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Much of forensic practice today involves human decisions
about the origins of patterned sensory evidence, such as
tool marks and fingerprints discovered at a crime scene.
These decisions are made by trained observers who com-
pare the evidential pattern to an exemplar pattern pro-
duced by the suspected source of the evidence. The
decision consists of a determination as to whether the
two patterns are similar enough to have come from
the same source. Although forensic pattern comparison
disciplines have for decades played a valued role in crimi-
nal investigation and prosecution, the extremely high
personal and societal costs of failure—the conviction of
innocent people—has elicited calls for caution and for the
development of better practices. These calls have been
heard by the scientific community involved in the study of
human information processing, which has begun to offer
much-needed perspectives on sensory measurement, dis-
crimination, and classification in a forensic context. Here I
draw from a well-established theoretical and empirical
approach in sensory science to illustrate the vulnerabil-
ities of contemporary pattern comparison disciplines and
to suggest specific strategies for improvement.
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Conscience does make cowards of us all.

Hamlet (1)

A large category of forensic evidence consists of patterned
impressions, such as fingerprints, tire tracks, and tool
marks that are created, often without intent or awareness,
during the perpetration of a crime. The causal origins of
these artifacts (the evidence) are assessed by trained
observers who compare them to patterns that would have
been produced under a hypothesized set of conditions
(the model, or “exemplar”). By means of this “forensic pat-
tern comparison” the observer makes a judgment about
whether the percepts elicited by the evidence and the
model are sufficiently similar to have common origin.

Despite much promise and long-standing public support,
forensic practices that rely on human sensory judgments
sometimes incriminate the wrong people (2, 3), with tragic
personal and societal consequences. Many of the problems
with forensic practice were considered in a landmark 2009
report from the National Academy of Sciences (NAS) (4),
which identified numerous weaknesses and offered detailed
recommendations for science-based reform. In 2015, Presi-
dent Obama asked the President’s Council of Advisors on
Science and Technology (PCAST) to further evaluate needs
within the forensic science community. PCAST observed, as
did the NAS before it, that pattern comparison methods
were particularly problematic (5).

In response to these concerns, there has been a growing
movement to bring the modern sciences of human informa-
tion processing—sensation, perception, and memory—to
bear on the problem of forensic pattern comparison (e.g.,
refs. 6–13). In the following I lay out a conceptual and experi-
mental approach drawn from these sciences that yields
insights into the problems associated with pattern compari-
son disciplines and suggests strategies for reform.

A Human Information Processing Approach

Much of human behavior is based on detection and mea-
surement of stimuli in the sensory environment, followed
by discrimination and classification of those stimuli for use
in guiding choices and actions. While scientific understand-
ing of these processes has advanced considerably in the
past few decades, only recently has the knowledge gained
been applied in efforts to improve forensic practice. The
success of this newer approach is best exemplified by
the problem of contextual bias, in which other sources
of information, such as demographics or prior history of
a suspect, unconsciously influence judgments of pattern
similarity. Drawing from a rich well of concepts, methods,
and data in sensory, cognitive, and neural sciences, which
reveal how, why, and when such biases occur (e.g., refs.
14–16), significant progress has been made toward under-
standing and documenting the manifold sources of bias in
forensic examination and implementing policies and pro-
cedures to overcome them (17–19).

In the following I bring the sciences of human informa-
tion processing to bear on the related problem of stimulus
classification under conditions of uncertainty in forensic
pattern comparison disciplines. I maintain that the accu-
racy of these disciplines and their utility for the courts
is thwarted by a failure to appreciate how the machine
works, how people make decisions informed by sensory
information. Building upon a well-established scientific
foundation for understanding sensory decisions, I argue
that there are simple ways to improve the quality and rich-
ness of information provided to the courts by forensic
examiners, which will both enhance the fairness of crimi-
nal justice and heighten the credibility of pattern compari-
son disciplines. What follows is thus both tutorial and call
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to action, inspired by the highly successful introduction of
concepts from decision sciences to other applications that
rely critically upon information measurement and classifi-
cation, such as medical diagnosis (20, 21), risk assessment
(22), weather forecasting (23–25), and baggage security
screening (26).

I begin with the simple assertion that there are two
proximal factors that contribute to the accuracy of sensory
classification decisions made by a human observer: 1) the
properties of the stimuli received by the senses and 2) the
operating characteristics of the observer. Observer operat-
ing characteristics, in turn, have two attributes that govern
performance: 1) sensitivity for relevant properties of sen-
sory stimuli and 2) selectivity of the criteria used for stimu-
lus classification. This characterization places the forensic
classification problem squarely in the domain of signal
detection theory (27), which affords a principled under-
standing of sensory decisions and insights on how to
improve their utility for the courts.

Forensic Classification as a Signal
Detection Problem

Forensic stimuli received by the senses often consist of
patterned impressions found on surfaces in a crime scene,
caused by objects that have come in contact with those
surfaces. (Here the focus is on visual patterns, which are
frequent in the forensic context, with recognition that the
same logic applies to information received by other sen-
sory modalities.) These patterns commonly vary along mul-
tiple dimensions, such as luminance, chrominance, texture,
size, and shape. To simplify exposition, imagine that we
collapse this sensory variation to a single dimension X, as
illustrated in Fig. 1. In this example, visual patterns created
by object A manifest values of X that appear variously with
frequencies indicated by the blue curve in Fig. 1A. This vari-
ation reflects noise, some of which results from creation of
the pattern (e.g., occlusions and smears) or subsequent
deterioration, and some (e.g., optical and neuronal noise)
reflects properties of the observer. Similarly, patterns
created by objects �A (not-A) have values of X that appear
with frequencies indicated by the red curve in Fig. 1A. The
observer’s task is to decide whether a given value of X
(the stimulus value received by the senses) was caused
by A or �A. In practice, this decision about the source of
evidence X is made by comparing it to an instance of X that
is known to have been produced by object A, i.e., an exem-
plar of A. By this means, the decision about source is
reduced to a decision about the apparent similarity of
evidence and exemplar, which is where the fine sensitivity
of the human visual system comes into play. The cutoff
value of X that distinguishes an observer’s classification
of evidence as originating from A vs. �A (i.e., evidence and
exemplar as matching vs. nonmatching pairs) is called the
“decision criterion.”*

In the case illustrated in Fig. 1A, patterns originating from
objects A and �A are both of high signal quality (low noise var-
iance), such that the A and �A frequency distributions barely

overlap. A decision criterion of X = 0 (green line, Fig. 1A) is
ideal, since values of X that exceed zero are almost certainly
visual patterns caused by A, and values less than zero are
almost certainly caused by �A. This scenario provides a refer-
ence point of excellent decision-making, but there are many
conditions in the real world in which different objects cause
highly overlapping distributions of sensations (Fig. 1B).
Under these conditions, no single decision criterion will
uniquely differentiate origin from A vs. �A. In some cases, sen-
sory evidence X caused by A will be classified as originating
from �A, and vice versa. If we were to place the decision crite-
rion at X = 0 in Fig. 1B, as we did for Fig. 1A, the probability
of correctly deciding that a visual pattern was produced by A
would be 0.72, but the probability of incorrectly making that
same decision is a worrisome 0.28.†

The decision criterion we actually apply under the more
difficult conditions of Fig. 1B will depend upon how we pri-
oritize the outcomes. To appreciate this, consider the situ-
ation in which vibration caused by a cell phone (object A,
manifested as a tactile pattern in this case) must be

Fig. 1. Formal description of pattern classification problem in forensic sci-
ence. The task of the forensic examiner is to determine whether a given
sensory stimulus (a piece of forensic evidence) of value X (abscissa) origi-
nates from source A or �A. The examiner makes this determination by visu-
ally comparing the evidence to an exemplar known to have been produced
by source A. Performance depends on properties of the stimuli received
and the sensitivity and selectivity of the examiner. (A) Curves plot frequen-
cies of different values of X that result from sources A (blue) and �A (red).
Patterns received by senses are high-quality, each manifesting only a small
range of values. Decision criterion C can easily be placed at a point (X = 0)
that yields near-perfect classification of X as A vs. �A. (B) Patterns impressed
by objects A and �A are distorted by sources of noise, such that each fre-
quency distribution manifests a broad and overlapping range of stimulus
values. No single criterion C will yield clean classification. C1 is stringent,
yielding a high rate of correct identifications of A but missing many instan-
ces of A. Criterion C2 is loose, identifying nearly all correct instances of A,
but also admitting many incorrect instances.

*In practice, the decision criterion is applied to the observer’s internal measure of the
visual similarity between evidence and exemplar. To help conceptualize the larger source
classification problem, I relate the decision variables and criteria back to sources A and �A
throughout this text, in line with the way source conclusions are commonly reported.

†The outcome of any decision criterion is also dependent on prior probabilities, or “base
rates,” of stimulus X being produced by objects A and �A. For simplicity, I assume here that
sources A and �A are equally probable causes of evidence X, manifested as symmetric fre-
quency distributions in the illustrations that follow. The real world may, of course, present
observers with different priors.

2 of 10 https://doi.org/10.1073/pnas.2206567119 pnas.org



distinguished from subtle tactile stimuli of other causes
(objects �A). If an expected phone call is important, we
might lower the cutoff value of X that serves as our deci-
sion criterion for responding (C2 in Fig. 1B), but in doing so
we risk interruption by many sensory events that are not
phone calls. Conversely, if we dislike interruptions we
might raise our criterion (C1 in Fig. 1B). Doing so makes it
more likely that the stimulus we respond to is in fact a
phone call, but we miss many other calls in the process.

In this signal detection framework, the ability to overcome
the overlap of patterned sensations from different objects is
a measure of the discriminability, or sensitivity, of the
observer in the presence of noise (27). The priority given to
different outcomes determines the selectivity of the observ-
er’s criterion for deciding between different classifications of
the sensory evidence. What we end up with is a decision that
is either correct (XA classified as originating from A, X�A classi-
fied as �A) or incorrect (XA classified as �A, X�A classified as A). If
the recipient of a decision knows 1) the frequency distribu-
tions of patterned sensations caused by the relevant source
objects, 2) the sensitivity of the measurement device (the
observer, in this case), and 3) the selectivity of the decision
criterion, the recipient can infer the probability that the deci-
sion is correct. In engineered binary classification systems,
such as smartphone fingerprint detectors, these properties
are partially known, which means that the manufacturer can
offer some assurances about accuracy. In the case of human
observers, however, this information is harder to come by,
which means that the recipient of a single classification deci-
sion may not know whether it was the product of high sensi-
tivity and a highly selective criterion or poor sensitivity and a
loose criterion. That difference matters, of course, because
the former is much more likely to be a correct decision.

In the following, I show that this signal detection frame-
work reveals conceptual and procedural flaws in current
forensic practice and suggests empirically testable approaches
that could improve judicial outcomes. I focus specifically
on the problem of forensic firearms examination—mainly
to make the exposition concrete—but stress that the prin-
ciples and inventions have relevance to all forensic disci-
plines that involve measurement and classification of
sensory evidence by human observers.

Forensic Firearms Analysis

Forensic firearms examination is a subdiscipline of tool
mark forensics. The practice is based on the fact that when
a round of ammunition is fired, the machined hard steel
components (“tools”) of firearms, such as the breech face,
firing pin, chamber, and barrel, make patterned impres-
sions under high pressure in the softer metals of the car-
tridge case, primer, and bullet. The underlying premise is
that the resulting patterns are unique to a gun—like finger-
prints unique to a person—and thus it should be possible
to determine whether a pattern is consistent with origin
from a particular gun, perhaps one owned by a suspect. In
the following discussions I focus on the cartridge case
identification problem (bullets are sometimes mushed or
fragmented upon impact).

Forensic firearms examination dates to the 19th cen-
tury and has been in common practice—and accepted as

evidence in US and state courts—for over 100 y (28). The
principle behind this practice is that an observer’s visual
system can measure and compare forensic and known
source samples through microscopic examination and
decide whether they are similar enough to have come
from the same firearm (29). This principle was formalized
and codified 30 y ago by the professional organization
known as the Association of Firearm and Tool Mark Exam-
iners (AFTE), in their “theory of identification as it relates to
toolmarks” (30). The essence of this theory is that it
“enables opinions of common origin to be made when the
unique surface contours of two toolmarks are in ‘sufficient
agreement.’” At first blush, “sufficient agreement” seems a
poorly defined criterion, but the “theory” goes on to state
that “Agreement is significant when the agreement in indi-
vidual characteristics exceeds the best agreement demon-
strated between toolmarks known to have been produced
by different tools and is consistent with agreement dem-
onstrated by toolmarks known to have been produced by
the same tool.” By this statement, the criterion for a life
shaping decision is defined in relative terms, based on the
examiner’s experience-dependent inferences about the
probability distributions of sensory patterns.

In common practice, pattern source decisions in firearms
analysis are based on three types of pattern variation,
known as class, subclass, and individual characteristics.
Class characteristics are typically those associated with
specific firearm manufacturers, such as the caliber of the
cartridge, or impressions created by a proprietary cartridge
ejector mechanism (the machined part of the gun that
tosses the cartridge out after it has been extracted from the
chamber). Subclass characteristics are those unique to gun
parts produced by a specific manufacturing device (e.g., a
lathe) within a class, such as incidental machining marks on
a breech face that appear similarly on all guns produced by
that same device. Individual characteristics are those unique
to a specific gun, as would result from incidental machining
marks on the combination of manufactured parts and
actions of that gun. (Subclass characteristics are effectively
a form of camouflage that confound an observer’s ability to
detect individual characteristics.)

The firearm sensory comparison problem follows the
general framework illustrated in Fig. 1. Because there are
three “systematic” types of pattern variation (class, sub-
class, and individual) in the sensory evidence received, in
addition to stochastic variation (noise), it is helpful to
conceptualize this signal detection problem at the outset
by viewing it graphically in three-dimensional (3D) space.
Fig. 2A contains two 3D scatter plots, which represent
hypothetical frequency distributions of cartridge evidence
produced by guns of two classes, Ruger (gun A, blue dots;
the suspected source of the evidence) and S&W (gun �A, red
dots). As expected, class, subclass, and individual charac-
teristics for the two guns have no overlap, which suggests
a clean decision criterion (green plane in Fig. 2A) for identi-
fication vs. elimination. Fig. 2B shows a case in which two
hypothetical frequency distributions (blue and red dots)
are consistent with two guns of the same class (Ruger).
Here, subclass and individual characteristics are partially
overlapping, increasing the difficulty of the classification
problem. Finally, Fig. 2C shows a case in which class and
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subclass distributions are largely overlapping, consistent
with two Rugers sequentially manufactured using the
same equipment. Individual characteristics are also highly
overlapping. Accurate classification of evidence based on

these distributions is extremely difficult, since no decision
criterion provides clean separation. For example, the pat-
terned evidence corresponding to the black star in Fig. 2C
was “produced” by gun A, but that evidence is also consis-
tent with production by gun(s) �A.

As for other forensic pattern comparison disciplines
(e.g., ref. 31 ), the firearms community attempts to solve
this decision criterion problem by offering multiple classi-
fication options. According to the “AFTE Range of
Conclusions” (32), in addition to “identification” and
“elimination,” examiners can report “inconclusive” or
“unsuitable.” Unsuitable means that there is insufficient
information to measure, much less compare. The more
interesting “inconclusive” classification is a statement
about the examiner’s inability to confidently establish a
decision criterion for identification vs. elimination. Given
the perilous sequalae of a forensic classification error, the
natural human tendency is to default on difficult problems.
Doing so, however, creates a different set of concerns,
which have tied the field in knots and raise serious ques-
tions about the utility of firearms evidence (33–37).

The Flawed Logic of “Inconclusive” Responses

Considered in signal detection terms, the use of an
inconclusive option forces the adoption of two decision
criteria. To simply illustrate the consequences of doing
so, we can collapse the 3D space of Fig. 2C onto the 1D
form used in Fig. 1. In Fig. 3A, the upper and lower deci-
sion criteria (C1 and C2) are indicated by green lines.
Values of X that exceed the upper bound can be reliably
classified as A (identification). Similarly, those below the
lower bound can be reliably classified as �A (elimination).
The forensic examiner defaults on everything between
the two decision criteria (shaded region of Fig. 3A); that
is, all cases in which the probability of correct classi-
fication is significantly limited by noise are deemed
inconclusive.

There are problems associated with this practice. First,
use of the inconclusive option means that the forensic
method may have little utility for large numbers of cases,
depending on the distribution of sensory evidence, sensi-
tivity of the examiner, and the examiner’s placement of
the two decision criteria. Second, the practice precludes
assessment of the performance of forensic examiners for
evidence bounded by the two decision criteria, which
would be enormously valuable for establishing the true
operating characteristics of forensic examiners and error
rates of the discipline. We can, however, model what
performance would look like generally, which highlights
limitations of the inconclusive approach. Fig. 3B is a plot of
a modeled examiner’s classification performance given the
stimulus distributions in Fig. 3A. The blue curve plots
proportion of correct identifications of A (true positive
decisions, TP), which range from slightly greater than
chance probability (0.5) to nearly 1.0.‡ The red curve plots

Fig. 2. Three-dimensional illustrations of forensic firearms classification
problem. Forensic evaluation of firearms evidence (cartridge cases and bul-
lets) is based on three known sources of variation (“characteristics”) in the
sensory evidence. Class characteristics refer to features that are associated
with specific manufacturers or models of guns. Subclass characteristics are
patterned impressions common to a machining device within a class. Indi-
vidual characteristics are patterned impressions unique to a specific gun.
(A) Three-dimensional scatterplots of hypothetical sensory values produced
by two guns. Blue dots are values from gun A (Ruger), red dots are from
gun(s) �A (S&W). Noise variance for each gun is modeled as a 3D normal dis-
tribution. Thin black line connects means of the two distributions. Green
plane is criterion that most cleanly separates the frequency distributions.
(B) In this case the two guns are same class and manifest partially overlap-
ping distributions of subclass and individual characteristics. Green plane is
midpoint decision criterion, which reveals that the two distributions cannot
be cleanly separated. (C) In this case the distributions are highly overlap-
ping along all three dimensions, creating a significant challenge for a binary
classifier. Black star represents pattern “produced” by gun A, but easily
confused with gun(s) �A.

‡Proportion of correct identifications is computed here using true positive (TP) and false
positive (FP) responses to obtain positive predictive value (PPV) = TP/(TP + FP), which is
suitable for the special case in which prior probabilities of A and �A are equal. The more
general form, from Bayes rule, uses the prior odds ratio P(A) / P(�A), and the observed posi-
tive likelihood ratio (LR+ = TP rate/FP rate), to compute posterior odds = prior odds ×
LR+. Then, PPV = posterior odds/(posterior odds + 1). Similar logic applies to calculation
of the proportion of correct eliminations.
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proportion of correct eliminations (true negative decisions,
TN). Performance curves for these two types of correct
decisions intersect in the middle, with probability of a
correct identification or elimination decision thus ranging
from 0.72 to 0.99.

Strategic placement of decision criteria for identification
and elimination makes average error rate unsurprisingly
low outside of the inconclusive zone, but the rate more
than doubles when that zone is included (shaded region of
Fig. 3B). We know that this is true here because it is the
product of a deterministic model. In real forensic practice,
however, the frequency distributions of sensory evidence
may not be fully known. Moreover, the quantitative rela-
tionship between those distributions and the examiner’s
placement of decision criteria that bound the inconclusive
zone is inscrutable to anyone receiving the decision (e.g.,
the trier of fact). To make matters worse, those criteria are
potentially unstable across time and examiners, which
likely accounts for substantial variability in reported rates
of inconclusive responses across existing validation studies
(34). Greater separation of C1 and C2 will naturally lead
to an illusion of improved examiner performance, since
it excludes from consideration more cases in which the
probability that evidence X was produced by gun A is less
distinct from the probability that X was produced by gun(s)
�A. For this reason, reports of low error rates based solely
on identification and elimination decisions, with inconclu-
sive judgments uncounted (5, 38), are uninformative prod-
ucts of circular reasoning: Examiners simply do well on
classification problems that they find easier to judge.

Reformist efforts to include inconclusive responses in
calculation of error rate lead to conceptual conundrums: Is
inconclusive an error (a missed identification or a missed
elimination) (34, 39, 40)? Or, as some have argued
(41), isn’t inconclusive a correct response by exclusion of
error?—because it cannot be counted as examiner error if
the sensory information does not support identification or
elimination? In other studies, the disposition of inconclu-
sive responses is less a matter of principle: They are simply
included in the denominator but not the numerator when
calculating error rates (42). None of this epistemological
floundering provides any real insight into actual error rate,
but it never fails to fuel debate about the validity of foren-
sic practice.

Comprehensive Assessment of Forensic
Examiner Performance

Signal detection theory suggests a better approach to the
forensic pattern comparison problem. To illustrate, recall
that under conditions such as those shown in Fig. 3, all
decisions about source are inconclusive to some degree,
quantified as a continuous function that describes the
probability of a correct decision over values of evidence X.
Traditional measures of error rate for identification and elim-
ination decisions are thus probabilistic. Stimulus compari-
sons that are deemed inconclusive also have measurable
probabilities of error. It’s not that these latter comparisons
cannot be performed. Examiners simply choose not to per-
form them because they—in a thinly veiled invasion of the
province of the jury—have reckoned the probability of a cor-
rect response to be insufficient for a finding of fact.

I propose here an alternative design of the firearms pat-
tern comparison task, rooted in well-established principles
of signal detection and inspired by recent pioneering work
on the problem of eyewitness identification (7, 43, 44). In
this task design, a version of which was used in a recent
study of fingerprint examiner expertise (9), the examiner is
required to make a choice between identification and elim-
ination for every piece of evidence encountered—that is,
for the full range of sensory evidence X—regardless of how
difficult the decision may be. To illustrate, consider a hypo-
thetical validation study that requires examiners to make
forced choices between identification and elimination,
using samples of evidence X drawn at random from the A
and �A frequency distributions shown in Fig. 3A. We draw
1,000 samples and find the true positive (TP) and false
positive (FP) responses from this study to be 680 and 320,
yielding an identification error rate of 32%. The forensic
method is clearly not perfect, on average, but this overall
percentage is as woefully uninformative of the nuances of
examiner performance as is the low average error rates
computed using an inconclusive option.

What is needed is an assessment of performance as a
function of the criterion used to make the decision. While
identification accuracy declines as an observer’s criterion
moves from strongly to weakly selective (27), the criterion
used by an observer for any given decision is an internal
property of the observer and difficult to determine objec-
tively. However, growing evidence from studies of eye-
witness identification demonstrates that under “pristine”

Fig. 3. Effect of “inconclusive” option on quality of validation data. (A) Fre-
quency distributions of X originating from objects A and �A. Use of two deci-
sion criteria (C1 and C2) affords clean classification of some values of X as
originating with A vs. �A, but all values between those decision criteria (gray
shading) are deemed “inconclusive.” (B) Modeled performance as a func-
tion of X given hypothetical frequency distributions in A. Accuracy for A
decisions (proportion correct identifications) is plotted in blue. Accuracy for
�A decisions (proportion correct eliminations) is plotted in red. The upper
extents of blue and red curves summarize maximum potential for correct
classification. Use of the inconclusive option, however, prevents quantifica-
tion of performance for a meaningful set of stimuli and increases perfor-
mance estimates for the remaining stimuli.
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conditions§ an expression of confidence in the initial iden-
tification decision is highly predictive of the accuracy of
that decision (43–45). These findings support the claim
that confidence can serve as an accessible proxy for the
observer’s decision criterion, which comports with the intu-
ition that selective deciders are generally more confident
in their decisions.

Building on this relationship between confidence and
accuracy, suppose we require forensic examiners to ren-
der an 8-point confidence judgment with every forced
choice, ranging from highly confident of an A decision
(identification) to highly confident of �A (elimination). Fig. 4A
illustrates how this works with respect to the probability
distributions for patterns being examined. There are now
seven criteria (C1-C7) that divide eight levels of expressed
confidence—C1 being the most stringent confidence crite-
rion and C7 the most liberal—but in all cases an A vs. �A
decision is required. Inconclusive is not an option. By plot-
ting proportion of correct identifications of A (TP) vs. incor-
rect identifications of A (FP) for each confidence criterion in
Fig. 4A, we obtain the receiver operating characteristic
(ROC) curve in Fig. 4B. When the examiner is strongly confi-
dent in an A decision (lower left quadrant of ROC), TP rate
for A far exceeds FP rate for A. By contrast, when the
examiner is weakly confident in an A decision (upper right
quadrant of ROC), FP rate for A is nearly as large as TP rate
for A. The shaded region in Fig. 4C indicates the wealth of
performance data lost by permitting inconclusive responses.

The analysis illustrated in Fig. 4B offers benefits for
both forensic validation studies and actual casework. First,
the ROC is a complete summary of performance. If the
foregoing procedures are applied to a population of foren-
sic examiners in a validation study, the resulting ROC will
quantify the expertise of the discipline as the overall ability
to discriminate between sensory evidence originating from
objects A and �A (quantified by the area under the curve,
AUC). Moreover, it captures performance as a function of
the decision criterion used by different examiners (the
selectivity of the criterion varies along the positive diago-
nal). This account of performance is superior to the single
value error rate that forensic validation studies tradition-
ally seek, in large part because it enables the recipient of a
forensic decision to untangle the contributions of exam-
iner sensitivity and the selectivity of the criteron used to
make the decision.

Second, it is a simple matter to calculate error rates for
the confidence-based decision criteria. Fig. 5 illustrates
how accuracy (1 � error rate) can be derived from empiri-
cally determined rates of true and false positive decisions,
as well as true and false negative decisions. The blue curve
shows accuracy vs. confidence for identifications of A. Simi-
larly, the red curve shows accuracy for eliminations of A.
Although probability of a correct identification decision
ranges from 0.53 to 0.93 in this example, overall accuracy
for identifications and eliminations varies between 0.72
and 0.93 (assuming that the observer chooses identifica-
tion vs. elimination based on the ratio of inferred likeli-
hoods that evidence X would be expected given source A

vs source �A). A validity test conducted in this way is uncom-
promised by selective default on decisions and is thus a
complete summary of the performance of the examiner.
The shaded region of the accuracy plot indicates perfor-
mance data lost by allowing the examiner to opt out with

Fig. 4. Classification decisions as a function of confidence. (A) Seven deci-
sion criteria (C1–C7) define eight levels of confidence in an A decision. Confi-
dence levels range from strongly confident in an A decision (right end of
abscissa) to weakly confident in an A decision (i.e., strongly confident in a �A
decision; left end of abscissa). For each confidence level, number of correct A
decisions (true positives, TP) reflect area under the blue curve to the right of
the confidence level indicator, and number of incorrect A decisions (false pos-
itives, FP) reflect area under red curve to right of the confidence level indica-
tor. (B) Data points on red ROC curve plot TP rate vs. FP rate for the seven
different criteria (C1–C7) defined by confidence levels. Confidence levels range
along the positive diagonal from strongly confident in A (lower left) to weakly
confident in A (upper right). Lines along negative diagonal represent criteria
for the eight confidence categories. The ROC comprehensively summarizes
examiner performance on classification of X as originating from object
A vs. �A. (C) Shaded region superimposed on ROC from B represents examiner
performance not measured when inconclusive responses are permitted.

§Pristine lineup conditions include lineup fillers chosen such that they similarly match the
witness’ description of the perpetrator, making the lineup “fair,” and limits on biasing fac-
tors such as nonblinded lineup administration.
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inconclusive responses, which further highlights the spuri-
ous nature of low error rate claims from traditional valida-
tion studies.

Application to Real Casework?

A small number of studies with known source samples
have successfully employed elements of the signal detec-
tion approach I advocate here, including the aforemen-
tioned study of fingerprint examiners (9), a recent study
of firearms examiners that used examiner estimates of
likelihood ratios as proxy for decision criteria (46), and an
earlier investigation of firearms examiners using limited
reports of confidence (6). This evidence provides novel
insight into examiner performance on known-source tasks.
When considered together with the foregoing analysis, it
may be easy to concede the benefits of the signal detec-
tion approach for forensic task validation. On the other
hand, it is fair to question whether the approach has any
relevance to forensic decisions in real casework. Incon-
clusive responses are routinely permitted—many argue
unavoidable—in casework because the consequences of
error can be profound. Some argue further that a valida-
tion test that does not include inconclusive responses (one
that does not match conditions of the real world) lacks
ecological validity. In response to these arguments, I sug-
gest that the signal detection approach presented here is
worthy of consideration for real criminal casework because
it may supply what the trier of fact truly needs to know:
the examiner’s decision, together with an estimate of the
probability that the decision is correct.

But how, one might fairly ask, do we obtain an estimate
of the probability that a forensic decision is correct, when
ground truth is unknown? The answer lies in the relation-
ship between confidence and accuracy. The validation
method described above, when applied to a given examiner
in a known-source task, yields a measure of accuracy as a
function of the examiner’s confidence. I submit that the pre-
dictive confidence–accuracy relationship determined by this
means (Fig. 5) can serve as a “personal equation” (47, 48)
for decoding that same examiner’s confidence judgments
into estimates of accuracy in real casework, which the trier

of fact can use to make well-informed decisions. This is an
eminently testable hypothesis, but it raises important ques-
tions at the outset about the ability of an examiner’s
confidence–accuracy relationship to generalize robustly
across different conditions of sensory stimulation.

Robustness of the Personal Equation in the
Face of External Sensory Noise?

The confidence–accuracy relationship assessed for any
examiner is necessarily based, in part, on learned informa-
tion about the frequency distributions of the relevant
sensory stimuli. This naturally includes information about
central tendencies of the stimuli being compared. It also
reflects implicit knowledge of noise of two general types:
“receiver noise,” which is imposed by the examiner’s sen-
sory apparatus (due to optical, neuronal, and attentional
infidelity), and “emitter noise,” or stochastic variations in
patterned impressions from a common source. We can
reasonably assume that receiver noise for a given exam-
iner is stable; not indefinitely, but at least over short
windows of time in the same context. (Receiver noise may
vary between examiners; all else being equal, some
examiners have greater sensitivity than others.) Emitter
noise is also likely to be stable for a given firearm. Pat-
terned impressions on cartridge cases that have recently
been fired will manifest noise of stable variance caused by
the explosion in the chamber of the firearm. However,
spent cartridges that have subsequently been exposed to
corrosive substances or mechanical forces (“weathering”)
may have additional “external” noise, thus making them
more difficult to classify by the same examiner and per-
haps causing the examiner’s confidence–accuracy decoder
to fail.

This potential for failure is illustrated graphically in the
left column of Fig. 6. Fig. 6A contains a reproduction of the
stimulus frequency distributions and confidence criteria
from Fig. 4A, which represent a “fresh” condition of
recently ejected cartridges. Superimposed upon the fresh
stimulus distributions are distributions for a weathered
condition, which is characterized by increased variance
(relative to fresh) of patterned evidence X from objects A
and �A. Fig. 6B plots ROCs for both fresh (orange) and
weathered (olive) conditions, derived using decision crite-
ria fixed to the same values of X. These ROCs reveal the
expected loss of discriminability for the weathered condi-
tion relative to fresh, manifested as smaller area under the
curve. The corresponding confidence–accuracy curve in
Fig. 6C reveals something more interesting: a significant
decline in accuracy for the weathered condition. The
confidence–accuracy decoder has failed. Empirically deter-
mined accuracy from a fresh condition validation study
may serve as a valuable predictor of accuracy for a fresh
condition in the real world, but this analysis suggests that
it could be a poor predictor of accuracy for a weathered
condition in the real world.

The only way that the confidence–accuracy decoder
could generalize across conditions of different variance is
if there were a rescaling of the observer’s decision criteria.
But what is the correct type of rescaling, and how might it
be imposed? The answer to this question has been a

Fig. 5. Confidence–accuracy curve. Plot of accuracy as a function of confi-
dence derived from the model summarized in Fig. 4. Blue curve plots
accuracy of A identification decisions [TP/(TP+FP)], which increases as confi-
dence in those decisions rises. Conversely, red curve plots accuracy of A
elimination decisions [TN/(TN+FN)], which increases as confidence in A
declines and confidence in �A rises.
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dominant thread in the scientific study of recognition
memory for nearly 50 y. A well-known regularity in recogni-
tion memory performance is the “mirror effect,” which is
(in essence) the finding that FP recognition rates mirror TP
rates, regardless of the difficulty of the discrimination con-
ditions (49, 50). This effect cannot be produced by fixing
decision criteria at the same values of X (green vertical
lines in Fig. 6A), because doing so necessarily alters the TP
rate relative to the FP rate as task difficulty changes. This is
precisely what happens in the fixed decision criteria model
of Fig. 6 A–C, as manifested by changes in accuracy (Fig. 6C).

The mirror effect can be explained, instead, by likelihood-
based scaling of the decision axis, which has become a
standard feature of models of recognition memory (e.g.,
refs. 51–55). I suggest that the forensic examiner’s decision

criteria for pattern comparison tasks may be similarly
rescaled according to experience-based inferences about
the likelihood that sensory value X originated from A vs. �A.
By this hypothesis, the observer adopts criteria that track
likelihood ratios across different task difficulty conditions
(56, 57).#

This likelihood-based rescaling proposal is illustrated in
the right column of Fig. 6. Fig. 6D again plots stimulus fre-
quency distributions for fresh and weathered conditions.
In this example the decision criteria for the fresh condition
are at the same initial values shown in Fig. 6A. The decision

Fig. 6. Rescaling of expressed confidence to accommodate task difficulty. (A–C) Scenario in which decision criteria are fixed to specific values of X; (D–F)
scenario in which decision criteria are rescaled to track likelihood ratios across changes in task difficulty. (A) Plot of frequency distributions for “fresh” (blue
and red) and “weathered” (teal and magenta) conditions. Green vertical lines (C1–C7) identify criterion values of X that define eight confidence levels for clas-
sification of X. (B) ROC curves based on frequency distributions in A for fresh and weathered conditions. Data points for both curves are derived from criteria
specified in A. (C) Confidence–accuracy plots for fresh and weathered conditions, based on data points in B. Blue/teal curves represent accuracy of A identifi-
cation decisions; red/magenta curves represent accuracy of A elimination decisions. Use of same (stimulus defined) confidence criteria for both conditions
results in significant loss of accuracy for weathered condition, relative to fresh. (D) Frequency distributions for fresh and weathered evidence conditions.
Confidence levels have been shifted rightward in an effort to equilibrate A/�A likelihoods across changes in task difficulty. (E) ROCs for fresh and weathered
frequency distributions. Data points for fresh condition are same as in B; those for weathered condition are based on rescaled confidence criteria from D.
(F) Confidence–accuracy plots for fresh and weathered conditions, based on data points in E. Use of confidence criteria that have been rescaled to track
likelihood ratios equates accuracy for fresh and weathered condition.

#The concept of likelihood-based scaling is fundamental to signal detection (27). The deci-
sion axis for any stimulus dimension X can be rescaled based on the ratio of likelihood
that evidence X would be expected given A vs the likelihood that X would be expected
given �A.
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criteria for the weathered condition, shown in Fig. 6D, have
been rescaled based on the shifted likelihood ratios associ-
ated with the more difficult task conditions. Fig. 6E plots
ROCs for both fresh and weathered conditions. Data points
for the fresh condition are based on the initial decision cri-
teria from Fig. 6A. By contrast, data points for the weath-
ered condition are based on the rescaled criteria from Fig.
6D (manifested in the olive curve as a bunching up of data
points in the lower left corner of the ROC plot). The corre-
sponding confidence–accuracy curve in Fig. 6F reveals that
accuracy has been equalized across fresh and weathered
conditions through rescaling of decision criteria on the
basis of likelihood ratios. By this rescaling, the confidence–
accuracy decoder succeeds in generalizing across increases
in external noise (weathering).

In addition to these theoretical reasons to believe that
the confidence–accuracy decoder might generalize across
task difficulty, there exists empirical support for this claim
from studies of eyewitness identification. Wixted and Wells
(44), and subsequently Semmler et al. (45), reviewed the
effects of task difficulty on the accuracy of lineup identifi-
cations. Task difficulty in this case is determined by
“estimator variables,” which are stimulus conditions associ-
ated with the witnessed events, such as lighting, viewing
distance, and duration (58). Depending upon their states,
estimator variables may add significant noise to the eyewit-
ness memory-based pattern comparison task—analogous
to the external noise described above for forensic firearm
examination. Consistent with likelihood-based rescaling of
decision criteria across changes in task difficulty, the studies
reviewed by these authors found that the confidence–
accuracy relationship is remarkably consistent across differ-
ences in viewing duration, attentional focus, the presence
of a weapon, the time until a lineup is performed, and other
estimator variables that contribute noise to the decision
process.

The only way that decision criteria can be appropriately
rescaled based on likelihood ratios for X originating from
A vs. �A is, of course, if the examiner has acquired enough
experience with relevant sensory conditions to detect
changes in the underlying frequency distributions. Although
this remains an empirical question ripe for investigation,
it seems likely that seasoned forensic examiners, much like
eyewitnesses (45), have gained such experience. If that proves
to be the case, the personal equation strategy proposed
here may hold great promise for improving the quality and
utility of forensic pattern comparison decisions in the real
world.

Conclusions and Implications for the Courts

Absent truthful confession, our criminal justice system
resorts to predictions about cause and culpability based

on evidence found at the crime scene. That evidence often
consists of patterned impressions discovered on the surfa-
ces of objects, the source of which may reveal events and
responsible actors. Our society has for many years relied
heavily upon the human visual system for evaluating the
origins of patterned evidence. In this capacity, the observer
serves as an instrument for information measurement
and classification. As for any such instrument, we’d like to
know how well it works. The modern sciences of human
information processing provide that knowledge. The human
observer has empirically testable operating characteristics
that establish its ability to resolve differences on the input,
which can be used to assess the probability that an observ-
er’s decision is correct.

The inconclusive option employed in pattern comparison
disciplines neglects this science and supposes that perfor-
mance measures are black and white. In doing so these
disciplines flatten the probabilistic richness of sensory evi-
dence and foster an illusion of certainty . As summarized
above, that richness can be characterized empirically as
continuous variation in the accuracy of a classification deci-
sion. With this nuanced information in hand, the trier of fact
is in a better position to weigh the evidence.

All of this highlights a larger judicial and societal con-
cern about the respective roles of forensic examiner and
trier of fact. The examiner’s responsibility is to provide a
conclusion qualified by an estimate of the probability that
the conclusion is correct. The degree of accuracy that mat-
ters in the end is a decision to be made by the jury, not the
forensic examiner. The established practice of defaulting
on difficult problems, rather than using the fine sensitivity
of the human visual system to mine the probabilistic rich-
ness of the evidence, permits the examiner to apply and
propagate their own covert criteria for what constitutes
meaningful information, thus shielding the fact finder from
knowledge that could aid in deliberation. As jurist Learned
Hand famously observed over a century ago, the expert is
always at risk of invading the province of the jury and
answering questions of fact according to their own under-
standing and biases: “Now the important thing and the
only important thing to notice is that the expert has taken
the jury’s place if they believe him” (59).

Data, Materials, and Software Availability. All study data are included in
the main text.
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