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Neutrophils are innate immune cells that play an essential role during the clearance of
pathogens that can release chromatin structures coated by several cytoplasmatic and
granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-
molecular structures are produced to kill or immobilize several types of microorganisms,
including bacteria and viruses. The contribution of the NET release process (or NETosis)
to acute inflammation or the prevention of pathogen spreading depends on the specific
microorganism involved in triggering this response. Furthermore, studies highlight the
role of innate cells different from neutrophils in triggering the release of extracellular
traps during bacterial infection. This review summarizes the contribution of NETs during
bacterial and viral infections, explaining the molecular mechanisms involved in their
formation and the relationship with different components of such pathogens.

Keywords: neutrophil extracellular traps (NETs), virulence factor, bacterial infection, viral infection, extracellular
traps (ETs)

INTRODUCTION

Neutrophils, a type of polymorphonuclear cell, are one of the most abundant immune cells in
the blood of humans, which increase upon infection with various microbial agents. Neutrophil
precursors derived from the bone marrow enter the circulation and are recruited to the infected
tissue, where they become fully activated. Activated neutrophils display multi-lobulated nuclei and
produce many antimicrobial proteins, different types of granules and reactive chemical species. In
addition, these cells present a wide variety of receptors as Pattern recognition receptors (PRRs)
that recognize an array of pathogen-associated molecular patterns (PAMPs) and danger-associated
molecular patterns (DAMPs). These interactions would enable the recognition of extracellular or
intracellular pathogens to trigger responses to clear them (Segal, 2005; Thomas and Schroder,
2013). Furthermore, neutrophils have different mechanisms to develop an efficient bacterial killing,
such as phagocytosis, NADPH oxidase-derived reactive oxygen species (ROS), degranulation of
cytotoxic components, and antimicrobial peptides (Segal, 2005; Teng et al., 2017). Neutrophils can
also release neutrophil extracellular traps (NETs) during microbial infection, a standard mechanism
to prevent pathogen spreading during infectious diseases. This review summarizes the current
knowledge relative to the mechanism of NET formation during bacterial and viral infections.
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Furthermore, we also discuss the role of extracellular traps
released by other cells, different from neutrophils, which are
produced during bacterial infections.

NEUTROPHILS EXTRACELLULAR
TRAPS AND NETosis

Initial observations described that activated neutrophils were
able to generate prominent extracellular structures composed of
nuclear chromatin, histones, granular proteins such as neutrophil
elastase (NE), myeloperoxidase (MPO), or cathepsin-G, and
cytoplasmic proteins such as glycolytic enzymes and catalase,
among others (Brinkmann et al., 2004; Urban et al., 2009).
Further studies supported the role of NETs as elements able to
capture, entrap and kill pathogenic microorganisms (Brinkmann
et al., 2004; Papayannopoulos and Zychlinsky, 2009; Pilsczek
et al., 2010; Kenny et al., 2017). Roughly, the NETs process begins
with the recognition of the microorganism, which activates
the NET pathway and allows the disruption of the nuclear
and granular membrane, as well as the release of decondensed
nuclear DNA into the cytoplasm. This decondensed chromatin
mixes with nuclear, granular, and cytoplasmic content and the
process ends with the disruption of the plasma membrane
and the release of the lattice structure (Fuchs et al., 2007).
The cell death process generated by the release of NETs has
been denominated NETosis, which is different from other cell
death processes described so far. For instance, it is different
from apoptosis because it is caspase-independent and no DNA
fragmentation is observed, which are hallmarks of the apoptotic
process (Fuchs et al., 2007). It is also different from necrosis,
because NETosis results in the fragmentation of the nuclear
envelopment, which allows the formation of multiple vesicles that
mix with the cytoplasm content, a process that does not happen
during necrosis (Fuchs et al., 2007). Therefore, NETosis seems
to be an innate immune mechanism used to control pathogen
spreading by entrapping microorganisms and placing them in
direct contact with a high amount of cell-derived antimicrobial
molecules (Papayannopoulos and Zychlinsky, 2009). Initially, the
release of NETs was thought to be related to the size of the
pathogen, because one study shown that small microorganisms,
such as single bacteria and unicellular yeast, do not induce
NETosis and that the phagocytosis of these unicellular microbes
inhibits the release of NETs by sequestering NE (Branzk et al.,
2014). However, now it is known that NETs release takes place
against fungus (Urban et al., 2005), protozoan (Guimarães-Costa
et al., 2009), viruses (Souza et al., 2018), and bacteria (Brinkmann
et al., 2004; de Jong et al., 2014). Furthermore, NETs release could
be triggered by extracellular or intracellular pathogens (Chen
et al., 2018) and, in some cases, the pathogen can generate a
vital NETs release, in which the cell continues engulfing the
microorganism (Yipp et al., 2012).

Although the function of NETs during microbial infection has
a relevant role in pathogen control, it has been described that the
overproduction of NETs is also related to tissue damage in several
diseases, as such arthritis (Khandpur et al., 2013; Sur Chowdhury
et al., 2014), allergies (Bouabe et al., 2011; Hu et al., 2016;

Toussaint et al., 2017), systemic lupus erythematosus (SLE)
(Kessenbrock et al., 2009; Knight et al., 2012; Wang et al.,
2015), and cancer (Cools-Lartigue et al., 2014; Razak et al.,
2017; Wang et al., 2021). In the case of inflammatory diseases,
it is possible that deficiencies in the mechanisms that prevent
excessive tissue damage caused by NETs release are involved in
their onset and progression. One of these regulatory mechanisms
has been described in M1 macrophages, which degrade DNA
in a caspase-activated dependent manner within 24 h post-
activation (Nakazawa et al., 2016). Also, it has been described
that monocytes-derived macrophages engulf the NETs, a process
facilitated by DNase I and opsonization by C1q, without the
secretion of pro-inflammatory cytokines after the ingestion
(Farrera and Fadeel, 2013).

Neutrophil Extracellular Trap Induction
and Signaling
Neutrophil extracellular traps release was described initially
in response to lipopolysaccharide (LPS), interleukin-8 (IL-8),
and phorbol myristate acetate (PMA) (Brinkmann et al., 2004;
Hakkim et al., 2011). However, further studies have shown
that diverse stimuli trigger NETs, such as platelet expressing
TLR4 (Clark et al., 2007; Brown and McIntyre, 2011), PAMPs
recognition by toll-like receptors (TLR), such as TLR2 (Cacciotto
et al., 2016), TLR4 (Funchal et al., 2015), TLR7 (Hiroki et al.,
2019), and TLR8 (Lood et al., 2017); calcium ionophores (Pilsczek
et al., 2010; Douda et al., 2015), uric acid (Arai et al., 2014),
high levels of glucose (Wong et al., 2015; Stoikou et al., 2017;
Wang et al., 2018), autoantibodies (Kessenbrock et al., 2009), and
interferon (IFN) (Martinelli et al., 2004).

The classical (or suicidal) NETs release, which is activated
primarily by PMA, occurs after 3–4 h of stimulation, with
the accompanying death of the cell (lytic NETosis). In
physiological conditions, the process begins with the recognition
of PAMPs or DAMPs by TLR, by receptors of complement
system, by Fc-receptors (FcγRIIa and FcγRIIIb) (Chen et al.,
2012) or by cytokines (Brinkmann et al., 2004; Garcia-Romo
et al., 2011). Then, the Protein Kinase C (PKC) is activated,
allowing the activation of the Raf-MEK-ERK pathway and the
phosphorylation of a subunit of the NADPH oxidase 2 (NOX2)
(Hakkim et al., 2011). Reactive oxygen species (ROS) produced
by NOX2 act on the azurophilic granules to release the NE to the
cytosol, in a process that requires the function of MPO (Metzler
et al., 2014). ROS are also involved in the translocation of NE
to the nucleus, promoting the decondensation of chromatin
(Papayannopoulos et al., 2010; Metzler et al., 2014). This effect
occurs in conjunction with the action of the Peptidyl arginine
deiminase 4 (PAD4), an enzyme that citrullinate the histone H3
(Li et al., 2010) and allows NETs release in a process known as
NOX2-dependent NETosis (Li et al., 2010). Further, the activity
of PAD4 on NETs release is essential for an efficient DNA
decondensation, the rupture of the NE granule, the nuclear DNA
release into the cytoplasm, and the extracellular NETs release
(Thiam et al., 2020).

There is also a NOX2-independent type of NETs release,
also known as vital NETosis. This process could be triggered
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by recognition of LPS by PRRs as TLRs (Pilsczek et al.,
2010; Yipp et al., 2012). As soon as 10 min after activation,
the extrusion of vesicles loaded with nuclear DNA occurs,
without breaking the plasma membrane, with minimal cell lysis
and no ROS production (Pilsczek et al., 2010; Chen et al.,
2012). The anuclear granulocytes generated -either cytoplasts or
motile cytokineplasts- due to vital NETosis retain antimicrobial
mechanisms as phagocytosis, transmigration, and chemotaxis
(Malawista et al., 1989, 2006). Furthermore, the anuclear
neutrophils derived from this process, which are close to 10%
of total neutrophils undergoing NETosis, contain intracellular
bacteria due to intact plasma membrane and maintain an active
phagolysosome, implying that NETs release and phagocytosis
can work simultaneously and independently (Yipp et al., 2012).
The importance of vital NETs release is that the cell still
contributes to the antibacterial mechanisms (Pilsczek et al., 2010;
Yipp et al., 2012). However, it is still unknown how long last
and how functional these anuclear cells are. Another type of
NETs release that retains the survival of the cell is described
in neutrophils primed with GM-CSF and stimulated with LPS
or with complement components such as C5a, which induce
mitochondrial DNA release, a rapid process that depend on ROS
(Yousefi et al., 2009; McIlroy et al., 2014). This type of NETs
release by viable neutrophils requires glycolytic ATP production
for rearrangements of the microtubule network and F-actin
(Amini et al., 2018).

Also, NETs release is induced by calcium ionophore or
ionomycin, which induce a faster NETs release than the
classical NOX2-dependent NETs release and independent of
ERK activation (Douda et al., 2015). However, this pathway
requires the calcium-activated potassium channel of small
conductance 3 (SK channel), which activates mitochondrial
ROS production (Douda et al., 2015). In consequence, this
process induces the opening of the non-selective mitochondrial
permeability transition pore, which results in the accumulation
of mitochondrial ROS that causes the activation of NOX2
(Vorobjeva, 2020). Using human neutrophils from healthy
controls or from patients with the chronic granulomatous disease
(CGD), which lacks NADPH Oxidase, it was demonstrated that
NET release can indeed be induced by mitochondrial ROS
production (Vorobjeva, 2020).

The last NETs release induction pathway identified so
far is mediated by cytosolic LPS derived from intracellular
Gram-negative pathogens, such as Salmonella enterica serovar
Typhimurium (Chen et al., 2018). This stimulus activates the
non-canonical inflammasome, which is a caspase-11-dependent
pathway, and triggers the neutrophil gasdermin-D (GSDM-
D)-dependent death (Chen et al., 2018). In this case, the
action of ROS or PAD4 is not required, because GSDM-D can
directly generate pores in the nuclear and plasma membranes
(Chen et al., 2018).

It is essential to mention that not all stimuli activate the
specific proteins discussed above. Although five different stimuli
induce NETs production, killed bacteria and degraded proteins
activate different pathways as compared to NOX2-dependent
NETosis (Kenny et al., 2017). For instance, Candida albicans
and group B of Streptococcus (GBS) induce NETs independently

of histone citrullination mediated by PAD4 (Kenny et al.,
2017; Guiducci et al., 2018). In another study, Leishmania
amazonensis induced both types of NETs release: the classical
NOX2-dependent NETosis (which is dependent on the action of
PAD4, but independent of MPO) and the early/rapid NETosis
(which is ROS and NE-independent, but dependent on the
activity of PAD4) (Rochael et al., 2015). All these studies suggest
that the NETosis process is not activated just by one or two
pathways but depends on the nature of the stimulus and can be
very diverse in terms of activation.

It has been described that other factors produced due to the
host immune response activation can also induce NETs during
a bacterial infection. As an example, it has been described that
platelets can recognize Gram-negative and -positive bacteria
and other stimuli through TLR-4, inducing the adhesion to
neutrophil and NETs release (Clark et al., 2007). Accordingly,
elimination of platelets or the inhibition of TLR4 expressed by
platelets substantially reduces NETs release (Clark et al., 2007).
The importance of platelets is observed when the bacteria induce
virulence factors that promote apoptosis of these cells, causing
thrombocytopenia and generating a more severe infection that
affects the immune response of the neutrophils (Kraemer
et al., 2012). Other factors produced during immune response
activation that cause NETs release in a ROS- dependent manner
are of pro-inflammatory cytokines such as TNFα, IL-1β, or IL-
8 (Keshari et al., 2012) and macrophage Migration Inhibitory
Factor (MIF) secreted by red blood cells during Plasmodium
infection, which induce NETosis in a C-X-C chemokine receptor
type 4 (CXCR4) dependent manner (Rodrigues et al., 2020).

OTHER IMMUNE CELLS THAT
PRODUCE EXTRACELLULAR TRAPS

Although NETs are the most studied Extracellular Traps (ET),
other immune cells are also able to produce this kind of
structures, such as eosinophils (Ueki et al., 2013), basophils
(Yousefi et al., 2015), macrophages (Aulik et al., 2012), and mast
cells (Naqvi et al., 2017).

Eosinophils Extracellular Traps
Eosinophils extracellular traps (EETs) are released similarly to
NETs. They are triggered due to activation by bacteria (Yousefi
et al., 2008; Gevaert et al., 2017), fungi (Muniz et al., 2018;
Omokawa et al., 2018), and by PMA and calcium ionophore
stimulation (Ueki et al., 2013, 2016). In addition, it has been
described that EETs contain entire eosinophil granules and
granule-derived proteins (Mukherjee et al., 2018). Furthermore,
mitochondrial DNA-derived EETs has also been reported in
response to LPS stimulation on previously primed cells in
in vitro experiments, which did not involve cell death (Yousefi
et al., 2008). However, other studies have shown that EETs
can also be produced by nuclear DNA, and ROS production
dependent on NOX activation, in a similar pathway to the
lytic NETosis (Ueki et al., 2013). The presence of EETs
has been reported during allergies (Dworski et al., 2011),
respiratory tract disease (Cunha et al., 2014; Ueki et al., 2016;
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Echevarría et al., 2017), and skin disease (Simon et al., 2011;
Morshed et al., 2012).

Basophils Extracellular Traps
The release of basophils extracellular traps (BETs) has not been
deeply studied. However, it has been observed in activated cells in
response to Gram-positive (Morshed et al., 2014) and -negative
bacteria (Yousefi et al., 2015). It has been described that ETs
derived from mice or human basophils have the capacity to
entrap Escherichia coli and Staphylococcus aureus (Yousefi et al.,
2015), equivalent to NETs (Brinkmann et al., 2004). Another
in vitro study performed in basophils derived from mice and
humans reported that BETs are released in a mitochondrial ROS-
dependent manner, without activation of NOX, and are also
composed of mitochondrial DNA (Yousefi et al., 2015). This
process can take place as rapidly as 5 min post-stimulation
(Yousefi et al., 2008) with the concomitant cell survival of human
and mouse primed basophils (Morshed et al., 2014). Lastly,
BETs release was reported in vivo studies during N. brasiliensis
infection in mice and inflammatory skin diseases in the human
epidermis (Morshed et al., 2014).

Macrophages and Monocytes
Extracellular Traps
Macrophages and monocyte extracellular traps (METs) have
been studied in different types of cells, such as RAW264.7,
human alveolar macrophage, murine peritoneal macrophages,
and bovine monocytes (Chow et al., 2010; Doster et al., 2018).
Experiments performed in in vitro and in vivo models have
described that TNF-α is an inducer of ETs in RAW264.7
macrophages. The concomitant presence of citrullinated histones
suggests that ETosis in macrophages is mediated by PAD-2
(Mohanan et al., 2013). Various distinct stimuli can induce
METs, including Gram-negative (Webster et al., 2010; Liu et al.,
2014) and -positive bacteria (Chow et al., 2010; Hellenbrand
et al., 2013; Shen et al., 2016), parasites (Muñoz-Caro et al.,
2014; Reichel et al., 2015), fungi (Liu et al., 2014; Halder et al.,
2017; Loureiro et al., 2019), PMA (Chow et al., 2010), and
TNF-α (Mohanan et al., 2013), leading to cell death. Monocyte-
derived macrophages from human peripheral blood have also
been described to release METs after the stimulation with IFN-
γ during infection with Mycobacterium tuberculosis (Wong
and Jacobs, 2013). Escherichia coli also induces the release of
METs, composed of nuclear and mitochondrial DNA, histones,
MPO, and lysozyme (Liu et al., 2014), independently of ROS
production by NOX (Liu et al., 2014). Like NETs, METs can
be produced by different molecular pathways, dependent or
independent of ROS and caspase-1, in human monocytes derived
from peripheral blood when infected with Escherichia coli and
Klebsiella pneumoniae infection (Webster et al., 2010). METs have
been also observed in bone marrow-derived macrophage and
J774A.1 macrophages infected with a mutant strain of Salmonella
enterica serovar Typhimurium, showing that METs can kill and
entrap at least 10% of the initial inoculum (Mónaco et al.,
2021). However, more studies are necessary to determine the
different pathways that induce METs release and to identify

similarities between NETs and METs, because the ETs from
macrophages depends on the specie, the state of differentiation,
microenvironment, and state polarization (Doster et al., 2018).

Mast Cells Extracellular Traps
The release of mast cells extracellular traps (MCETs) was first
described in response to PMA, with ROS production by NOX
(Von Köckritz-Blickwede et al., 2008; Campillo-Navarro et al.,
2018). MCETs are composed of nuclear DNA, histones, and
granular proteins, such as tryptase and cathelicidin AMP LL-
37 (Campillo-Navarro et al., 2017), which suggest that MCETs
and NETs are produced in a similar manner (Von Köckritz-
Blickwede et al., 2008). It has been shown that although mast cells
cannot phagocytose Streptococcus pyogenes, the release of MCETs
allows the growth inhibition of the bacteria (Von Köckritz-
Blickwede et al., 2008). Furthermore, heat-killed Mycobacterium
tuberculosis can induce the release of MCETs after 2 h of
stimulation; however, the live pathogen can modulate the release
of these ETs (Campillo-Navarro et al., 2018). MCETs are released
in a ROS-dependent manner in the case of Listeria monocytogenes
(Campillo-Navarro et al., 2017).

ROLE OF NEUTROPHIL
EXTRACELLULAR TRAP DURING
BACTERIAL INFECTION

The contribution of NETs during bacterial infection is not
completely clear. It was initially thought that it promoted the
clearance of bacteria by facilitating the entrapping and killing
of these pathogens (Riyapa et al., 2012). However, NETs release
has a bacteriostatic rather than a bactericidal effect because
it mainly affects the growth of the bacteria and eventually
could aid the killing (Menegazzi et al., 2012). Nevertheless,
the DNA exerts antimicrobial properties by cation chelation
and the disruption of the cell membrane (Halverson et al.,
2015). Furthermore, experiments in primary human neutrophils
showed that NETs could entrap bacteria, including Pseudomonas
aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus),
without killing them but affecting the ability of the complement
to kill them (Azzouz et al., 2018). Also, the condition in which the
NETs are produced affects the antimicrobial properties, observing
that NETs in static conditions present fewer killing abilities than
the NETs released in dynamic conditions (Azzouz et al., 2018).

On the other hand, NETs release could result in collateral
effects due to the production of antimicrobial components that
can lead to exacerbated inflammation, causing tissue damage (Xu
et al., 2009). However, it has been described that the granular
proteins with bactericidal activities released within the NET act
mainly as a regulator of inflammation due to the action on
different cytokines, rather than as a bactericidal mechanisms
(Clancy, 2018).

Notably, while almost all bacteria can induce ETs, several
microorganisms have evolved molecular strategies to inhibit this
host mechanism of defense to promote microbial proliferation
and dissemination (Malachowa et al., 2013; Seper et al., 2013;
Storisteanu et al., 2017). Evasion strategies can be due to the
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inhibition of NET release by down-regulating host inflammatory
responses, the degradation of NETs using pathogen-derived
DNases, and/or by the resistance to the microbicidal components
of NETs (Halverson et al., 2015; Storisteanu et al., 2017; Figure 1).
In this section, we will review some examples of virulence factors
that induce the NETs, which can favor or not the clearance,
and some evasion strategies used to avoid the antimicrobial
mechanisms and, in some cases, take advantage of this immune
response. These evasion mechanisms have been summarized
in Table 1.

Pseudomonas aeruginosa
Pseudomonas aeruginosa is an encapsulated, Gram-negative
bacterium associated with severe illnesses in healthy and
individuals with comorbidities and an important cause of
nosocomial infection in cystic fibrosis patients (Davies, 2002).
Pyocyanin, a redox-active pigment secreted to the airways by the

biofilm, is associated with an increase in oxidative stress and the
inflammation generated during the disease (Rada et al., 2013).
Also, this virulence factors increases the induction of NETs by the
NOX2-dependent pathway (Rada et al., 2013). However, NETs
extrusion does not have any effect in entrapping or killing the
bacteria but in decreasing the functionality of the lungs and
increasing the inflammatory conditions found in patients with
cystic fibrosis (Rada et al., 2013).

The sputum of cystic fibrosis patients presents a large amount
of DNA because neutrophils is one of the main types of immune
cells recruited to the airways and the NETs release by these cells
allow the characteristic sputum’s mucus structure (Manzenreiter,
2012). In this sense, it has been observed that the concentration
of extracellular DNA in the sputum generate the lysis of the
bacteria (Halverson et al., 2015). However, P. aeruginosa contains
virulence factors that allow the degradation of the NETs structure,
which involves an operon encoding two DNA-modifying type

FIGURE 1 | Bacteria virulence factors that avoid NETs release against bacterial infection. Bacteria have evolved to develop different virulence factors to avoid the
function of NETs, inhibiting different steps in the pathways required for the NETs release. B. Pertussis or GAS inhibit the action of ROS production by streptolysin O
during the NETs pathway, which in the end inhibits the release of the structure. Nucleases are the main virulence factor shared among the bacteria which dismantle
the NETs structure, and in this sense, the bacteria can disseminate and generate the disease. GAS, Group A Streptococcus; MPO, myeloperoxidase; NE, neutrophil
elastase; SOMV, small vesicles from the outer membrane into the environment; PAD4, peptidylarginine deiminase 4; Nuc, nuclease; LL37, cathelicidin.
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TABLE 1 | Virulence factors that interfere with NET function during bacterial infection.

NET inhibition Type of inhibition of NET function References

Pseudomonas aeruginosa Dnase (eddB), phosphatase (eddA) 2 Rada et al., 2013; Wilton et al., 2018

Biofilm formation 3 Thanabalasuriar et al., 2019

Pyocyanin 1 Rada et al., 2013

Mycobacterium tuberculosis Probably the level of lipids of it envelops 3 Liu et al., 2019; Sun et al., 2020

ESAT-6 protein by the ESX-1 type 1 Francis et al., 2014

Staphylococcus
aureus

Biofilm formation 3 Malachowa et al., 2013; Bhattacharya et al.,
2018

Eap, DNA binding protein, Nuc,
adenosin synthase

2 Chavakis et al., 2005; Thammavongsa et al.,
2013; Eisenbeis et al., 2018

Leukotoxin GH 1 Malachowa et al., 2013

Bordetella spp. ACT and CyaA 1 Eby et al., 2014; Gorgojo et al., 2017

Streptococcus spp. Sda1 3 Lauth et al., 2009; Buchanan et al., 2006;
Moon et al., 2016

SpnA 3 Chang et al., 2011

endA 3 Beiter et al., 2006; Zhu et al., 2013

Capsule 3 Wartha et al., 2007

dlt operon 3 Wartha et al., 2007

Streptolysin O 1 Uchiyama et al., 2015

M1 toxin 1 Lauth et al., 2009

Yersinia
enterocolitica

Nuclease 2 Möllerherm et al., 2015

Vibrio cholerae Dns and Xds 2 Seper et al., 2013

Mycoplasma pneumoniae Mpn491 2 Yamamoto et al., 2017

Neisseria
meningitidis

Nuc 2 Lappann et al., 2013

Phosphoethanolamine transferase 3 Lappann et al., 2013

ZnuD 2 Lappann et al., 2013

SOMVs 3 Lappann et al., 2013

Burkholderia pseudomallei TTSS and capsule polysaccharide I 1 Riyapa et al., 2012

Inhibition of NET release by down regulating the host inflammatory response1; Degradation of NETs using pathogen derived DNases2; Bacterial virulence factors that
evade NETs3.

II secreted enzymes: a DNase (eddB) and a phosphatase (eddA)
(Wilton et al., 2018). These two enzymes work together at
degrading the extracellular DNA: the phosphatase acts on the
phosphodiester backbone of the DNA, removing the phosphates
and altering the function, but no the structure of the DNA
(neutralizes its cation-chelating, antimicrobial activity), while the
DNase disassembles the NETs and promotes bacterial survival
(Wilton et al., 2018). This allows the bacteria to tolerate the ETs
produced by the neutrophils, in addition to the formation of the
biofilms that avoid the NETs antimicrobial function. This role
of the NETs in the consistency of the sputum has led to the
evaluation of rhDNases used as treatment (Guichard et al., 2018).

In cystic fibrosis patients, P. aeruginosa can produce keratitis
caused by a biofilm formed in the outer eye surface (Saraswathi
and Beuerman, 2015; Naimie et al., 2016). In a mice model
of keratitis caused by P. aeruginosa, it was observed that the
Type Three Secretion System (TTSS) and the bacterial Psl
exopolysaccharide contribute to biofilm formation (Jabalameli
et al., 2012; Naimie et al., 2016) and the release of NETs
(Thanabalasuriar et al., 2019). In this model, NETs production
allows the maturation of the biofilm formation and the inhibition
of the dissemination to the brain. However, NETs formation

generates a severe local ulcer in the eye without killing the
pathogen (Thanabalasuriar et al., 2019).

Mycobacterium tuberculosis
Mycobacterium tuberculosis (Mtb) is the causative agent of
tuberculosis, a chronic infectious lung disease that affects over
one-third of the global population and causes 8 million new
cases per year (Theodor, 2013; Ramazanzadeh et al., 2015). Mtb
secrete the protein ESAT-6 by the ESX-1 type VII secretion
system, increasing Ca2+ influx inside the cell, activating calpain,
a cysteine protease, which finally allows the release of NETs
structures through a pathway similar to the activation produced
by ionomycin (Francis et al., 2014). This mechanism contributes
to lung pathology and generates an environment more permissive
to infection (Francis et al., 2014). Furthermore, in neutrophils
obtained from human alveolar lining fluid, ETs structures fail to
kill Mtb but contribute to reducing the bacterial dissemination
(Arcos et al., 2015).

It is also known that the bacteria Mycobacterium bovis or
Bacillus Calmette Guerin (BCG), which is currently used as
a vaccine against Mycobacterium tuberculosis, can trigger NET
formation (Liu et al., 2019; Sun et al., 2020). This bacterium is
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currently used to induce protection against heterologous antigens
as well (Claudia et al., 2015; Céspedes et al., 2017; Goulart et al.,
2017; Soto et al., 2018; Covián et al., 2019) and is also used as
a immunotherapy in different diseases in humans. The NETs
pathway activated by BCG depends mainly on ROS production
(Liu et al., 2019; Sun et al., 2020). Furthermore, it was also shown
that NETs entrap but do not kill bacteria, which may be due to
the high lipid levels of the mycobacterial envelope that impair
NET-mediated killing (Liu et al., 2019; Sun et al., 2020).

Staphylococcus aureus
Staphylococcus aureus is a Gram-positive bacterium usually part
of the normal microbiota (Krismer et al., 2017). However, this
bacterium can act as an opportunistic pathogen and eventually
be the causative agent of significant systemic disease due to the
activity of several virulence factors. It was observed in human
neutrophils that S. aureus induces NETs due to a leukotoxin
GH (LukGH), which generates NETs release and entrap but
does not kill the bacteria (Malachowa et al., 2013). In a porcine
chronic burn model, S. aureus biofilms -in opposite to single-
cell populations- promote the formation of NETs through the
combined action of leukocidins Panton-Valentine leukocidin
(PVL) and γ-hemolysin AB (Bhattacharya et al., 2018) without
the avoidance of bacterial dissemination (Malachowa et al.,
2013). Through this response, S. aureus persisted because the
antimicrobial activity of NETs was ineffective at eliminating the
bacteria associated with the biofilm (Bhattacharya et al., 2018;
Speziale and Pietrocola, 2021).

Staphylococcus aureus also produce different enzymes to
interfere with the antimicrobial property of the extracellular
DNA, such as a DNA binding protein, the extracellular adherence
protein (Eap) (Chavakis et al., 2005), and a nuclease (Nuc).
These enzymes allow the escape from the NETs structure, delay
the bacteria clearance and increase the mortality caused by
the infection. Also, this nuclease is related to the persistence
of the bacteria in cystic fibrosis patients (Berends et al., 2010;
Herzog et al., 2019). Eap binds to linearized extracellular DNA,
aggregates this structure, and interferes with the antimicrobial
and trapping function of NETs structure in human-derived
neutrophils (Chavakis et al., 2005; Eisenbeis et al., 2018). On
the other side, the adenosine synthase (Thammavongsa et al.,
2013) in conjunction with a nuclease Nuc are required to
generate deoxyadenosine (dAdo) from dsDNA derived from the
NETs release in human-derived neutrophils, inducing caspase-3-
mediated death on macrophages that are recruited to the site of
infection (Figure 1; Thammavongsa et al., 2013).

Bordetella spp.
Bordetella pertussis (B. pertussis) is a Gram-negative bacterium
and the causative agent of whooping cough, causing
approximately 151,000 cases globally in 2018, according to
the World Health Organization (WHO). This bacterium
expresses several virulence factors as pertussis and adenylate
cyclase toxins (Ladant and Ullmann, 1999; Mooi et al., 2009).
The adenylate cyclase toxin (ACT) prolongs the life span of
human-derived neutrophils and inhibits the release of NETs
by increasing cAMP levels and inhibiting intracellular ROS

production (Eby et al., 2014). Bordetella parapertussis also
generates whooping cough (Watanabe and Nagai, 2004; Bouchez
and Guiso, 2015) and produce an adenylate cyclase enzyme,
CyaA, that is released to the extracellular medium and inhibits
the ROS production generated by NOX (Gorgojo et al., 2017),
inhibiting the NET induction in human-derived neutrophils
(Figure 1). However, NETs induced by these bacteria can trap
and kill bacteria because they fail to express other virulence
factors to dismantle the structure (Gorgojo et al., 2017).

Streptococcus spp.
Group A Streptococcus (GAS) is a group of Gram-positive,
β-hemolytic bacteria, part of the normal microbiota that
can generate between 10,649 to13,434 cases of invasive GAS
infections that occur in the United States annually (Stevens, 1992;
Deutscher et al., 2011; Nelson et al., 2016). In human neutrophils,
GAS expresses the M1 exotoxin, a virulence factor, which induces
ETs in neutrophils and mast cells by associating with fibrinogen
and forming a complex that stimulates neutrophils (Lauth et al.,
2009). However, these ETs do not kill the pathogen because
the M1 exotoxin allows the pathogen’s survival in the presence
of cathelicidin and antimicrobial peptides (Lauth et al., 2009).
Besides this, GAS expresses a DNase Sda1, which promotes the
degradation of the NETs (Buchanan et al., 2006; Moon et al.,
2016). Streptococcus pyogenes is the main species that belongs to
GAS. Besides Sda1 (Buchanan et al., 2006), it produces another
nuclease, SpnA, that is not secreted but is anchored to the cell
wall and allows bacteria survival in human blood and resist NETs
killing (Chang et al., 2011). Also streptolysin O, a pore-forming
toxin, induces eukaryotic cell lysis (Uchiyama et al., 2015) due
to a decrease in the oxidative burst and, consequently, inhibits
the release of NETs and the extracellular killing (Uchiyama et al.,
2015) allowing bacteria survival in the bloodstream.

Streptococcus pneumoniae (S. pneumoniae) is an alpha-
hemolytic bacterium and the leading cause of pneumonia
worldwide, mainly in children, that caused 294,000 deaths
during 2015 (Wahl et al., 2018). It has been described that
the induction of NETs in this disease has been correlated
with an adverse outcome in community-acquired pneumonia
(CAP) (Gray, 2018). However, in a mice model of infection,
it was observed that although NETs can entrap S. pneumoniae
(Figure 1), it fails to kill this pathogen due to the expression
of endA, a bacterial cell-bound DNase. EndA destroys the
NETs and promotes the spreading of bacteria from the upper
airways to the lungs and bloodstream, promoting a more
invasive disease (Beiter et al., 2006; Zhu et al., 2013). The
S. pneumoniae capsule also contributes to avoiding the bacterial
entrapping by NETs (Wartha et al., 2007). Due to the operon
dlt that produces the modification of lipoteichoic acids, which
introduce positive charge into alanine amino acid residues, which
then caused electrochemical repulsion of antimicrobial proteins
present in NETs (Wartha et al., 2007). This molecular mechanism
contributes to bacterial resistance to the killing by NETs (Wartha
et al., 2007). Importantly, it has been described that IL-10
production by neutrophils in C57BL/6 mice can modulate the
lung injury induced by S. pneumoniae infection (González et al.,
2021). It has been described that IL-10 can inhibit the TLR7/8
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activation pathway, which prevents the generation of ROS and
the translocation of NE to the nucleus, decreasing the NETs
release (Saitoh et al., 2012), but it is unknown whether IL-10
producing neutrophils are still able to produce NETs.

Klebsiella pneumoniae
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative
bacteria found in the nasopharynx and the intestinal tract. It is
the most relevant species for humans of the genus Klebsiella spp.
and a significant cause of nosocomial infection, responsible for
severe diseases such as septicemia, pneumonia and urinary tract
infections (Podschun and Ullmann, 1998). In the United States,
the infection caused by Carbapenem-resistant Enterobacteriaceae
(CRE) produce up to 2.93 cases per 100,000 people (Guh et al.,
2015). CRE sequence type 258 (CRKP-ST258) is a multidrug-
resistant strain that has spread worldwide, which evades the
neutrophil immune response, preventing intracellular killing
and NETs release in neutrophils derived from human (Castillo
et al., 2019) and mice (Peñaloza et al., 2020). In human
neutrophils, it was described that inhibition of NETs release
was due to the avoidance of ROS production, produced to in
part to the polysaccharide of the LPS (Castillo et al., 2019).
In mouse neutrophils, no differences in ROS or MPO was
observed when compared to a non-pathogenic K. pneumoniae,
but differences in the acidification of the phagolysosome was
described, which affects the functionality of MPO (Peñaloza
et al., 2020). Another in vitro study performed in human-
derived neutrophils showed that K. pneumoniae carbapenem-
resistant affects the release of NETs due to the mobilization
of primary granules due to a non-soluble virulence factor
(Birnberg-Weiss et al., 2021).

Other Gram-Negative Bacteria
Yersinia enterocolitica is the causative agent of yersiniosis auto-
limited gastroenteritis (Marks et al., 2018), producing 9.7 cases
each 100,000 people per year, being children between 6 and
11 months the most affected (Yagüe-Muñoz et al., 2019).
Three different serotypes (O:3, O:8, and O:9) were tested
for induction of NETs release in human-derived neutrophils
and all of them induce and degrade NETs by the action
of Ca2+/Mg2+-dependent NET-degrading nuclease (Figure 1;
Möllerherm et al., 2015). Secretory diarrheal disease caused by
Vibrio cholerae, the causative agent of a previously considered
non-inflammatory disease, has recently been shown to recruit
a high number of neutrophils (Queen and Satchell, 2012).
Human-derived neutrophils in direct contact with Vibrio release
NETs in an oxidative burst-dependent fashion and can kill
the bacteria (Seper et al., 2013). Nevertheless, at the same
time, bacteria induce two extracellular nucleases: Dns and Xds,
which enhance pathogen dissemination (Figure 1; Seper et al.,
2013). Mycoplasma pneumoniae causes atypical pneumonia and
produces an extracellular nuclease, Mpn491, that requires Mg2+

to degrade the NETs structure in in vitro and in vivo models
(Yamamoto et al., 2017).

Neisseria meningitidis (meningococci) is a Gram-negative
bacterium that can cause severe septicemia in children and is a
restricted human pathogen. Neisseria also presents a putatively

secreted thermonuclease denominated Nuc, which induces and
degrades NETs from human-derived blood, contributing to the
escape and the avoidance of the killing of the pathogen (Lappann
et al., 2013). Meningococcus display at least three different
mechanisms to avoid NETs killing: (1) the lipid A modification
of LPS with a phosphoethanolamine transferase is crucial for
the survival of Neisseria meningitidis in the presence of NETs
in vitro, due to this modification, bacteria are protected from the
action of the cathepsin-G antimicrobial peptide; (2) it produces
an outer membrane receptor ZnuD, which is crucial to uptake the
Zn2+ and promote the nutritional resistance in the environment
induced by the NETs; (3) it secrete small vesicles from the outer
membrane into the environment (SOMVs), which have been
identified as the inducers of NETs release and also bind to the
NETs structure to reduce its bacteriostatic effect (Lappann et al.,
2013; Figure 1).

Burkholderia pseudomallei is a Gram-negative bacterium and
the causative agent of melioidosis, a zoonotic infection leading
to lung, localized or systemic infection. It is a critical pathogen
in diabetic patients, and it is estimated that exist 165,000 human
melioidosis cases per year, of which 89,000 people die with a
case fatality rate of more than 50% (Chanchamroen et al., 2009;
Limmathurotsakul et al., 2010; Birnie et al., 2019). This bacterium
triggers the induction of NOX2-dependent NETs released in
human- and mouse-derived neutrophils, and in addition to
entrapping bacteria, NETs can significantly reduce the initial
inoculum (Riyapa et al., 2012). However, the TTSS and capsular
polysaccharide-1 expressed by these bacteria can regulate the
proportion of NETs released, possibly by regulating the oxidative
burst (Riyapa et al., 2012).

Leptospira spp. is an important cause of zoonotic infection,
which can generate rapid bloodstream dissemination and affect
mainly the kidney function, and in this manner, the carrier
disseminates the infection (Scharrig et al., 2015). It was shown
that Leptospira interrogans serovar Copenhagen strain Fiocruz
L1-130 (LIC) induces NETs released by human- and mouse-
derived neutrophils, which entraps and kills bacteria, decreasing
the CFU content. However, some pathogenic strains can degrade
the dsDNA structure, implying that the NETs function depends
on the infecting bacterial strain (Scharrig et al., 2015).

CONTRIBUTION OF NEUTROPHIL
EXTRACELLULAR TRAP TO VIRAL
INFECTIONS

In addition to the widely described role of bacteria in triggering
NETs release, increasing evidence indicates that viruses can also
promote NET formation (Jenne et al., 2013; Souza et al., 2018).
Current data suggest that PRRs expressed on the surface or
internal compartments of neutrophils, such as endosomes, play
a crucial role in triggering NETs release (Saitoh et al., 2012).
Other studies suggest that, as observed for bacteria, viruses may
counteract the mechanisms involved in triggering NETs release
during infection (Martinez et al., 1996). It is also documented
that mechanisms underlying NET release induced by viruses
may differ mechanistically depending on the specific pathogen
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involved (Muraro et al., 2018; Chan et al., 2020). Along these
lines, it has been described that NET release may either promote
or prevent the viral-induced pathology (Jenne et al., 2013;
Al-Anazi et al., 2020).

In the case of Human Immunodeficiency Virus-1 (HIV-1),
it has been documented that NETs promote pathogen clearance
through the concerted action of MPO, α-defensin, and histones
(Saitoh et al., 2012). In this work, cultivated neutrophils were
exposed to HIV and the results suggest that NETs release induced
by infection occurs through the engagement of endosome-
expressed TLR7 and TLR8, which induce ROS-dependent NET
formation (Figure 2). Therefore, in this case, NET formation
benefits the infected host to prevent pathogen spreading (Saitoh
et al., 2012). Remarkably, HIV-1 counteracts this response by
inducing the production of IL-10 by DCs, which suppresses
the ROS-dependent response that results in an impaired NET-
dependent HIV-1 elimination.

Another example of a protective role of NETs during
viral infection is the case of the myxoma virus (MYXV)
(Jenne et al., 2013). This oncolytic virus is characterized by its
ability to infect rabbits and kill human and murine cancer cells
(Lun et al., 2005). Therefore, it has been proposed as a viral-
based therapy for cancer (Rahman and McFadden, 2020). In the
mice model, intravenous infection with MYVX induces massive
recruitment of neutrophils and platelets to the liver vasculature
(Jenne et al., 2013). At this site, the interaction of both subsets of
cells promotes the release of NETs that can protect host cells from
MYVX infection, and this protective effect was reversed by DNase
treatment (Jenne et al., 2013). These results highlight the role of
extracellular DNA in preventing viral dissemination (Jenne et al.,
2013). According to this notion, it has also been shown that viral
proteins with DNase activity derived from Herpesviruses can also
degrade NETs, thereby preventing the formation of NETs and
promoting viral spreading (Martinez et al., 1996).

FIGURE 2 | The release and activity of NETs is modulated by viral infection. Interaction of neutrophils with different viruses activates extracellular or intracellular
pathways that lead to the NET formation. HIV triggers TLR7 signaling in the endosomes of neutrophils leading to the production of ROS and subsequently NETs
release. HIV infection of DCs triggers the production of IL-10, which suppresses the formation of NETs and may allow pathogen spreading. HRSV infection triggers
TLR4 signaling at the cell surface, which results in ROS-dependent NETs release. In the case of H1N1, this virus triggers ROS independent NETs release which may
prevent pathogen spreading. In contrast, the activity of DNases from Herpesviruses can degrade NETs to allow viral dissemination.
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Influenza is another respiratory virus that circulates
worldwide and can trigger NETs release (Ashar et al., 2018;
Zhu et al., 2018; Chan et al., 2020). Annual influenza cases lead
to extensive mortality, especially in people older than 65 years.
According to a recent study, it was estimated that influenza
infection accounts for 4.0–8.8 deaths per 100,000 individuals
annually (Iuliano et al., 2018). Sudden onset of fever, headache,
sore throat, and a runny nose develops upon infection. Illnesses
range from mild to severe and can lead to the death of infected
individuals (Ryu and Cowling, 2020). Patients with severe
influenza showed elevated plasma NET release, measured as
the level of cell-free DNA and DNA-MPO complexes (Zhu
et al., 2018). In addition, isolated neutrophils from these
subjects released higher amounts of MPO-DNA complex in
response to IL-8 or LPS (Zhu et al., 2018). Interestingly NETs
from H7N9 and H1N1 patients increased the permeability of
alveolar epithelial cells, and, consequently, NET production was
positively correlated with acute inflammation (Zhu et al., 2018).
Together, this data indicates that high levels of NETs correlate
with influenza severity. Thus, evaluation of NETs in plasma
could be an excellent strategy to predict the prognosis of IAV
patients (Zhu et al., 2018).

Histones present in the lungs of IAV infected mice have
been shown to induce cytotoxicity on cultured human lung
epithelial cells (Ashar et al., 2018). Furthermore, histones also
bind to platelets within thrombi in infected mouse lungs (Ashar
et al., 2018). Nasal aspirates from influenza-infected patients
also have elevated levels of extracellular histones, which may
serve as a clinical marker of pulmonary injury (Ashar et al.,
2018). In vitro studies showed that histones inhibited influenza
growth. However, in the mice model, in vivo treatment with
histones did not yield antiviral effects and instead increased
lung illness (Ashar et al., 2018). The blockade of histones with
anti-histone antibodies caused a significant reduction of lung
pathology in lethal influenza–challenged mice and enhanced
protection when co-administered with the antiviral oseltamivir
(Ashar et al., 2018). These data highlight the pathogenic
effects of extracellular histones in pulmonary injury during
influenza infection. These findings suggest that targeting histones
represents a novel therapeutic strategy for treating influenza
pneumonia (Ashar et al., 2018).

Another study described that NETs release is triggered only
by some IAV specific strains (Chan et al., 2020). For example,
it is indicated that the H5N1 strain fails to stimulate NETs
release, whereas H1N1 infection stimulates NET production by
isolated human neutrophils (Chan et al., 2020). Furthermore,
it is also thought that infection with H5N1 caused a more
severe disease than H1N1 infection (Chan et al., 2020), which
opens the question of whether there are other innate immune
responses rather than NETs release that can account for
more severe disease (Chan et al., 2020). The same study
suggested that NET production induced by H1N1 is not
dependent on the NOX-produced ROS (Chan et al., 2020).
Consistent with this notion is the observation that neutrophils
exposed to the NOX inhibitor diphenyleneiodonium (DPI)
were able to produce NETs in response to an H1N1 challenge
(Chan et al., 2020). Thus, as observed for some bacteria,

such as S. aureus, the possibility that NET release occurs
independently of ROS production is also described for viruses
(Chan et al., 2020).

Human respiratory syncytial virus (hRSV) represents one
of the most important causes of acute lower respiratory tract
infection in young children and the elderly (Bohmwald et al.,
2016; Canedo-Marroquín et al., 2017; Rey-Jurado and Kalergis,
2017; Carvajal et al., 2019). Regarding the neutrophil role
during hRSV infection, it was shown that hRSV triggers NET
release in human-derived neutrophils (Funchal et al., 2015;
Cortjens et al., 2016; Muraro et al., 2018). Furthermore, NETs
were observed in the airways and lungs of children with
severe lower respiratory tract disease caused by hRSV (LRTD)
(Cortjens et al., 2016). Furthermore, the extensive NET formation
was associated with occluded airways of hRSV-infected calves,
which may or not colocalize with viral antigens (Cortjens
et al., 2016). These data suggest that NETs may or not trap
viral particles, but their exacerbated formation during hRSV
infection contributes to airway obstruction (Cortjens et al.,
2016). Regarding the mechanism involved in such neutrophil
response, it was shown that RSV induced the classical ROS-
dependent NETosis in which viral particles are entrapped by
DNA frameworks coated with MPO and NE. Furthermore, RSV-
induced NETosis is also mediated by PAD-4-dependent histone
citrullination and signaling through the PI3K/AKT signaling
pathway (Muraro et al., 2018).

It was recently shown that during SARS-CoV-2 infection, the
quantity of NETs release, measured as DNA-MPO complex, was
increased in plasma, tracheal aspirate, and lung autopsies tissues
from COVID-19 patients (Veras et al., 2020). Interestingly,
this study also showed that infective SARS-CoV-2 but not the
inactivated virus increased the release of NETs by neutrophils
in an MOI-dependent manner (Veras et al., 2020). Notably, the
release of NET after the SARS-CoV-2 challenge was abrogated
when isolated neutrophils were pre-treated with a neutralizing
anti-hACE2 antibody (αACE2) (Veras et al., 2020). Furthermore,
the NET release was also prevented if neutrophils were pre-
treated with the drug camostat, an inhibitor of the serine protease
TMPRSS2 that blocks early interactions of SARS-CoV-2 S protein
with the ACE2 receptor (Hoffmann et al., 2020). Furthermore,
drugs also appear to inhibit viral replication as the viral load of
neutrophils exposed to SARS-CoV-2 was reduced after αACE2 or
camostat treatment (Veras et al., 2020).

This study also highlights the contribution of viral replication
to the release of NETs upon the interaction of neutrophils with
SARS-CoV-2. Incubation of neutrophils with tenofovir disoproxil
fumarate (TDF), an RNA polymerase inhibitor (Clososki et al.,
2020), reduced the release of NETs in neutrophils derived
from healthy donors exposed to SARS-CoV-2. In addition, co-
culture of SARS-CoV-2–activated neutrophils with epithelial cells
promotes cell death in vitro, and this effect was prevented if
DNAse was added in the culture medium (Veras et al., 2020).
These data suggest an essential role for the extracellular DNA
in promoting the cytotoxic effects of NETs. Together, these
results underscore a possible detrimental role of NETs in the
pathophysiology of COVID-19. Therefore, therapies targeted to
inhibit the formation of NETs or promote the degradation of
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neutrophil extracellular DNA could be evaluated for a potential
therapeutic benefit for COVID-19 (Veras et al., 2020).

Another study showed that high serum NETs, measured as
cell-free DNA, DNA-MPO complex and citrullinated histones
H3, are present in several hospitalized patients with COVID-19
(Zuo et al., 2020). The authors measure three different markers
to assess the presence of NETs in blood corresponding to cell-
free DNA, MPO-DNA, and Citrullinated Histone 3. Interestingly,
sera from COVID-19 patients were a potent stimulator of NETs
release when added to resting neutrophils, suggesting that a
component present in serum may generate a pro-NETotic state
on COVID-19 patients (Zuo et al., 2020).

It has also been described that those levels of plasma
MPO-DNA complexes increased in intubated and dead
COVID-19 patients (Middleton et al., 2020). The severity
of the disease correlated directly with plasma MPO-DNA
complexes. Soluble and cellular factors triggering NETs were
significantly increased in COVID-19 patients. Furthermore,
pulmonary autopsies showed NET-containing microthrombi
with infiltrating neutrophils and platelets. Finally, neutrophils
from COVID-19 patients displayed excessive NETs at baseline,
and COVID-19 plasma triggered NET formation, blocked
by neonatal NET-inhibitory factor (nNIF) (Middleton et al.,
2020). Considering the prothrombotic clinical presentations of
COVID-19 and the role of NETs in triggering such response
points to targeting NETs as a novel therapeutic intervention for
COVID-19 (Middleton et al., 2020).

Regarding additional pathways that regulate the generation of
NETs during COVID-19, the pro-inflammatory cytokine IL-1β

has been described as a critical inductor of NETs, both in vivo
and in vitro assays (Meher et al., 2018). Furthermore, current
evidence also suggests that NETs may promote the production
of IL-1β precursors by macrophages that are used to amplify
further the production of NETs (Hu et al., 2017). Under this
scenario of excessive NET formation, alveolar and pulmonary
endothelium becomes damaged, leading to the release of the
von Willebrand factor (vWF), which activates blood platelets
and neutrophils (Fernández-Pérez et al., 2021). Subsequently,
activated platelets also stimulate neutrophils to produce NETs
and clots, promoting airway obstruction impairing an efficient
gaseous exchange (Pujhari et al., 2020).

IgA is another factor that can modulate NET formation
during SARS-CoV-2 infection (Stacey et al., 2021). IgA is
the second most abundant antibody present in the circulation
and is enriched at mucosal surfaces. Therefore, this antibody
plays a crucial role in protecting against mucosal pathogens,
including viruses. IgA can also stimulate effector functions via
the engagement of Fc alpha receptors (Fc-αRI) expressed on
the surface of neutrophils (Stacey et al., 2021). In recent work,
it was shown that IgA–virus immune complexes potentiate
NETs release. This experiment used purified SARS-CoV-2
spike pseudotyped lentivirus, which were then opsonized with
polyclonal IgA isolated from a convalescent COVID-19 donor
serum. Interestingly virus opsonization increases the NET
formation and potentiates a suicidal NETs release pathway.
This process was independent of TLR signaling but required a
functional NADPH oxidase complex. Therefore, targeting the

NADPH oxidase complex may be a suitable strategy to decrease
SARS-CoV-2 triggered NETs release (Stacey et al., 2021).

CONCLUDING REMARKS

The mechanisms underlying NETs formation and their
contribution to bacterial and viral infections have been studied
as a primary function. However, during recent years, the role of
NETs has changed, being an important matter when it comes
to complications in several diseases. The different roles of NETs
are in line with the fact that there is no specific pathway or
stimuli to induce NETs release and that not all the stimuli
are as good inducers of NETs as PMA or Gram-negative or
-positive bacteria are. It is possible that the time of incubation
and the dosing generates differences in the results obtained
among the studies (Hoppenbrouwers et al., 2017). Also, as
mentioned above, the antimicrobial properties of the granular
enzymes of the NETs have been evaluated and, in some cases,
do not generate a good antimicrobial capacity and probably
have other immunomodulatory properties. Even more, the
bactericidal capacities of NETs have been questioned because
several studies have not evidenced a significant reduction
of the initial inoculum in in vitro experiments (bactericidal
effect). Further, the lysis (bacteriolytic effect) and the entrap
of the bacteria (bacteriostatic effect) has not been consistently
reproduced. In line with this, the citrullination of the DNA is also
controversial because there are at least two more mechanisms,
different from NETs release, that induce the citrullination: the
leukotoxic hypercitrullination (LTH) which is not antimicrobial
and can be induced by some virulence factors as toxins from
S. aureus and Streptococcus spp., and the release of mitochondrial
DNA due to a defect in mitophagy in neutrophils. Both processes
are highly relevant in autoimmune disease such as rheumatoid
arthritis and systemic lupus erythematosus, respectively
(Konig and Andrade, 2016).

It is possible that the different types of NETs are induced
at different time points during an infection, being possible that
the first type of NETs release upon stimulation is composed
of mitochondrial DNA, which still allows the survival of
the cell. In this manner, the cell continues engulfing and
performing antimicrobial properties. In addition, the release of
mitochondrial DNA induces the secretion of type I interferon by
plasmacytoid cells, generating a better immune response. Also, it
is possible that NETs release composes of nuclear DNA occurs
after the release of mitochondrial DNA, as an inflammatory
consequence of the mitochondrial NETs release, inducing the
NETosis process due to the nuclear NETs release. As example
of this, the fibers that entrap the microorganisms are generated
in vital NETs release, in opposite to the suicidal NETosis, were
a cloud of DNA is generated, which not necessarily present
antimicrobial properties (Yousefi and Simon, 2016).

It is currently studied that bacteria and viruses induce different
pathways of NETs release, depending on the receptor activated
by the microorganism. In this sense, bacteria have developed
various mechanisms to evade the NETs release, generating a
state of inflammation that allows pathogen spreading or the
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generation of a niche of infection—being the most common
virulence factor among bacteria, the enzymes that degraded
the NETs structure (Table 1). It is essential to mention that
as NETs release, an inflammatory environment exists, and
regulating this process is extremely necessary. One regulation
occurs during the elimination of the NETs structure by the
action of DNases, or C1q, allowing the recognition by the M1
macrophages (Farrera and Fadeel, 2013). Finally, it is crucial
to find a proper definition of NETs due to the several aspects
discussed above, which recognize if some pathogens induce
or not the structure with antimicrobial properties or induce a
structure that allows a higher inflammatory environment. Along
these lines, this antimicrobial response will open targets for
therapeutic intervention to treat diseases caused by bacteria and
viruses, for example, the treatment of cystic fibrosis with DNases
to liquify the sputum properly.
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