
Frontiers in Cellular and Infection Microbiolo

Edited by:
Daniel E. Voth,

University of Arkansas for Medical
Sciences, United States

Reviewed by:
Bin Gong,

University of Texas Medical Branch at
Galveston, United States

Ulrike G. Munderloh,
University of Minnesota Twin Cities,

United States

*Correspondence:
Wiwit Tantibhedhyangkul
wiwit.tan@mahidol.ac.th

Specialty section:
This article was submitted to

Bacteria and Host,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 19 March 2021
Accepted: 06 July 2021
Published: 22 July 2021

Citation:
Tantibhedhyangkul W, Matamnan S,

Longkunan A, Boonwong C and
Khowawisetsut L (2021) Endothelial
Activation in Orientia tsutsugamushi

Infection Is Mediated by Cytokine
Secretion From Infected Monocytes.

Front. Cell. Infect. Microbiol. 11:683017.
doi: 10.3389/fcimb.2021.683017

ORIGINAL RESEARCH
published: 22 July 2021

doi: 10.3389/fcimb.2021.683017
Endothelial Activation in
Orientia tsutsugamushi Infection
Is Mediated by Cytokine Secretion
From Infected Monocytes
Wiwit Tantibhedhyangkul1*, Sutthicha Matamnan2,3, Asma Longkunan1,2,
Chawikan Boonwong3 and Ladawan Khowawisetsut4

1 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, 2 Graduate Program
in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, 3 Research Division, Faculty of
Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, 4 Department of Parasitology, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok, Thailand

Scrub typhus, caused by Orientia tsutsugamushi, is a common systemic infection in Asia.
Delay in diagnosis and treatment can lead to vasculitis in the visceral organs and other
complications. The mechanisms that drive endothelial activation and the inflammatory
response in O. tsutsugamushi infection remain unknown. In addition, the interaction
between monocytes and endothelial cells is still unclear. Here we demonstrate that O.
tsutsugamushi-infected human dermal microvascular endothelial cells produced
moderate levels of chemokines and low levels of IL-6 and IFN-b, but not TNF or IL-1b.
Recombinant TNF and cytokine-rich supernatants from infected monocytes markedly
enhanced chemokine production in infected endothelial cells. We also show that TNF and
monocyte supernatants, but not O. tsutsugamushi infection of endothelial cells per se,
upregulated the endothelial cell surface expression of ICAM-1, E-selectin, and tissue
factor. This finding was consistent with the inability ofO. tsutsugamushi to induce cytokine
secretion from endothelial cells. The upregulation of surface molecules after stimulation
with monocyte supernatants was significantly reduced by neutralizing anti-TNF
antibodies. These results suggest that endothelial cell activation and response are
mainly mediated by inflammatory cytokines secreted from monocytes.

Keywords: Orientia tsutsugamushi, scrub typhus, endothelial cell, chemokine, tumor necrosis factor (TNF)
INTRODUCTION

Scrub typhus, caused by Orientia tsutsugamushi (OT), is a common cause of acute undifferentiated
febrile illness in endemic areas including Asia and Northern Australia (Suttinont et al., 2006;
Tantibhedhyangkul et al., 2017b). Since new cases of scrub typhus have been reported in South
America and Africa, the disease has been recognized as an emerging infection (Thiga et al., 2015;
Weitzel et al., 2016; Weitzel et al., 2019). The symptoms of scrub typhus are non-specific and cannot
be distinguished from other systemic infections. When treatment is delayed, patients may develop
interstitial pneumonitis, meningoencephalitis, disseminated intravascular coagulation, and death
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(Seong et al., 2001). Moreover, various complications in different
organ systems resulting from vasculitis have been reported in
patients (Jeong et al., 2007; Lee et al., 2016).

Both Rickettsia and Orientia spp. have tropism for endothelial
cells (ECs) (Valbuena and Walker, 2009), whereas OT also
invades monocytes, dendritic cells and tissue macrophages
(Moron et al., 2001; Tantibhedhyangkul et al., 2011; Paris
et al., 2012b). The invasion of these rickettsial organisms into
ECs results in vascular injury accompanied by perivascular
mononuclear infiltration in visceral organs (Moron et al.,
2001). The vascular damage and inflammation can cause
complications. Previous studies have demonstrated that OT
induces cytokine and chemokine transcript expression in ECs
such as human dermal microvascular endothelial cells (HMECs)
and human umbilical vein endothelial cells (HUVECs) (Cho
et al., 2001; Ge et al., 2019; Mika-Gospodorz et al., 2020), but the
protein expression of these mediators has not been studied. EC
activation markers are also increased in sera of patients with
scrub typhus (Paris et al., 2012a). Animal model studies have
demonstrated the modulation of angiopoietin (Ang1 and Ang2)
by OT infection and suggested that EC activation and
dysfunction in visceral organs underlie the pathology of scrub
typhus (Soong et al., 2014; Shelite et al., 2016; Soong et al., 2017;
Trent et al., 2020). Moreover, OT infection of monocytes results
in high levels of cytokine expression and secretion
(Tantibhedhyangkul et al., 2011), which may lead to systemic
inflammation. However, the effects of cytokines secreted from
monocytes on ECs during OT infection have not been studied.
Indeed, inflammatory cytokines, particularly TNF and IL-1, are
well known to promote EC activation (Grignani and Maiolo,
2000). Therefore, we questioned whether EC activation in OT
infection is mediated by infected ECs per se or by the cytokines
secreted from infected monocytes.

This study of human dermal microvascular endothelial cells
(HMECs) demonstrates that OT infection prompts expression
and secretion of chemokines, but not cytokines TNF and IL-1b.
Endothelial cell activation (ICAM-1 and E-selectin upregulation)
is mediated by TNF and supernatants from infected monocytes,
but not by direct OT infection of HMECs. Cytokines secreted
from monocytes also induce endothelial expression of tissue
factor, an essential initiator of the extrinsic coagulation pathway
(Grover and Mackman, 2018). The poor induction of endothelial
cell activation and cytokine secretion by OT infection per se may
represent the organism’s host evasion strategy.
MATERIALS AND METHODS

Cultivation of Orientia tsutsugamushi
OT strain Karp was propagated in L929 mouse fibroblast
cultures with RPMI 1640 and 5% fetal bovine serum (Gibco
Thermo Fisher Scientific, Waltham, MA). When the heavily
infected L929 cells showed a cytopathic effect, they were
disrupted by repeated passage through a 25-gauge needle and
syringe. The cell suspension was centrifuged at 400 × g for 5 min
to remove the cell pellet. Supernatants containing extracellular
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
OT were resuspended in RPMI 1640 with 7% DMSO and stored
at –80°C. Infectivity was measured as infected cell count units
(ICU), as described previously (Tantibhedhyangkul et al., 2011).
The ratio of ICU to cells is comparable to the multiplicity of
infection (MOI).

Cultivation of Primary Human Dermal
Microvascular Endothelial Cells (HMECs)
and Human Monocytes
Commercially available HMECs (CSC 2M1; Cell Systems,
Kirkland, WA) were grown in 0.5% gelatin-coated T75 in a
humidified 5% CO2 incubator at 37°C. Culture medium was
MCDB131 medium (Sigma-Aldrich, St . Louis, MO)
supplemented with 10% fetal bovine serum, heparin 0.75 U/ml,
hydrocortisone 0.5 µg/ml, epidermal growth factor (EGF) 10 ng/
ml, insulin-like growth factor (IGF-1) 15 ng/ml, fibroblast
growth factor (FGF-basic) 5 ng/ml, and vascular endothelial
growth factor (VEGF165) 2.5 ng/ml (ImmunoTools, Friesoythe,
Germany). The medium was changed every other day. When
HMEC layers were nearly confluent, cells were subcultured using
0.05% Trypsin/EDTA. Some detached cells were subjected to
experiments performed on the following day.

Peripheral blood mononuclear cells (PBMCs) were isolated
from buffy coats of healthy blood donors (provided by blood
bank) using lymphocyte separation medium (Biowest, Nuaille,
France). The protocol was approved as a “Research with
Exemption” category by Siriraj Institutional Review Board. To
obtain adherent monocytes, PBMCs were left to adhere to 24-
well plates for 90 minutes, and non-adherent lymphocytes were
removed by washing with PBS. The purity of adherent
monocytes was higher than 90%, as determined by CD14
expression using flow cytometry.

Cell Stimulation Experiments
HMECs were infected with OT at an ICU-to-cell ratio of 20:1 for
1 hour, as described previously (Ge et al., 2019). The infected
cells were washed with PBS and maintained for 4 or 8 h (mRNA
expression) or 18 h (cytokine secretion), as indicated. For other
studies, HMECs were stimulated with recombinant TNF 10 ng/
ml (ImmunoTools) or supernatants from infected monocytes
(diluted 1:15 with MCDB131) for 4 h (mRNA expression) or
18 h (cytokine secretion).

Monocytes were infected with OT at an ICU-to-cell ratio of
20:1 for 1 hour. We showed that an incubation time of 1 hour
was sufficient for host cells (both HMECs and monocytes) to
internalize OT organisms (Supplementary Figure 1).
Supernatants were collected at 18 h, centrifuged at 10,000 × g
for 10 min, and filtered through 0.2 µm syringe filter, then stored
at –80°C. The absence of infectivity was confirmed by indirect
immunofluorescence staining, as described previously
(Tantibhedhyangkul et al., 2011).

Cytokine/Chemokine Expression and
Secretion by qRT-PCR and ELISA
Total RNA was extracted from HMEC cell lysates using the
GenUP™ total RNA kit (Biotechrabbit, Hennigsdorf, Germany).
July 2021 | Volume 11 | Article 683017
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RNA was converted to cDNA using SuperScript III reverse
transcriptase (Invitrogen Thermo Fisher Scientific) and
subjected to qRT-PCR using SYBR Green master mix and a
CFX96™ real-time PCR detection system (Bio-rad, Hercules,
CA). The fold change of the target genes relative to GAPDH was
calculated using the 2-DDCq method. ELISA kits were used to
measure supernatant cytokine levels of TNF, IL-6, CCL2 (MCP-
1), CXCL10 (IP-10) (KOMA biotech, Seoul, Korea), and IFN-b
(MyBioSource, San Diego, CA). IL-1b was determined using
either the standard IL-1b ELISA kit (KOMA biotech) or the IL-
1b ELISA high sensitivity kit (eBioscience Thermo Fisher Scientific).

Immunoblotting of Proteins Related to
Inflammasome Complex
To study protein expression of components associated with
inflammasome complex, HMECs were primed or not primed
with E. coli LPS 1 µg/ml (Sigma-Aldrich) for 6 h before infection
with OT, because LPS is known to upregulate NLRP3 and pro-IL-
1b protein expression (Guo et al., 2015; He et al., 2016). Cell lysates
and supernatants were collected at 6–48 h post infection. LPS-
primed HMECs were also stimulated with 5 mM ATP (Abcam) for
45 min and included as a control because ATP is a known
inflammasome activator in macrophages (He et al., 2016). LPS-
primed and OT-infected monocyte-derived macrophages (MDM)
were used as a positive control for cell lysates, whereas Salmonella-
infected MDM were used as a control for cleaved caspase-1 in
supernatants because our preliminary data found that Salmonella
triggered a higher level of cleaved caspase-1 release than OT
(Supplementary Figure 2). To prepare cell lysates and
supernatants of Salmonella-infected MDMs, MDMs were infected
with Salmonella Typhimurium for one hour at anMOI of 100:1 and
washed with media. Extracellular bacteria were killed with
gentamicin (50 µg/ml) for 30 min. Cell lysates and supernatants
were collected at 10 hours post-infection.

Cell lysates were prepared using Cell Lysis Buffer provided in
Caspase-1 Assay Kit (Abcam, Cambridge, UK). Serum-free
supernatants were concentrated using Amicon Ultra-0.5 ml
Centrifugal Filter Unit 10kDa (Merck Millipore). Proteins were
quantified by Bradford assay (Bio-Rad, Hercules, CA). Samples
were mixed with 5× Laemmli buffer, heated at 95°C for 5 min,
separated in 12% SDS-PAGE gels, transferred onto PVDF
membranes, and blocked with 5% non-fat dry milk in PBST.
Proteins were stained with rabbit anti-pro-caspase-1, anti-pro-
caspase-4, anti-pro-IL-1b, anti-NLRP3, and anti-b-actin (Cell
Signaling, Danvers, MA), whereas proteins in supernatants were
stained with rabbit-cleaved-caspase-1 p20 (Cell Signaling) and
mouse anti-IFN-b (BioLegend, San Diego, CA). Membranes
were incubated with HRP-labelled secondary antibodies,
reacted with Luminata™ Forte Western Chemiluminescent
HRP Substrates (Merck Millipore), and visualized using
ImageQuant™ LAS 4000 system (GE Healthcare, Chicago, IL).

Surface Expression of Adhesion Molecules
and Tissue Factor by Flow Cytometry
HMECs were stimulated by OT infection, TNF, or cytokines
from supernatants for 24 h. The stimulated and control cells were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
detached with 0.5 mM EDTA in PBS with 0.5% human serum
albumin (Sporn et al., 1993; Dignat-George et al., 1997), then
stained with FITC anti-CD54 (ICAM-1; clone 15.2; Bio-Gems,
Westlake Village, CA), PE anti-CD142 (tissue factor, clone
NY2), and APC anti-CD62E (E-selectin; clone HAE-1f;
Biolegend) at 4°C for 30 min. After staining, cells were washed
three times, fixed in 2% paraformaldehyde for 30 min, and
resuspended in PBS for flow cytometry analysis. Unstained and
single-stained cells were included as controls. Surface expression
was analyzed by BD FACS Calibur (BD Biosciences) and FlowJo
software. We determined whether monocyte-secreted TNF
mediates EC activation by pretreating HMECs with either 5
µg/ml neutralizing anti-TNF (clone # 1825; R&D systems,
Minneapolis, MN) or isotype control (BioLegend) for 30 min
before supernatants from OT-infected monocytes were added
(dilution 1:15) for 24 h. Surface expression of ICAM-1, tissue
factor, and E-selectin was analyzed by flow cytometry.

To confirm the results of surface molecule expression on
detached endothelial cells, we also performed direct
immunofluorescence staining of adherent HMECs in 12-well-
plates using these three antibodies. After 30 min, stained cells
were washed and detached using PBS/EDTA with 0.5% human
serum albumin. After cell dissociation, new medium was added
to stop the cell detachment. Detached cells were pelleted, washed
with PBS, fixed in 2% paraformaldehyde and analyzed by
flow cytometry.

Statistical Analyses
Statistical analyses were performed using GraphPad Prism
Sofware v. 5.01. The results are expressed as the mean ±
SEM of three independent experiments. Statistical significance
was calculated by IBM SPSS statistics v24.0 using unpaired
Student’s t-test or paired t-test. P values less than 0.05 were
considered significant.
RESULTS

Chemokines and IL-6, but Not TNF or
IL-1b, Are Weakly Induced by OT Infection
in HMECs, and the Response Is Enhanced
by Infected Monocyte Supernatants
Since endothelial cells are non-immune cells, we questioned
whether the cytokine/chemokine response of HMECs is similar
to or different frommonocytes. We showed that OT can replicate
in HMECs with a doubling time of approximately 14 hours
(Supplementary Figure 3). Quantitative RT-PCR showed that
OT-infected HMECs expressed low levels of IL1B and IL6, and
TNF was undetectable; however, chemokines (CCL2, CCL5, and
CXCL10) that mediate mononuclear cell migration were
moderately expressed. When HMECs were stimulated with
recombinant TNF (10 ng/ml) or supernatants from OT-
infected monocytes (dilution of 1:15, containing approximately
TNF 10 ng/ml), both cytokine and chemokine transcripts were
markedly upregulated (Figure 1A). We also analyzed tissue
July 2021 | Volume 11 | Article 683017
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factor expression, which is involved in the extrinsic coagulation
pathway and is induced by inflammation in endothelial cells
(Grover and Mackman, 2018). We showed that tissue factor was
highly upregulated in HMECs after TNF or monocyte
supernatants stimulation (Figure 1A).

ELISA results confirmed that HMECs secreted neither TNF
nor IL-1b. Undetectable levels of TNF (<7.8 pg/ml) and IL-1b
(<0.1 pg/ml) from infected HMECs were confirmed by standard
and highly sensitive ELISA kits, respectively. However,
unstimulated HMECs secreted IL-6, and the levels were
increased by 1.5 fold after OT infection (Table 1). We also
tried to detect IFN-b in the supernatant because previous studies
have shown that it signifies infection by cytosolic pathogens,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
including OT (Tantibhedhyangkul et al., 2011). Although the
IFN-b level (<7.8 pg/ml) was undetectable by ELISA, it was
detected by immunoblot of concentrated supernatants. The
IFN-b level was detected at 24 h and slightly increased at 48 h
(Figure 1B). As expected, OT-infected monocytes secreted high
levels of these cytokines, TNF being the highest.

In contrast to cytokine secretion, HMECs secreted both CCL2
and CXCL10 at levels markedly increased by OT infection and
TNF treatment. The levels of chemokine secretion from TNF-
treated HMECs were significantly higher (by 7–10 fold) than
OT-infected HMECs. The ability of HMECs to secrete CXCL10
after OT infection was just slightly lower than that of monocytes
(Table 2). These findings suggest that monocytes are the primary
A

B

C

FIGURE 1 | Cytokine and chemokine production by HMECs. (A) qRT-PCR result of TNF, IL1b, IL6, CCL2, CCL5, CXCL10 and tissue factor mRNA expression in
HMECs stimulated with different stimuli. Fold changes in gene expression levels relative to unstimulated cells were expressed as mean ± SEM of three independent
experiments. Statistical significance was compared between TNF and monocyte supernatant-stimulated HMECs. *P value < 0.05. (B) Immunoblot of IFN-b in
concentrated supernatants of OT-infected HMECs. (C) Cytokine and chemokine secretion from OT-infected HMECs. HMECs were infected with OT for 8 h to 48 h.
IL-6 and chemokines in supernatants were analyzed by ELISA. Data are expressed as as mean ± SEM of three independent experiments.
July 2021 | Volume 11 | Article 683017
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cytokine producer, whereas both endothelial cells and monocytes
can secrete high levels of chemokines to attract mononuclear
leukocytes to infected sites.

The results of IL-6, CCL2 and CXCL10 secretion from OT-
infected HMECs at 8, 16, 24, and 48 hours post-infection were
shown in (Figure 1C). The IL-6 level slightly increased from 8 h
to 48 h post-infection. The CCL2 level moderately increased at
8 h, reached a peak at 16 h and was persistent throughout 48 h
post-infection. The CXCL10 level constantly increased from 8 to
24 h post-infection and was persistent at the late stage
of infection.

HMECs Express Pro-Caspase-1 but Lack
NLRP3, Pro-Caspase-4, Pro-IL-1b and
Caspase-1 Cleavage
Inflammasome activation is another hallmark of response to a
cytosolic pathogen that is usually described in mononuclear
phagocytes including monocytes, macrophages and dendritic
cells (Miao et al., 2011; He et al., 2016; Malik and Kanneganti,
2017). Previous studies have demonstrated inflammasome
activation and IL-1b secretion from OT-infected monocytes
and macrophages (Tantibhedhyangkul et al., 2011; Koo et al.,
2012; Tantibhedhyangkul et al., 2013). However, the data of
inflammasome activation in endothelial cells during an infection
are still limited. We analyzed protein expression of components
associated with the inflammasome complex and IL-1b release,
including NLRP3, pro-caspase-1, pro-caspase-4 [associated with
non-canonical inflammasome activation (Yang et al., 2015)],
pro-IL-1b and cleaved caspase-1 (p20). We demonstrated that
HMECs expressed only pro-caspase-1 and its expression seemed
to be increased by OT infection. In contrast, the expression
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
NLRP3, pro-IL-1b, pro-caspase-4, and cleaved caspase-1 was
undetectable (Figure 2). The absence of these components
correlated with the inability of HMECs to secrete IL-1b. Like
LPS-primed HMECs, priming of HMECs with TNF or cytokines
from infected monocytes failed to induce these protein
components except pro-caspase-1 (Data not shown).

Upregulation of ICAM-1, E-Selectin and
Tissue Factor on HMECs Is Mediated by
TNF and Cytokine(s) From Monocytes, Not
by OT Infection Per Se
Since endothelial cell activation is usually induced by
inflammatory cytokines TNF and IL-1 (Kilgore et al., 1995;
Makó et al., 2010), the absence of cytokine secretion may not
induce HMEC activation. We analyzed the surface expression of
tissue factor and adhesion molecules, including ICAM-1 and E-
selectin on HMECs after OT infection, TNF, or monocyte
supernatant stimulation. Low level of ICAM-1 was expressed
on unstimulated HMECs. After stimulation, these three markers
were upregulated by TNF and monocyte supernatant, but not by
OT infection in HMECs (Figure 3A). Results of antibody
staining on adherent HMECs showed that ICAM-1 and E-
selectin were slightly upregulated on HMECs after OT
infection. Cell stimulation with either TNF or monocyte
supernatant markedly increased all these three markers
(Supplementary Figure 4).

Since the monocyte TNF level was much higher than IL-1b,
we questioned whether TNF is the main cytokine from
monocytes that promotes endothelial cell activation. Therefore,
we pretreated HMECs with anti-TNF or isotype control before
stimulation with monocyte supernatants and analyzed adhesion
TABLE 2 | Chemokine secretion from HMECs and monocytes that are unstimulated, infected by OT or stimulated by TNF (10 ng/ml).

Chemokines Levels in supernatants, mean (SEM)

HMECs Monocytes

Neg. OT TNF Neg. OT

CCL2 (MCP-1) 6.05 16.73* 116.95* 35.25 109.33
(ng/ml) (1.42) (2.67) (17.42) (2.16) (24.77)
CXCL10 (IP-10) 8.51 508.67* 4,749.57* 345.67 1,263.87
(pg/ml) (0.52) (79.11) (79.48) (29.19) (285)
J
uly 2021 | Volume 11 | Articl
*Statistical significance was compared between OT-infected and TNF-treated HMECs.
P value < 0.05 by Welch’s t-test.
TABLE 1 | Cytokine secretion from HMECs and monocytes.

Cytokines Levels in supernatants, mean (SEM)

HMECs Monocytes

Neg. Infected Neg. Infected

TNF (ng/ml) ND ND 1.45 (0.02) 161.48 (16.98)
IL-1b (ng/ml) ND ND ND 11.97 (1.29)
IL-6 (ng/ml) 0.23 (0.02) 0.33 (0.01) 13.23 (1.24) 108.75 (17.02)
IFN-b (pg/ml) ND ND# ND 66.5 (17.32)
ND, not detected.
#IFN-b was undetectable by ELISA but could be detected in concentrated supernatants by immunoblotting.
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molecules and tissue factor expression. The expression of
ICAM-1, E-selectin, and tissue factor was significantly
decreased in condition with anti-TNF, compared to isotype
control (Figures 3B, C). Thus, TNF is the main cytokine from
infected monocytes that induces endothelial cell activation.
DISCUSSION

Endothelial cells are one of the main targets of OT infection. The
complications in rickettsial infections result from vasculitis and
vascular injury induced by bacterial invasion into ECs and
inflammatory response. However, it is unclear whether the
inflammatory response is mediated by ECs or neighboring immune
cells such as mononuclear phagocytes. This study showed that ECs
produce moderate levels of chemokines and low levels of cytokines
(IL-6 and IFN-b) but undetectable levels of proinflammatory
cytokines (TNF, IL-1b). Chemokine secretion by ECs was
enhanced by TNF and cytokine(s) from infected monocytes. We
also showed that upregulation of ICAM-1, E-selectin, and tissue
factor in ECs was mediated by cytokine(s), especially TNF, from
monocytes, but not by direct invasion of OT into ECs.

Previous studies have shown the chemokine mRNA
upregulation in OT-infected HMECs (Cho et al., 2001; Ge et al.,
2019; Mika-Gospodorz et al., 2020), but chemokine secretion has
not been studied. The effects of cytokines from immune cells on
HMECs in OT infection have never been investigated. Evidence
suggests that monocytes are the primary target cell, particularly at
the early stage of infection (Paris et al., 2012b). Previous studies have
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
shown that monocytes and macrophages produce high levels of
inflammatory cytokines TNF and IL-1 (Tantibhedhyangkul et al.,
2011; Tantibhedhyangkul et al., 2013). There may be some
differences between monocytes and ECs. In this study, we showed
that OT mainly induced chemokine secretion without TNF and IL-
1b. The low cytokine secretion from ECs may be an immune
evasion strategy that prevents early endothelial cell activation and
inflammatory response. On the other hand, chemokines (CCL2,
CCL5, CXCL10) recruit monocytes and lymphocytes at the infected
sites (Viola et al., 2008). These chemokines may be partly beneficial
to host defense, but they may attract monocytes from blood to
tissues. Consequently, due to the OT tropism for monocytes/
macrophages, the accumulation of these target cells may promote
bacterial replication and is thus detrimental to the host.

Lack of TNF and IL-1b secretion may be an intrinsic property of
HMECs. Our previous study also demonstrated the lack of TLR2
and TLR4 ligand in OT organisms (Tantibhedhyangkul et al.,
2017a), which may explain the inadequate cytokine secretion in
OT-infected HMECs. Moreover, the lack of NLRP3 expression,
which is the crucial receptor for inflammasome activation (Swanson
et al., 2019), may explain the inability of HMECs to cleave caspase-1
and secrete IL-1b. IFN-b together with IL-6 is the signature
response to cytosolic DNA (Shirota et al., 2006), the putative
ligand of cytosolic pathogens (Stetson and Medzhitov, 2006). Our
results showed that HMECs secrete IL-6 and IFN-b, but the levels
are much lower than monocytes. IL-6 is implicated in the
pathogenesis of some infectious diseases such as COVID-19
(McGonagle et al., 2020). Thus, a study of IL-6 in scrub typhus is
worth pursuing. Similar to previous studies, we observed that the
FIGURE 2 | Immunoblot of components associated with inflammasome activation. HMECs were primed or unprimed with LPS (1 µg/ml) for 6 hours before OT
infection. Lysates and supernatants were collected at indicated time. LPS-primed and ATP-stimulated HMECs were included as a control. The positive controls were
LPS-primed and OT-stimulated monocyte-derived macrophages (MDM, cell lysates) and Salmonella-infected MDM (supernatants). Data are representative of three
independent experiments.
July 2021 | Volume 11 | Article 683017
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secretion of IFN-b is persistent at 24 and 48 h post-infection. The
positive feedback mechanism of type I IFNs can explain this
persistence (Decker et al., 2005). IFN-b subsequently upregulates
interferon-stimulated genes, including chemokines such as CCL5
and CXCL10 (Van Boxel-Dezaire et al., 2006), which are
upregulated in our study. Since these chemokines attract
mononuclear cells, we hypothesize that IFN-b is partly involved
in perivascular mononuclear cell infiltration and vasculitis in
scrub typhus.

Our focus here is on CCL2 (chemokine for monocytes) and
CXCL10 (chemokines for lymphocytes during type 1 immune
response). Several cytokines have been shown to upregulate
these chemokines. CCL2 (MCP-1) is a key cytokine for
monocyte migration, can be upregulated by proinflammatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
cytokines (e.g. TNF, IL-1 and IL-6) (Deshmane et al., 2009;
Bianconi et al., 2018) and plays an important role in host
defense against several intracellular pathogens (Serbina et al.,
2008). CXCL10 (IP-10) is upregulated by TNF and interferons
(Lee et al., 2013), interacts with CXCR3 expressed on Th1, CD8
+ T cells and NK cells to attract these lymphocytes to infected
sites (Viola et al., 2008; Metzemaekers et al., 2017). Apart from
CXCL10 and CCL5 in this study, other CXCR3 ligands
(CXCL9 and CXCL11) and CCL5 ligands (CCL3 and CCL4)
were reportedly upregulated in OT-infected cells or in sera of
infected animals or humans (Cho et al., 2000; Koh et al., 2004;
De Fost et al., 2005; Yun et al., 2005; Tantibhedhyangkul et al.,
2011). We hypothesize that proinflammatory cytokines
(TNF, IL-1, IL-6) play an essential role in promoting
A

B
C

FIGURE 3 | Surface expression of adhesion molecules and tissue factor on HMECs. (A) Flow cytometry results of endothelial cell activation shown in histograms.
HMECs were infected with OT for 24 and 48 h, stimulated with TNF or monocytes supernatants for 24 h. ICAM-1, tissue factor, E-selectin positive cells were gated
from an unstained control. Percentage of positive cells (blue) and mean fluorescent intensity (MFI, red) were shown. Data are representative of three independent
experiments. (B, C) Effect of TNF secreted from monocytes on EC activation. HMECs were pretreated with either isotype control or anti-TNF antibodies before
stimulation with monocyte supernatants. Histograms of surface molecule expression were shown in Figure 3B. Mean fluorescent intensity (MFI) values of four
independent experiments were shown in (C). *P value < 0.05; **P value < 0.001.
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chemokine production during early infection because these
inflammatory cytokines are usually decreased at the late
phase (De Fost et al., 2005; Tantibhedhyangkul et al., 2013).
Then, IFN-b is more critical during late infection because of the
persistent kinetics of type I IFN production.

Similar to our study, previous studies have shown that
Rickettsia-infected human umbilical vein endothelial cell
(HUVECs) secrete IL-6, but not TNF or IL-1b. In addition,
cell-associated IL-1a is detectable in cell lysates, but not
supernatants of rickettsia-infected cells (Kaplanski et al., 1995;
Sporn and Marder, 1996). Our study focuses on IL-1b because
this cytokine is secreted upon inflammasome activation,
contributes to systemic inflammation, and is more widely
studied (Dinarello, 2011). On the other hand, IL-1a usually
exists as a membrane-bound protein and can be released upon
cell death (Malik and Kanneganti, 2018). A previous study has
demonstrated that OT-infected ECV304 secrete several cytokines
and chemokines including TNF, IL-1b, and IL-6 (Cho et al.,
2010). Since ECV304 is known to cross-contaminate with a
urinary bladder carcinoma cell line (Dirks et al., 1999; Brown
et al., 2000), the response of this cell line may not truly represent
that of endothelial cells. Although studies using different
endothelial cell origins such as transformed immortalized
HMECs and mouse microvascular endothelial cells have
demonstrated NLRP3 inflammasome activation and IL-1b
release following different stimuli (Xia et al., 2014; Wang et al.,
2016; Shrivastava et al., 2020), our results failed to discover these
findings. This discrepancy may be due to the differences in
endothelial cell origins, culture conditions and the stimuli. In
addition, the expression levels of NLRP3 and cleaved caspase-1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
in our primary HMECs may be lower than the detection limit of
Western blotting in our studies.

Previous studies have demonstrated that soluble EC activation
markers are detectable in scrub typhus patients (Paris et al., 2012a).
In addition, these endothelial adhesion molecules were reportedly
upregulated in mouse models of scrub typhus (Soong et al., 2017;
Trent et al., 2020). However, EC activation mechanisms in scrub
typhus are still unclear. We showed that OT infection barely
induced upregulation of adhesion molecules (ICAM-1 and E-
selectin), but cytokines from monocytes are the primary inducer
of EC activation. Among cytokines from monocytes, TNF is likely
to play a significant role in EC activation. Lack of early adhesion
molecule expression on OT-infected HMECs per se may be an
immune evasion strategy of OT organisms to prevent lymphocyte
migration and evade early lymphocyte killing of infected cells.
However, these adhesion molecules and chemokine expression
which are upregulated at the later phase of infection by TNF from
infected monocytes may recruit mononuclear leukocytes and
amplify more inflammation during OT infection. Tissue factor is
well known to be upregulated in cardiovascular disease
inflammation (Witkowski et al., 2016), but is not widely studied
in infectious diseases.We also showed that ECs upregulated surface
tissue factor expression following stimulation with monocyte
cytokine(s). In contrast to OT infection in this study, a previous
study showed that Rickettsia rickettsii infection without exogenous
TNF treatment was sufficient to upregulate tissue factor expression
on HUVECs (Teysseire et al., 1992). This discrepancy may be due
to the differences in organisms and host cells. The upregulation of
tissue factor on the EC cell membrane may be involved in blood
clotting, coagulopathy and disseminated intravascular coagulation
FIGURE 4 | Proposed diagram of the interaction between endothelial cells and monocytes/macrophages. During OT infection, endothelial cells (EC) are activated by
TNF from OT-infected monocytes (Mo)/macrophages (Mac), upregulate adhesion molecules (ICAM-1 and E-selectin) and produce chemokines to attract
mononuclear cells. CCL2/CCL5 and CCL5/CXCL10 attract monocytes and lymphocytes (Lym), respectively. The immune-mediated mechanisms may contribute to
perivascular mononuclear cell infiltration and vasculitis in scrub typhus patients. Moreover, tissue factor upregulated by TNF may contribute to disseminated
intravascular coagulation during scrub typhus.
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(DIC) in scrub typhus patients (Lee et al., 2017). The proposed
interaction between endothelial cells and monocytes/macrophages
is summarized in Figure 4.

In conclusion, we demonstrated the interaction between
monocytes and endothelial cells. Cytokines from infected
monocytes are the key factor that induces endothelial cell
activation and response characterized by upregulation of ICAM-1,
E-selectin and tissue factor as well as chemokines for mononuclear
cell infiltration. After OT infection, the inadequate cytokine
response of endothelial cells may be a subversion strategy to
evade host early inflammation and promote bacterial growth. The
upregulation of tissue factor may be one mechanism involved in
DIC in severe cases of scrub typhus. Further studies are required to
clarify this pathogenesis in human scrub typhus patients.
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