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Ferrocenyl thioketones reacted with donor—acceptor cyclopropanes in dichloromethane at room temperature in the presence of cata-

lytic amounts of Sc(OTf);3 yielding tetrahydrothiophene derivatives, products of formal [3 + 2]-cycloaddition reactions, in moder-

ate to high yields. In all studied cases, dimethyl 2-arylcyclopropane dicarboxylates reacted with the corresponding aryl ferrocenyl

thioketones in a completely diastereoselective manner to form single products in which (C-2)-Ar and (C-5)-ferrocenyl groups were

oriented in a cis-fashion. In contrast, the same cyclopropanes underwent reaction with alkyl ferrocenyl thioketones to form nearly

equal amounts of both diastereoisomeric tetrahydrothiophenes. A low selectivity was also observed in the reaction of a 2-phthal-

imide-derived cyclopropane with ferrocenyl phenyl thioketone.

Introduction

Functionalized tetrahydrothiophenes constitute an important
group of five-membered sulfur heterocycles; many of them,
both chiral and achiral, with biotin as the best-known represen-

tative, form the key motif in numerous compounds of great

practical importance [1,2]. The development of chemo- and dia-
stereoselective syntheses for these compounds is thus a chal-
lenging problem. An elegant and highly efficient method for the

construction of the tetrahydrothiophene ring is based on 1,3-
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dipolar cycloadditions of in-situ-generated thiocarbonyl
S-methanides (thiocarbonyl ylides) with electron-deficient
ethylenic dipolarophiles. This method was extensively de-
veloped by Huisgen and co-workers in the 1980s [3-5]. In the
course of these studies, a non-orthodox stepwise mechanism of
the 1,3-dipolar cycloaddition was established by experiments
performed with the sterically crowded thiocarbonyl
S-methanide 1, derived from 2,2,4,4-tetramethyl-3-thioxocy-
clobutanone and extremely electron-deficient ethylenes 2 such
as (E)- and (Z)-dialkyl dicyanobutenoates (R = CO,Me) [6],
tetracyanoethylene (R = CN) [7] or (E)- and (Z)-1,2-bis(tri-
fluoromethyl)ethylene-1,2-dicarbonitrile (R = CF3) [8]. Both
five-membered spirotetrahydrothiophenes 3 and seven-mem-
bered S,N-heterocycles (ketene imines) 4 were observed in the
course of these reactions (Scheme 1). The latter products were
trapped with suitable nucleophiles (R = CO;Me) or even isolat-
ed and identified by means of spectroscopic methods (R = CF3).

In a recent work, an alternative, efficient and useful method for
the synthesis of highly functionalized tetrahydrothiophenes of
type 6 was reported [9] (Scheme 2). Under Lewis acid catalysis,
formal [3 + 2]-cycloadditions of aromatic and cycloaliphatic
thioketones (also thionoesters) with donor—acceptor cyclo-
propanes 5 (D—A cyclopropanes) were realized.

In contrast, thiochalcones (a,pB-unsaturated aromatic thioke-
tones) were shown to react under similar conditions with cyclo-
propanes 5 yielding exclusively seven-membered tetrahydrothi-
epines 7 as products of the formal [4 + 3]-cycloaddition [10]
(Scheme 2).

In a series of our recent publications, ferrocenyl/aryl and ferro-
cenyl/alkyl thioketones were demonstrated to be attractive sub-
strates for the preparation of six- and five-membered sulfur
heterocycles via [4 + 2]- and [3 + 2]-cycloadditions, respective-
ly [11-15]. Notably, in contrast to aryl/alkyl thioketones (e.g.,
thioacetophenone), their ferrocenyl analogs of type 8 (e.g.,
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Scheme 2: Formal [3 + 2]-cycloadditions of thioketones and [4 +
3]-cycloadditions of thiochalcones with donor—acceptor cyclopropanes
5 leading to tetrahydrothiophenes 6 and tetrahydrothiepines 7, respec-
tively.

ferrocenyl phenyl thioketone (8a), diferrocenyl thioketone (8b),
and ferrocenyl methyl thioketone (8c)) were stable compounds
at ambient conditions and could be used with no special precau-
tions. In general, ferrocene has been considered as an ‘excep-
tional compound’ [16,17] and in our hands ferrocenyl-functio-
nalized sulfur heterocycles, e.g., thiiranes and 1,3-dithiolanes,
have found applications for the synthesis of compounds rele-
vant for medicinal [18] and materials chemistry, and electro-

chemical studies [19].

In continuation of our studies on organic sulfur compounds and
the mechanisms of their reactions, the main goal of the present
work was the examination of the formal [3 + 2]-cycloaddition
reactions of ferrocenyl-substituted thioketones 8 with D—A
cyclopropanes 5, aimed at the synthesis of hitherto unreported,
ferrocenyl-substituted tetrahydrothiophene dicarboxylates
(thiolanes) of type 9.

R
NC R
NC R

CN NC
2 THF, 45°C R X N
+ ¢ +

S o s s
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3 4

(R = CN, CO,Me, CF3)

Scheme 1: Synthesis of spirotetrahydrothiophenes 3 via non-concerted [3 + 2]-cycloadditions of thiocarbonyl! ylide 1 with electron-deficient ethylenes
2. Cyclic ketene imines 4 are also formed as products of formal [4 + 3]-cycloadditions.
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Results and Discussion

In analogy to experiments described in our earlier publication
[9], the test reaction was performed with dimethyl 2-phenylcy-
clopropane dicarboxylate (5a) and ferrocenyl phenyl thioke-
tone (8a) in CH,Cl, at room temperature using aluminum chlo-
ride (AICl3) as a catalyst. The reaction was monitored by TLC,
and was shown to be complete after 1 h. The crude reaction
mixture was examined by 'H NMR, revealing the formation of
a single product with characteristic signals of both CO,Me
groups located at 3.38 and 3.81 ppm. After chromatographic
separation the expected tetrahydrothiophene 9a was isolated in
only 23% yield. As the next model substrate, the sterically
crowded diferrocenyl thioketone (8b) was tested as a structural
analog of thiobenzophenone, which was widely applied in
studies involving aromatic thioketones [3-5]. However, in
contrast to 8a, the reaction of 8b with 5a was unsuccessful. This
observation prompted us to replace AICl; by scandium triflate
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(Sc(OTf)3), which is also known to be an efficient catalyst in
various reactions of D—A cyclopropanes [9,10,20]. This time,
the reaction was complete after 1 h and the expected 2,2-difer-
rocenyl-substituted tetrahydrothiophene 9b was isolated chro-
matographically in about 28% yield (Scheme 3, Table 1). This
experiment was successfully repeated, again using Sc(OTf)3
instead of AICl3, in further experiments of ferrocenyl thioke-
tones 8 with differently substituted cyclopropanes 5. Again
using Sc(OTf)3, we repeated the experiment with 8a, which this
time led to the isolation of 9a in an excellent yield of 98% (Ta-
ble 1).

In analogy to 8a, the similarly substituted ferrocenyl (f-naph-
thyl) thioketone (8c) reacted with 5a in a diastereoselective
manner yielding the expected product 9¢ in good yield (65%) as
the sole isolated product. Notably, in all reactions performed
with aryl-substituted cyclopropanes Sa—f and with thioketones

Fo CH,Cly,
A CO2Me . % cat. Sc(OTf);
Ar CO,Me R rt
5a—g 8a—g
Ar = a: Ph; b: p-Naphthyl; R = a:Ph; b: Fc
c: 4-Me-CgHy; c: B-Naphthyl;
d: 4-MeO-CgHy; d: Me;
e: 4-Br-CgHy; e:n-Pr;
f: 4-CF3-CgHy; f: Thien-2-yl;
g: 1-Phthalimid-1-yl g: Fur-2-yl

Scheme 3: Formal [3 + 2]-cycloadditions of dimethyl 2-substituted cyclopropane-1,1-dicarboxylates 5a—g with ferrocenyl thioketones 8a—g, leading to

dimethyl tetrahydrothiophene 3,3-dicarboxylates 9a—n (Table 1).

Table 1: Ferrocenyl-substituted tetrahydrothiophenes 9a—n obtained in reactions of D—A cyclopropanes 5a—h with ferrocenyl thioketones 8a—g cata-

lyzed with Sc(OTf)3.

compound substituent substituent

9 Ar R

a Ph Ph

b Ph Fc2

c Ph B-naphthyl
d Ph Me

e Ph n-Pr

f B-naphthyl Ph

g B-naphthyl B-naphthyl
h 4-Me-CgHy Ph

i 4-MeO-CgHg4 Ph

i 4-Br-CgHgy Ph

k 4-CF3-CgHy Ph

| Ph thien-2-yl
m Ph fur-2-yl

n phthalimid-1-yl Ph

aFc = ferrocenyl.

ratio of diastereoisomers yield of isolated products (%)

100: 0 98

- 28
100:0 65
55:45 98
52:48 97
100:0 30
100:0 31
100:0 85
100:0 79
100:0 93
100:0 95
100:0 58
60:40 96
60:40 34
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8a,c.f, the desired tetrahydrothiophenes 9a,c,f-1 were formed
with complete diastereoselectivity, leading to a single isomer. In
order to establish the structure of the isomers, a single crystal
obtained for compound 9¢ was studied by X-ray diffraction
analysis which showed, that the Ph(C-2) group and Fc(C-5)
substituent were mutually cis-oriented (Figure 1). Tentatively,
the same configuration was also attributed to all tetrahydrothio-

phenes 9a.f-1 that were formed as single isomers (Table 1).

However, the diastereoselectivity changed in reactions that were
conducted with alkyl ferrocenyl thioketones 8d—e with Sa.
Thus, the reaction with 8d led to a 55:45 mixture of two
isomeric products in nearly quantitative yield (98%). Subse-
quently, they were carefully separated by preparative thin layer
chromatography (PTC) on silica using a mixture of petroleum
ether and ethyl acetate as an eluent. The less polar fraction
formed the major product and the slightly more polar one was
isolated and identified as the minor isomer of 9d. In the course
of crystallization from hexane the less polar fraction gave single
crystals suitable for the X-ray diffraction analysis, which unam-
biguously confirmed that in this molecule the Ph(C-5) and
Fc(C-2) groups were trans-oriented and for that reason, this
isomer was described as trans-9d (Figure 1).

Analogously, the reaction of ferrocenyl n-propyl thioketone (8e)
with 5a led to a 52:48 mixture of trans- and cis-isomers of 9e,
which were isolated in a total yield of 97% and identified with-
out further separation. Moreover, a mixture of nearly equal
amounts of isomeric trans-9m and cis-9m was also observed in
the reaction of 5a with ferrocenyl fur-2-yl thioketone (8g). The
reaction of the phthalimide-derived cyclopropane 5g with

Beilstein J. Org. Chem. 2020, 16, 1288-1295.

thioketone 8a led to a 4:1 mixture of both isomers cis- and
trans-9n. Based on these observations it was difficult to explain
the complete diastereoselectivity of tetrahydrothiophene forma-
tion observed in the reactions of aryl ferrocenyl-substituted
thioketones 8a,c.f with cyclopropanes Sa—f bearing aryl groups.
Tentatively, a repulsive interaction of aryl groups rather than
steric hindrance of the bulky ferrocenyl unit could be postu-
lated. Remarkably, ferrocenyl fur-2-yl thioketone (8g) was an

exception and delivered a 60:40 mixture of trans- and cis-9m.

The mechanistic interpretation of the efficient, formal [3 +
2]-cycloadditions of D—A cyclopropanes 5 with ferrocenyl
thioketones 8 in the presence of a Lewis acid was based on the
assumption that the coordination of the catalyst by two ester
groups activated the cyclopropane ring and allowed a nucleo-
philic attack of the C=S group on the benzylic position of the
cyclopropane derivative (Scheme 4).

The subsequent ring-closure of the zwitterionic intermediate 10
led to the formation of the tetrahydrothiophene derivative 9.
This process formally resembled the [3 + 2]-cycloadditions of
thiocarbonyl S-methanides with an activated C—C double bond,
which also led to tetrahydrothiophenes [6-8]. Nevertheless, the
key step involved the formation of the reactive, zwitterionic
intermediate 10. It seemed that repulsive interactions of the aryl
groups Ar (from cyclopropane 5) and R (from thioketone 8)
controlled the diastereoselective ring-closure to the five-mem-
bered ring leading in these cases to the formation of cis-9 (Ar to
Fc) as a single isomer. A similar reaction pathway with a zwit-
terionic intermediate analogous to 10, generated in the presence
of a Lewis acid, was proposed for the reaction of cycloaliphatic

C12

trans-9d

Figure 1: Thermal ellipsoid plots of the molecular structures of cis-9¢ and trans-9d drawn using 50% probability displacement ellipsoids. The termi-

nology cis and trans referred to the relative orientation of Ph and Fc groups.
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Scheme 4: Plausible mechanism for the formal [3 + 2]-cycloadditions of ferrocenyl thioketones 8 with D—A cyclopropanes 5.

3-thioxo-2,2,4,4-tetramethylcyclobutanone with D—-A cyclo-
propanes [21].

Conclusion

The present study showed once more that ferrocenyl/aryl and
ferrocenyl/alkyl thioketones 8 are versatile and useful building
blocks for a simple and efficient preparation of ferrocenyl-func-
tionalized five-membered sulfur heterocycles. They were shown
to react easily with donor—acceptor (D—A) cyclopropanes in the
presence of scandium triflate, Sc(OTf); as a catalyst, yielding
highly functionalized tetrahydrothiophene derivatives of type 9.
These formal [3 + 2]-cycloaddition reactions occurred via a
nucleophilic attack of the sulfur atom on the activated cyclo-
propane ring at the most reactive benzylic position. The forma-
tion of the five-membered ring occurred regioselectively and
the expected tetrahydrothiophene-3,3-carboxylates were the
products. The studied reactions displayed an interesting stereo-
selectivity and, in the case of 2,5-diaryl-substituted products 9,
both aryl groups were exclusively located at the opposite sides
of the ring plane. The described reactions supplement the
recently reported synthetic applications of alkyl/ferrocenyl
thioketones as attractive substrates for the synthesis of chiral
ferrocene derivatives [22] and ferrocenyl-substituted platinathi-

iranes [23].

It should be also emphasized that the present study also demon-
strated the growing potential of donor—acceptor cyclopropanes
[24-28] as unique building blocks for current organic synthesis
and especially for the efficient and highly stereoselective prepa-
ration of the relevant five-membered sulfur heterocycles

derived from tetrahydrothiophene.

Experimental

General information: Solvents and chemicals were purchased
and used as received without further purification. Products were
purified by standard column chromatography on silica gel.
Yields refer to analytically pure samples. NMR spectra were re-
corded with a Bruker Avance III 600 MHz instrument ('H
NMR: 600 MHz; '*C NMR: 151 MHz). Chemical shifts are re-
ported relative to solvent residual peaks ('"H NMR: & =
7.26 ppm [CHCl3]; 13C NMR: & = 77.0 ppm [CDCl3]). IR spec-
tra were recorded with a Cary 630 FTIR (Agilent Technologies)
spectrometer (as film). Melting points were determined in capil-
laries with a Melt Temp II apparatus.

Starting materials: D—A cyclopropanes Sa—g were obtained
following the reported procedure [28]. Ferrocenyl thioketones
8a—g were obtained by thionation of corresponding ferrocenyl
ketones [29] by treatment with Lawesson’s reagent [30]. Ferro-
cenyl B-naphthyl thioketone (8b) obtained from ferrocenyl(f3-
naphthyl) ketone [31] is reported for the first time (see Support-
ing Information File 1).

General procedure: A solution of 0.3 mmol of the correspond-
ing cyclopropane 5 in 5 mL of dichloromethane was stirred for
5 min. Then, 0.5 mmol of the corresponding ferrocenyl thioke-
tone 8 and a catalytic amount (ca. 5 mg) of Sc(OTf); was added
to the stirred solution. The mixture was stirred at room tempera-
ture for 1 h. The progress of the reaction was monitored by
TLC. The solvent was evaporated in vacuo and the
crude mixture was purified by flash chromatography using
dichloromethane as the eluent. Analytically pure samples of

tetrahydrothiophenes 9 were obtained by crystallization from
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petroleum ether or hexane with a small amount of dichloro-

methane.

The diastereoselectivity of the studied reactions was deter-
mined by integration of the crude 'H NMR. Preliminary purifi-
cation of crude mixtures by a short-column chromatography
was necessary to remove traces of iron particles formed as a
side product after partial decomposition of ferrocenyl contain-

ing substrates and/or products formed under reaction conditions.

Dimethyl 2-ferrocenyl-2,5-diphenyltetrahydrothiophene-
3,3-dicarboxylate (cis-9a): Yield: 159 mg (98%); red crystals;
mp 192-193°C; 'H NMR 5 2.65 (dd, Juu =139 Hz, Jyy =
4.3 Hz, 1H, HC(4)), 3.44 (s, 3H, OCH3), 3.46 (s, 3H, OCHj3),
3.56 (dd, Jy g = 13.9 Hz, Jy g = 12.7 Hz, 1H, HC(4)),
3.51-3.60 (m, 1H, HC(Fc)), 4.00-4.02 (m, 1HC(Fc)), 4.07 (s,
S5HC(Fc)), 4.27-4.29 (m, 1HC(Fc)), 4.68-4.70 (m, 1 HC(Fc)),
4.81 (dd, Jyg = 12.6 Hz, Jyy = 4.3 Hz, HC(5)), 7.31-7.39 (m,
2 arom. HC), 7.40-7.46 (m, 4 arom. HC), 7.62-7.65 (m, 2
arom. HC), 8.21-8.24 (m, 2 arom. HC); 13C NMR & (C(4)-not
found), 48.1, 48.4 (20CH3), 52.4 (C(5)), 67.8 (C(2)), 71.1
(C(3)), 68.7, 69.2, 69.9, 71.0, 73.7 (for 9 HC(Fc)), 97.0 (C(Fc)),
126.6, 127.1, 127.9, 128.0, 128.8, 129.0 (for 10 arom. HC),
138.9, 144.2 (2 arom. C), 169.0, 170.3 (2 C=0); IR (cm™!) v:
1737 brs (2C=0), 1492 m, 1444 m, 1429 m, 1258 m, 1239 s,
1073 m, 814 m, 760 m, 697 vs, 497 vs; Anal. calcd for
C30HogFeO4S (540.45): C, 66.67; H, 5.22; S, 5.93; found: C,
66.58; H, 5.24; S, 5.99.

Dimethyl 2,2-diferrocenyl-5-phenyl tetrahydrothiophene-
3,3-dicarboxylate (9b): Yield: 54 mg (28%); red crystals; mp
170 °C (dec.); 'H NMR & 2.91 (dd, Jun =140Hz, Jyy =
6.2 Hz, 1H, HC(4)), 3.36 (s, 3H, OCH3), 3.41 (dd, Jyu =
15.8 Hz, Jy g = 12.4 Hz, 1H, HC(4)), 3.65 (s, 3H, OCH3),
4.05-4.07 (m, 1H, HC(Fc¢)), 4.07-4.09 (m, 1H, HC(Fc)),
4.16-4.18 (m, 1H, HC(Fc¢)), 4.23-4.27 (m, 7TH, THC(Fc¢)), 4.31
(s, 5SH, HC(Fc¢)), 4.48-4.50 (m, 1H, HC(Fc¢)), 4.56—4.58 (m, 1H,
HC(Fc)), 4.68-4.70 (m, 1H, HC(Fc)), 5.51 (dd, Jy g = 11.2 Hz,
Jun = 6.3 Hz, 1H, HC(5)), 7.34-7.37 (m, larom. HC),
7.44-7.48 (m, 2arom. HC), 7.78 (m, 2arom. HC); '3C NMR
47.9 (C(4)), 49.5 (C(5)), 51.9, 52.6 (20CH3), 65.8, 66.2, 66.9,
67.6, 67.7, 69.6, 69.7, 70.4, 73.1 (for 18 HC(Fc), 73.4, 94.3
(C(2) and C(3), 100.0 (2C(Fc)), 127.4, 128.2, 128.6 (5 arom.
HC), 141.2 (arom. C), 169.0, 169.1 (2 C=0); IR (cm™) v: 1727
brs (2C=0), 1431 m, 1259 s, 1164 s, 1107 m, 1000 m, 818 s,
760 m, 696 s, 479 vs; anal. calcd for C34H3,Fe;04S (648.37):
C, 62.98; H, 4.97; S, 4.94; found: C, 62.68; H, 4.93; S, 4.88.

Dimethyl 2-ferrocenyl-5-phenyl-2-(naphth-2-yl)tetrahydro-
thiophene-3,3-di-carboxylate (cis-9c): Yield: 115 mg (65%);
yellow crystals; mp 210-211 °C; single crystals were obtained
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from hexane solution by slow evaporation at rt; 'H NMR & 2.69
(dd, Jy g = 13.8 Hz, Jyy = 4.3 Hz, 1H, HC(4)), 3.41 (s, 3H,
OCHy), 3.47 (s, 3H, OCH3), 3.57 (s, 1H, HC(Fc)), 3.62 (t, Jyn
=13.1 Hz, 1H, CH), 4.01 (s, 1H, HC(Fc)), 4.09 (s, 5 HC(Fc¢)),
4.31 (s, 1H, HC(Fc)), 4.77 (s, 1H, HC(Fc)), 4.86 (dd, Jgyu =
12.6 Hz, Jy g = 4.3 Hz, 1H, HC(5)), 7.36-7.40 (m, 1 arom.,
HC), 7.44-7.48 (m, 2 arom. HC), 7.51-7.54 (m, 2 arom. HC),
7.66 (m, 2 arom. HC), 7.87 (d, Jyp = 8.6 Hz, 1 arom., HC),
7.88-7.92 (m, 1 arom., HC), 7.95-7.99 (m, 1 arom., HC), 8.36
(d, Juu = 8.6 Hz, larom., HC), 8.74 (s, 1 arom., HC); 13C
NMR & 48.1 (C(5)), 48.5 (C(4)), 52.5, 52.6 (20CH3), 67.8,
68.7, 69.2, 69.9, 71.2 (for 9 HC(Fc)), 71.0, 73.5 (C(2) and C(3))
97.4 (2 C(Fc)), 125.8, 125.9, 126.1, 127.2, 127.3, 127.9, 128.0,
128.1, 128.6, 128.8 (10 arom. HC), 132.1, 132.8, 138.8, 141.8
(4 arom. C), 168.9, 170.3 (2 C=0); IR (cm_l) v: 1738 brs
(2C=0), 1429 m, 1239 s, 1215 s, 1170 m, 1053 m, 810 s, 758
m, 704 s, 480 vs; anal. calcd for C34H30FeOy4S
(590.51): C, 69.15; H, 5.12; S, 5.43; found: C, 67.16; H, 5.01;
S, 5.47.

Dimethyl 2-ferrocenyl-2-phenyl-5-methyltetrahydrothio-
phene-3,3-dicarboxylate (9d). Obtained as a 55:45 mixture of
isomers. The trans- (major) and cis- (minor) isomers (Ph to Fc)
were separated by PLC (silica, PE/ethyl acetate). Yields: cis-
isomer, yellow crystals, 66 mg (more polar fraction, 44%); mp
148-150 °C, trans-isomer, yellow crystals, 74 mg (less polar
fraction, 54%); mp 126-128 °C; single crystals of trans-9d
were obtained from hexane/CH,Cl; solution by slow evapora-
tion at rt; 'H NMR (cis-9d) & 2.31 (s, 3H, CH3); 2.54 (dd, Jun
=13.8 Hz, Jyy = 5.3 Hz, 1H, HC(4)); 3.22 (dd, Jyu = 13.8 Hz,
Juu = 12.3 Hz, 1H, HC(4)); 3.46 (s, 3H, OCH3); 3.80 (s, 3H,
OCH3); 4.09-4.10 (m, 1H, HC(Fc)); 4.12-4.13 (m, 1H,
HC(Fc)); 4.22 (s, 5SH, HCH(Fc)); 4.23-4.25 (m, 1H, HC(Fc));
4.55-4.56 (m, 1H, HC(Fc)); 4.78 (dd, Jyy = 12.3 Hz, Jyu =
5.3 Hz, 1H, HC(5)); 7.30-7.34 (m, 1 arom. HC); 7.39-7.43 (m,
2 arom. HC); 7.54-7.58 (m, 2 arom. HC); '*C NMR (cis-9d) &
25.9 (CH3); 43.9 (C(4)); 47.9 (C(5)); 52.0, 52.6 (20CH3); 60.0
(C(2)); 68.1, 68.2, 68.8, 69.1, 70.7 (for 9 HC(Fc)); 70.6 (C(3));
96.5 (C(Fc)); 127.5, 127.6, 128.7 (5 arom. HC); 140.0 (arom.
0); 168.5, 169.7 (2C=0); IR (cm™!) v: 1731 brvs (2C=0); 1494
m, 1453 m, 1436 m, 1248 vs, 1207 m, 1157 vs, 1105 m, 1038 s,
829 m, 766 s, 702 vs; anal. calcd for Cp5HpgFeOy4S (478.38): C,
62.77; H, 5.48; S, 6.70; found: C, 62.69; H, 5.52; S, 6.63.

IH NMR (trans-9d) & 2.28 (s, 3H, CHz); 2.79 (dd, Juu = 14.1
Hz, Jyu =10.7 Hz, 1H, HC(4)); 3.12 (dd, Jyu = 14.1 Hz, Jy u
=7.1 Hz, 1H, HC(4)); 3.47 (s, 3H, OCH3); 3.66 (s, 3H, OCH3);
4.19-4.21 (m, 2H, HC(Fc)); 4.23 (s, 5SH, SHC(Fc)); 4.40-4.42
(m, 1H, HC(Fc)); 4.56-4.57 (m, 1H, HC(Fc)); 5.28 (dd, Jyy =
10.7 Hz, Jy g = 7.1 Hz, 1H, HC(5)); 7.30-7.32 (m, 1 arom.
HC); 7.39-7.42 (m, 2 arom. HC); 7.57-7.59 (m, 2 arom. HC);
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13C NMR (trans-9d) 5 31.3 (CH3); 47.1 (C(4)); 48.6 (C(5));
52.2,52.3 (20CH3); 60.1 (C(2)); 67.6 (C(3)); 68.5, 68.8, 69.1,
69.3, 71.1 (for 9HC(Fc)); 89.9 (C(Fc)); 127.3, 127.9, 128.6 (5
arom. HC); 142.6 (arom. C); 168.9, 169.5 (2C=0); IR (cm™}) v:
1737 vs, 1720 vs (2C=0); 1492 m, 1453 m, 1427 m, 1258 vs,
1220's, 1204 m, 1106 m, 1105 m, 1023 m, 993 m, 829 m, 766 s,
703 vs; anal. caled for Cp5HycFeO4S (478.38): C, 62.77; H,
5.48; S, 6.70; found: C, 62.70; H, 5.46; S, 6.59.

Dimethyl 2-ferrocenyl-5-phenyl-2-(thien-2-yl)tetrahydro-
thiophene-3,3-dicarboxy-late (trans-91): Yield: 95 mg (58%);
yellow crystals; mp 210 °C (dec.); IH NMR § 2.65 (dd, Jyu =
14.0 Hz, Jy g = 4.5 Hz, 1H, HC(4)), 3.43 (pseudo-t, Jg g =
13.9 Hz, 1H, HC(4)), 3.48 (s, 3H, OCH3), 3.52 (s, 3H, OCH3),
4.10 (s, 5H, 5SHC(Fc)), 4.14 (s, 2H, 2HC(Fc¢)), 4.30 (s, 1H,
HC(Fc)), 4.68 (s, 1H, HC(Fc)), 5.02 (dd, Jyy = 13.6 Hz, Jy g =
4.5 Hz, 1H, HC(5)), 7.05-7.07 (m, 1 arom. HC), 7.21-7.23 (m,
1 arom. HC), 7.34-7.38 (m, 1 arom. HC), 7.42-7.45 (m, 2
arom., HC), 7.55-7.57 (m, 1 arom. HC), 7.60-7.63 (m, 2 arom.
HC); 13C NMR 5 47.3 (C(4)), 49.0 (C(5)), 52.2, 52,5 (20CH3),
67.9, 69.0, 69.4, 70.4, 70.7 (for 9 HC(Fc)), 66.3, 74.2 (2 arom.
(), 94.6 (1 C(Fc)), 123.4, 125,8, 126.8, 127.9, 128.0, 128.8 (for
8 arom. HC), 138.7, 150.3 (2 arom. C), 168.4, 169.5 (2C=0);
IR (cm™ 1) v: 1733 brs (2C=0), 1427 m, 1235 s, 1146 s, 1045 m,
1032 m, 818 m, 766 s, 691 vs, 506 m, 488 s; HRMS-EI
(m/z): [IM]" calcd. for [CrgHygFeQ4S,]%, 546.0621; found:
546.0629.
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