the development of early clinical

metastasis following BCR. We discovered a 22-marker genomic

classifier (GC) that, without sacrifice of sensitivity, was more

specific in validation than established prognostic factors such as

GS. Based on the results presented here, GC measures a

component of the biologic potential for early clinical metastasis

better than clinical variables or previously reported biomarker

signatures. This may enable clinicians to better select the best

candidates for intensive multi-modal therapy and spare those not

at risk the morbidity of post-RP interventions.

Here we profile the expression of over 1.4 million RNA features

in FFPE primary tumor specimens from 545 patients, of whom

192 developed early clinical metastasis, representing to our

knowledge the largest high-resolution genomic discovery and

validation effort of aggressive prostate cancer to date. The long

term follow-up (median 16.9 years) allowed us to evaluate GC for

more definitive endpoints such as clinical metastasis and prostate

cancer specific mortality compared to previous biomarker studies

that focused on surrogates such as Gleason grade or biochemical

recurrence (e.g. [11,15]). We benchmarked the improved perfor-

mance of GC against individual clinical factors and multivariable

clinical risk models as well as previously reported single and multi-

marker expression signatures. While GC outperforms the previ-

ously reported signatures and individual markers, we acknowledge

that differences in methodology, study design, and endpoint may

impact performance of these signatures and biomarkers. To avoid

over-fitting bias skewed in favor of GC, we retrained the

previously reported multi-marker expression signatures (e.g.,

Cuzick et al [15], CCP) in the training set. In validation, GC

outperformed all individual variables including GS, clinicopath-

ologic features and single biomarkers (e.g., KI-67, TOP2A) and

the clinical-only multivariable classifier (CC). CC was integrated

with GC into a genomic-clinical classifier (GCC) and we observed

that the genomic features contributed the bulk of prognostic

information upon multivariable analysis, with GCC having the

same prognostic abilities as GC.

The high-density array used in this study permits measurement

of the expression patterns of RNAs associated with multiple

biological processes in prostate cancer progression. The biological

processes represented in the GC signature include cell cycle

progression, cell adhesion, tumor cell motility, migration and

immune system modulation (see Table 2). Furthermore, many of

the genes have evidence of being involved in androgen signaling.

For example, MYBPC1, UBE2C and NUSAP1 have been

previously reported to be differentially expressed throughout

prostate cancer progression [22]. Differential expression analysis

between androgen-dependent and androgen-independent cell lines

[59] found the protocadherin gene PCDH7 to have the largest fold

change, suggesting it may play a role in the development of

castrate-resistant prostate cancer. Thrombospondin-2, a modula-

tor of angiogenesis, has also been reported to be differentially

expressed when comparing non-metastatic and metastatic prostate

cancer samples in two independent studies [60,61]. Also, the

cytoskeleton associated genes EPPK1, a plakin family member,

Figure 6. Kaplan Meier estimates for all Cases with (A) PCSM
and (B) OS endpoints. Cases were separated into high (.0.5) or low
risk according to GC score. Log-rank p-values are shown in the upper
right corner. Time to PCSM and OS is measured from BCR in years.
doi:10.1371/journal.pone.0066855.g006
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and the LIM and SH3 protein gene LASP1 fall in regions 8q24

and 17q12; the gains of both regions have been previously

associated with prostate cancer progression [62,63]. Additionally,

LASP1 is a target of the microRNA MIR-203, a gene known to

control proliferation, migration, and invasive potential of prostate

cancer cell lines [64]. ANO7, also known as NGEP (for New Gene

Expressed in Prostate) is an androgen-dependent gene known to

be specifically expressed in epithelial cells of prostate cancer and in

normal prostate, but not in other tissues [65]. Furthermore, this

gene has been regarded as a target for antibody-based immuno-

therapy [65]. Interestingly, two of the genes, PBX1 and TSBP are

linked to immune system regulation. In the case of PBX1, a

previous study has shown that this gene transcriptionally regulates

the immunoregulatory cytokine IL10 by binding to the apoptotic

cell response element of this gene [66]. The genomic locus

containing gene TSBP (also known as C6orf10) is located in the

classical Class II block of the Major Histocompatibility Complex

(MHC) region in chromosome 6 [67,68].

Two components of this signature correspond to previously

reported long ncRNAs differentially expressed in prostate

cancer: Prostate Cancer Associated Transcript (PCAT) 32 and

PCAT-80 [33]. PCAT-80 largely overlaps with a pseudogene

known as GLYATL1P4 (for glycine N-acyltransferase-like

protein 1 pseudogene 4). The functional version of this

pseudogene, GLYATL1, has been found to be differentially

expressed in a cell line-based prostate cancer progression model

[69]. Furthermore, this gene encodes an enzyme that is

associated to N-Acetyl Glutamic Acid, a metabolite found at

abnormal concentrations in urine in prostate cancer

(HMDB01138 in the Human Metabolome Database, [70,71]).

These results on GLYATL1P4 and GLYATL1 provide further

evidence that pseudogenes may play a role in prostate cancer

progression and may be functionally associated with their

coding mRNA partners [72]. Other sources of evidence

including lncRNAs known to be involved in prostate cancer

adjacent to genes comprising GC (e.g. PCAT-113 [33], found

200 bps upstream of CAMK2N1) as well as overlapping copy

number alterations found in prostate tumors (e.g. the copy

number amplification reported by Taylor et al [73] in

chr5p15.2 and PCAT-32) add to the sources of evidence on

their association with prostate cancer and involvement in

multiple biological processes that must occur for tumorous

tissue to leave the prostate bed during the metastatic process.

Several RNA components of GC correspond to transcription

units within intronic regions or to the anti-sense version of a

given gene. Detailed studies to elucidate the functional role of

these specific RNAs have not been published. These RNA

features may belong to a different transcriptional unit than

currently annotated. Additional experimental validation and

assessment of the RNAs included within GC will shed further

light on their biology and their specific roles in prostate cancer

progression.

When associations of GC with pathologic GS - the most

prognostic clinicopathologic variable - were examined, we

observed that most patients with high GC scores had high

pathologic GS, and many experienced clinical metastasis and

prostate cancer specific mortality. However, GC is able to re-

stratify GS risk groups while retaining high sensitivity for

predicting early metastasis after rising PSA, especially in interme-

diate risk patients with GS 7 tumors. While not all patients with

high GC scores experienced metastasis, many of these patients

may have been treated more aggressively because they had high-

risk pathology, thereby delaying disease progression. Furthermore,

this study population received variable treatment regimens as

would be expected in a non-randomized institutional cohort. Such

differences will have an impact on the development of metastatic

and lethal events. In addition, because we used a nested case-

control design we could not obtain true metastasis-free survival

estimates (as would have been possible with a case-cohort study).

Therefore, additional studies including those from randomized

controlled clinical trials are necessary to determine whether GC

can provide predictive information on benefit or response to

treatment. However, our retrospective study suggests that GC will

provide predictive information when utilized in such prospective

trials.

Conclusion
We developed a 22-marker genomic classifier containing a

large number of non-coding RNA sequences using FFPE tumor

tissue specimens obtained from a large cohort of men that had

Figure 7. Performance of external signatures in training and validation sets. For each signature, the institution associated to it, year of
publication, lead author, the AUC obtained in the training and validation sets, as well as the 95% Confidence Interval for this metric is shown.
doi:10.1371/journal.pone.0066855.g007
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radical prostatectomy for localized prostate cancer. The classifier

was validated and showed significantly superior performance in

predicting early clinical metastasis compared to previously

described individual genes, multigene signatures and clinicopath-

ologic variables. To our knowledge this represents the largest

study of prostate cancer patients exploring clinically relevant

endpoints using a high-density, transcriptome-wide approach for

differential expression analysis. GC offers improved risk stratifi-

cation among post-RP patients and may better identify patients

that require intensive multi-modal therapy, while sparing those

who can be closely monitored without initiating aggressive

adjuvant treatment. The reassignment of risk groups for patients

with different pathological GS based on GC scores indicates that

genomic markers presumably measure the biological potential of

the tumor to metastasize and can add an additional layer of detail

not captured by clinicopathologic variables. GC can be used

immediately following RP and, because it can accurately predict

metastasis long before it can be detected radiographically, may

better guide post-surgical treatment decisions.

Supporting Information

Figure S1 Summary of methods of GC development.
Methods are separated based on array summarization, normali-

zation and quality controls (pre-processing) followed by steps used

for feature selection and classifier assembly (model building).

(TIFF)

Figure S2 Example of the mean squared error vs
feature set size plot used to reduce the genomic
feature set size from 43 to 22 features. 10 fold cross

validation was used to assess the MSE of each random forest

model constructed from decreasing feature set sizes. Features

were eliminated based on having the lowest variable importance

ranked by the Gini index. The vertical dotted line is drawn at

the 22 feature mark, where the MSE is minimized and the knee

of the plot occurs.

(TIFF)

Figure S3 ROC curve of multivariable models and
clinicopathologic variables. A) ROC curves in Training B)

ROC curves in the validation set.

(TIFF)

Figure S4 Kaplan Meier estimates for all PSA Controls
with metastasis endpoint. PSA controls were separated into

two groups based on high (.0.5) or low risk according to GC. The

log-rank p-value is shown in the upper right corner.

(TIFF)

Figure S5 Performance of single genes in training and
validation sets. For each gene, the AUC obtained in the

training and validation sets, as well as the 95% Confidence

Interval for this metric is shown.

(TIFF)
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