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Abstract: The bioactivity of glucosinolates (GSs), and more specifically their hydrolysis products
(GSHPs), has been well documented. These secondary metabolites evolved in the order Brassicales
as plant defense compounds with proven ability to deter or impede the growth of several biotic
challenges including insect infestation, fungal and bacterial infection, and competition from other
plants. However, the bioactivity of GSHPs is not limited to activity that inhibits these kingdoms
of life. Many of these compounds have been shown to have bioactivity in mammalian systems
as well, with epidemiological links to cancer chemoprevention in humans supported by in vitro,
in vivo, and small clinical studies. Although other chemopreventive mechanisms have been identified,
the primary mechanism believed to be responsible for the observed chemoprevention from GSHPs is
the induction of antioxidant enzymes, such as NAD(P)H quinone reductase (NQO1), heme oxygenase
1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutathione S transferases (GSTs),
through the Keap1-Nrf2-ARE signaling pathway. Induction of this pathway is generally associated
with aliphatic isothiocyanate GSHPs, although some indole-derived GSHPs have also been associated
with induction of one or more of these enzymes.

Keywords: cancer; chemoprevention; glucosinolate; hydrolysis product; Brassica; antioxidant
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1. Introduction

Glucosinolates (GSs) are a class of amino acid-derived, sulfur-rich secondary metabolites found
in the order Brassicales, which includes the scientifically and economically important genera of
Arabidopsis and Brassica [1,2]. Glucosinolates are a well-defined diverse class of secondary metabolites
with approximately 132 documented GSs structures by 2011 and at least a dozen additional natural
structures awaiting elucidation [3,4]. Glucosinolates are generally classified based on the structure
of their precursor amino acid, with aliphatic, indole, and aromatic GSs derived from methionine,
tryptophan, and phenylalanine/tyrosine, respectively, being the major classes found in the Brassica
genus [5,6]. Glucosinolates are “activated” by a class of hydrolytic enzymes called myrosinases,
which, for the most part [7,8], are physically separated from GSs in intact cells [9–11]. Upon
tissue disruption, the hydrolysis reaction mediated by myrosinase results in the formation of
GS hydrolysis products (GSHPs), which are considered the bioactive component of this system
(Figure 1; [12]). These compounds are well known for their role in plant defense against herbivory and
pathogens [13–16]. However, perhaps more importantly to humans, they have also been associated
with cancer chemoprevention [17,18].
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Figure 1. Glucosinolate hydrolysis by myrosinase, possible hydrolysis products, and the various 
bioactivities associated with those products; modifed from [12,19]. The generic glucosinolate side 
chain structures (R) can undergo further modifications at virtually every position. a Novel hydrolysis 
product structure recently described in [20]. 

Chemoprevention of cancer has been an active field of research since the seminal review by 
Wattenberg [21] in which he described early in vivo experiments with compounds that displayed an 
ability to inhibit cancer formation in animal models. To describe this observed result, he coined the 
term “chemoprophylaxis of carcinogenesis”, which has since evolved into “cancer chemoprevention” 
[22]. In the almost five decades since, the research of chemical compounds that can inhibit the 
formation of neoplasms and/or aid in ridding the body of neoplastic cells, through apoptosis or other 
means, has been steadily increasing in popularity and promise.  

Among the compounds that have shown chemopreventive qualities are the GSHPs, particularly 
isothiocyanates (ITCs) derived from aliphatic GS precursors [23]. From the indole GS precursor, 
glucobrassicin, the ITC-derived hydrolysis products indole-3-carbinol (I3C) and 3,3′-diindolylmethane 
(DIM) [24] have shown promising chemopreventive effects against hormone-responsive cancers, 
such as those of the breast, prostate, and ovaries [25]. Also, several ITCs have been linked to a number 
of chemopreventive mechanisms, such as: induction of cytoprotective proteins through the 
Keap1/Nrf2/ARE pathway, inhibition of proinflammatory responses through the regulation of the 
NFκB pathway, induction of cell cycle arrest and apoptosis, effects on heat shock proteins, and 
inhibition of angiogenesis and metastasis [26]. Inhibition of histone deacetylase (HDAC) enzymes by 
a number of ITCs has been implicated as at least one of the mechanisms responsible for the observed 
apoptotic properties of these GSHPs [26,27]. Though a significant amount of research has been done 
on these and other compounds from cruciferous vegetables, there is still much to be learned about 
the specific chemopreventive mechanisms and synergistic relationships of these compounds [28,29]. 
Of the several chemopreventive mechanisms of GSHPs, the best studied is probably their action on 
the Keap1/Nrf2/ARE (antioxidant response element) pathway, which is discussed in more detail 
below as it is a central mechanism by which GSHPs reduce oxidative stress in human cells. 

Other compounds known to affect cellular oxidative stress are the vitamins A, C, and E, which 
are also relatively abundant in Brassica vegetables. An excellent review by Bodupalli et al. [30] 
discusses how these known antioxidant compounds may contribute to reduction of oxidative stress 
in humans synergistically with ITCs. This is proposed to be achieved through the induction of ARE-
dependent enzymes by GSHPs that maintain the free radical scavenging capabilities of the vitamins, 
increasing their biologically effective life span. 
  

Figure 1. Glucosinolate hydrolysis by myrosinase, possible hydrolysis products, and the various
bioactivities associated with those products; modifed from [12,19]. The generic glucosinolate side
chain structures (R) can undergo further modifications at virtually every position. a Novel hydrolysis
product structure recently described in [20].

Chemoprevention of cancer has been an active field of research since the seminal review by
Wattenberg [21] in which he described early in vivo experiments with compounds that displayed an
ability to inhibit cancer formation in animal models. To describe this observed result, he coined the term
“chemoprophylaxis of carcinogenesis”, which has since evolved into “cancer chemoprevention” [22].
In the almost five decades since, the research of chemical compounds that can inhibit the formation
of neoplasms and/or aid in ridding the body of neoplastic cells, through apoptosis or other means,
has been steadily increasing in popularity and promise.

Among the compounds that have shown chemopreventive qualities are the GSHPs, particularly
isothiocyanates (ITCs) derived from aliphatic GS precursors [23]. From the indole GS precursor,
glucobrassicin, the ITC-derived hydrolysis products indole-3-carbinol (I3C) and 3,31-diindolylmethane
(DIM) [24] have shown promising chemopreventive effects against hormone-responsive cancers,
such as those of the breast, prostate, and ovaries [25]. Also, several ITCs have been linked to a
number of chemopreventive mechanisms, such as: induction of cytoprotective proteins through
the Keap1/Nrf2/ARE pathway, inhibition of proinflammatory responses through the regulation
of the NFκB pathway, induction of cell cycle arrest and apoptosis, effects on heat shock proteins,
and inhibition of angiogenesis and metastasis [26]. Inhibition of histone deacetylase (HDAC) enzymes
by a number of ITCs has been implicated as at least one of the mechanisms responsible for the observed
apoptotic properties of these GSHPs [26,27]. Though a significant amount of research has been done
on these and other compounds from cruciferous vegetables, there is still much to be learned about
the specific chemopreventive mechanisms and synergistic relationships of these compounds [28,29].
Of the several chemopreventive mechanisms of GSHPs, the best studied is probably their action on the
Keap1/Nrf2/ARE (antioxidant response element) pathway, which is discussed in more detail below
as it is a central mechanism by which GSHPs reduce oxidative stress in human cells.

Other compounds known to affect cellular oxidative stress are the vitamins A, C, and E, which are
also relatively abundant in Brassica vegetables. An excellent review by Bodupalli et al. [30] discusses
how these known antioxidant compounds may contribute to reduction of oxidative stress in humans
synergistically with ITCs. This is proposed to be achieved through the induction of ARE-dependent
enzymes by GSHPs that maintain the free radical scavenging capabilities of the vitamins, increasing
their biologically effective life span.
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2. The Influence of Diet on Cancer Development

The twentieth century saw many great medical revolutions, from penicillin to the polio vaccine,
which led to a severe decline in the number and proportion of total deaths due to infectious disease in
the U.S. However, as infectious diseases were better managed, death due to chronic health problems,
such as heart disease and cancer, became more common. In 1900, cancer and heart disease reportedly
caused 64 and 137.4 of every 100,000 deaths, respectively. By 2010, those numbers had increased to
185.9 for cancer and 192.9 for heart disease, making these the most common causes of death among
Americans as a whole [31]. The increased prevalence of these diseases has led to increased research into
their causes and modes of prevention. Prevention and treatment of heart disease has experienced great
strides, as mortality from heart disease has been on a steady decline since the 1970s [32]. In fact, cancer
has surpassed heart disease as the leading cause of death in individuals between the ages of 40 and
79 [33]. For this reason, cancer is now a major focus of medical research. Specifically, understanding
the mechanisms of carcinogenesis, metastasis, and the overall progression of cancer is of the utmost
importance in accomplishing the goal of decreasing new cancer incidence. It is known that there are
certain genetic factors that can lead to increased risk for several types of cancer. However, the effect of
these genetic defects can only be attributed to a relatively minor proportion of total cancer incidence
for most types of neoplasms [34]. Whereas, diet has been estimated to be associated with 20%–42% of
cancer cases [35]. Many studies have supported this conclusion, showing positive associations between
cancer rates and certain foods such as meat (red meat in particular), saturated fats, trans-fats, and
eggs [36,37]. However, not all foods have a positive association with cancer risk. Certain components
of an individual’s diet, such as consumption of vegetables, fruits, cereals, and olive oil as well as a high
ratio of monounsaturated to saturated lipids, can have a negative association with cancer risk [37].
In other words, there is evidence that certain foods and dietary choices can affect an individual’s risk
for cancer (reviewed by Erdman Jr. et al. [38]).

The link between certain dietary components and lower cancer risk helps to corroborate the
results of early research indicating that people who live in the Mediterranean, and more specifically,
adhere to the classic Mediterranean diet, have a lower cancer incidence [37,39,40]. Although there
are many characteristics of the Mediterranean diet that have been shown to influence cancer rates,
consumption of vegetables from the Brassica genus may be one of the most important contributing
factors [41]. The cancer-preventative qualities associated with Brassica vegetables could be partially
linked to the high levels of vitamins A, C, E, and other antioxidants found in these vegetables [30].
However, the general scientific consensus due to a number of epidemiological, in vitro, and in vivo
studies is that the chemopreventive effects of Brassica vegetable consumption are in large part due to
the presence of GSs, and more specifically, their GSHPs [42,43].

3. Glucosinolate Hydrolysis Products and Their Chemopreventive Bioactivity

Chemopreventive bioactivity often refers to the ability of a chemical compound, or mixture
of compounds, to induce phase I (PI)/phase II (PII) detoxification enzymes and/or antioxidant
enzymes in the human body. Antioxidant (AO) enzymes generally act in the regulation of glutathione
metabolism and quenching of free radicals via one- and two-electron reductions, thereby contributing
to the reduction of oxidative stress. AO enzymes include catalases (CAT), superoxide dismutases (SOD),
glutathione reductases (GSR), glutathione peroxidases (GPX), glutaredoxins (GLRX), thioredoxins
(TXN), thioredoxin reductases (TXNRD), heme-oxygenase 1 (HO-1), and NAD(P)H:quinone
oxidoreductase 1 (NQO1) [30,44]. Phase I/phase II detoxification enzymes are often called
biotransformation enzymes because, as a team, they transform toxic xenobiotics into non-toxic forms
that can be excreted from the body. In this process, PI enzymes perform various reactions that alter
the lipophilic xenobiotic target compound in a way that allows it to react with PII enzymes [45].
Phase II enzymes can directly act on some xenobiotics as well as perform conjugation reactions
on the PI products. Most PII enzymes are transferases: UDP-glucuronosyltransferases (UGTs),
sulfotransferases (SULTs), glutathione S-transferases (GSTs), N-acetyltransferases (NATs), and S- and
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O-methyltransferases (MTs) [30]. NQO1 is often included in the list of PII enzymes [44], although it is
also often referred to it as an AO enzyme. The product of the PII reaction is a more polar compound
that can be readily excreted by the body either through passive or active transport. In general, PII/AO
enzymes maintain a balanced redox state in mammalian cells by controlling levels of reactive oxygen
species (ROS), which is done by maintaining glutathione (GSH) and thioredoxin levels as well as
helping to maintain the equilibrium between NAD+/NADH and NADP+/NADPH [46]. Despite their
role in detoxification, PI enzymes can also activate compounds known as procarcinogens [30]. When a
procarcinogen reacts with a PI enzyme, such as one of many cytochrome P450s (CYPs), the non-toxic
procarcinogen is transformed into a toxic, carcinogenic substance. For this reason, the induction of PI
enzymes by a given compound may decrease the overall chemopreventive effect of that compound.
On the other hand, PII enzymes typically perform conjugation reactions that result in a compound that
is more polar, and subsequently less toxic, than the non-conjugated form [30,47–49]. For this reason,
compounds that induce only PII enzymes are considered more beneficial, as there is little chance of
negative effects. Compounds with this quality are known as monofunctional inducers, as opposed to
bifunctional inducers that induce both PI and II enzyme activity. Sulforaphane (SF), the hydrolysis
product of the GS called glucoraphanin, has been shown to be a PII monofunctional inducer [50].
In fact, ITCs like SF are generally considered to be PII monofunctional inducers [51]. Therefore, future
prospects for Brassica breeders could be to increase SF or other ITC levels in their crops with little fear
of affecting the safety of the crop’s consumption.

However, this may not be true for all GSs and GSHPs. While there is no strong evidence
of negative effects from GS consumption in humans, this has been observed quite frequently in
livestock that eat Brassica forages as a major part of their diet. The adverse symptoms seen in livestock
from the consumption of high levels of GSs/GSHPs are often attributed to the consumption of
goitrin, an oxazolidine-2-thione GSHP formed from the spontaneous cyclization of the ITC product of
progoitrin hydrolysis [52]. Although, goitrin may not be the only GSHP that causes negative health
effects upon ingestion of high doses. Research has shown teratogenic effects of other GSHPs in murine
models, most notably allyl ITC (AITC) from sinigrin, 1-cyano-2-hydroxy-3,4-epithiobutane (CETB) from
progoitrin, and iberin from glucoiberin [53]. The common symptoms seen in livestock often attributed
to the overconsumption of GS/GSHPs are: slowed growth [54], impaired movement and general
disorientation [55], impaired fertility [56], and damage to the thyroid, gastro-intestinal tract, and/or
liver [57,58]. Because of what has been seen in animals, caution must be taken when manipulating GS
and GSHP profiles. Although it seems that some of the most bioactive GSHPs show beneficial health
effects at the normally consumed dosages, breeders and food scientists should take care to screen for
any negative health effects from GS and GSHP profile manipulation of agricultural products.

Although there have been negative effects observed in livestock linked to high levels of GS and/or
GSHP consumption, several GSHPs have displayed significant chemopreventive activity in a number
of in vitro studies. Common Brassica ITCs, such as SF and phenethyl ITC (PEITC), have proven to
either inhibit carcinogenesis or induce cancer cell growth arrest and apoptosis in several cell types
including: breast [59], bladder [60], colon [61], ovary [62], blood [63], skin [64], and prostate cells [65].
The mechanism by which these compounds accomplish this task is not fully understood and probably
not universal, but some of the known effects of ITC treatment on cell metabolism include modulation of
gene expression and alternative gene splicing [66]. Perhaps most importantly, several ITCs have been
shown to increase the activity of nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2
or Nrf2 [67]. When activated, Nrf2 increases transcription rates of a number of AO and PII genes,
ultimately leading to cells that are less likely to develop neoplasia [68,69]. While it appears that
most ITCs from Brassica or related vegetables induce PII enzymes, there may be differences between
aromatic, indole, and aliphatic ITCs in their modulation of PI enzyme activity [70–72]. A summary of
experiments utilizing ITCs, ITC-derived compounds, and GSHP mixtures as treatments testing their
effect on PII/AO gene transcript/protein abundance and/or enzyme activity can be found in Table 1.
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Table 1. Summary of human, animal, and in vitro studies of the effects of glucosinolate hydrolysis products on phase II and antioxidant enzymes; updated from [73].

PII/AO Enzyme GSHP Dosage/Treatment Type of Study; System Used Fold Change a Type of Change Reference

CAT I3C 2 µM in vitro; HepG2 cells 1.2 Expression Krajka-Kuźniak et al. (2015) [44]
CAT I3C 10 µM in vitro; HepG2 cells 1.7 Expression Krajka-Kuźniak et al. (2015) [44]
CAT I3C 2 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
CAT I3C 10 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
CAT PEITC 1 µM in vitro; HepG2 cells 1.5 Expression Krajka-Kuźniak et al. (2015) [44]
CAT PEITC 5 µM in vitro; HepG2 cells 1.6 Expression Krajka-Kuźniak et al. (2015) [44]
CAT PEITC 1 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
CAT PEITC 5 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GCL AITC 5 µM in vitro; NIH3T3 cells 2.9 Expression Ernst et al. (2011) [74]
GCL AITC 10 µM in vitro; NIH3T3 cells 4 Expression Ernst et al. (2011) [74]
GCL AITC 25 µM in vitro; NIH3T3 cells 5 Expression Ernst et al. (2011) [74]
GCL BITC 5 µM in vitro; NIH3T3 cells 1.5 Expression Ernst et al. (2011) [74]
GCL BITC 10 µM in vitro; NIH3T3 cells 2 Expression Ernst et al. (2011) [74]
GCL BITC 25 µM in vitro; NIH3T3 cells 3.2 Expression Ernst et al. (2011) [74]
GCL DIM 5 µM in vitro; NIH3T3 cells 1.6 Expression Ernst et al. (2011) [75]
GCL DIM 10 µM in vitro; NIH3T3 cells 1.9 Expression Ernst et al. (2011) [75]
GCL DIM 25 µM in vitro; NIH3T3 cells 2.4 Expression Ernst et al. (2011) [75]
GCL PEITC 5 µM in vitro; NIH3T3 cells 3.8 Expression Ernst et al. (2011) [74]
GCL SF 5 µM in vitro; NIH3T3 cells 2.7 Expression Ernst et al. (2011) [75]
GCL SF 5 µM in vitro; NIH3T3 cells 2.7 Expression Ernst et al. (2011) [74]
GCL SF 10 µM in vitro; NIH3T3 cells 2.8 Expression Ernst et al. (2011) [75]
GCL SF 10 µM in vitro; NIH3T3 cells 2.9 Expression Ernst et al. (2011) [74]

GCL SF 0.1 µM in vitro; fetal Wistar rats; primary
striatal neuronal cultures 1.4 Protein Mizuno et al. (2011) [76]

GCL SF 1 µM in vitro; fetal Wistar rats; primary
striatal neuronal cultures 2.1 Protein Mizuno et al. (2011) [76]

GCL SF 1 µM; 6 h treatment in vitro; fetal Wistar rats; primary
striatal neuronal cultures 1.6 Protein Mizuno et al. (2011) [76]

GCL SF 1 µM; 12 h treatment in vitro; fetal Wistar rats; primary
striatal neuronal cultures 3.1 Protein Mizuno et al. (2011) [76]

GCL SF 1 µM; 24 h treatment in vitro; fetal Wistar rats; primary
striatal neuronal cultures 1.5 Protein Mizuno et al. (2011) [76]

GCL SF 1 µM; 36 h treatment in vitro; fetal Wistar rats; primary
striatal neuronal cultures 0.6 Protein Mizuno et al. (2011) [76]

GCL SF 10 µM in vitro; fetal Wistar rats; primary
striatal neuronal cultures 1.7 Protein Mizuno et al. (2011) [76]
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Table 1. Cont.

PII/AO Enzyme GSHP Dosage/Treatment Type of Study; System Used Fold Change a Type of Change Reference

GCLC I3C 25 µM in vitro; TRAMP C1 cells 3 Expression Wu et al. (2012) [77]
GCLC I3C 50 µM in vitro; TRAMP C1 cells 3.4 Expression Wu et al. (2012) [77]
GCLC I3C 75 µM in vitro; TRAMP C1 cells 5.2 Expression Wu et al. (2012) [77]

GCLC MIX b 15% broccoli seed/85%
RM1 feed for 7 d

in vivo; Nrf2(+/+) mice; stomach
and small intestine 5 Protein McWalter et al. (2004) [78]

GCLC SF 9 µmol per day in vivo; ICR mice; small
intestine cells 4 Expression Thimmulappa et al. (2002) [79]

GCLM SF 344 µmol single dose Human clinical; gastric mucosa 3 (2.5) c Expression Gasper et al. (2007) [80]
GPX I3C 2 µM in vitro; HepG2 cells 1.1 Expression Krajka-Kuźniak et al. (2015) [44]
GPX I3C 2 µM in vitro; HepG2 cells 1.1 Protein Krajka-Kuźniak et al. (2015) [44]
GPX I3C 10 µM in vitro; HepG2 cells 1.3 Expression Krajka-Kuźniak et al. (2015) [44]
GPX I3C 10 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GPX PEITC 1 µM in vitro; HepG2 cells 2.2 Expression Krajka-Kuźniak et al. (2015) [44]
GPX PEITC 1 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GPX PEITC 5 µM in vitro; HepG2 cells 3.4 Expression Krajka-Kuźniak et al. (2015) [44]
GPX PEITC 5 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]

GPX3 SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.1 Expression Hu et al. (2006) [81]

GSR I3C 2 µM in vitro; HepG2 cells 1.9 Expression Krajka-Kuźniak et al. (2015) [44]
GSR I3C 2 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSR I3C 10 µM in vitro; HepG2 cells 2.3 Expression Krajka-Kuźniak et al. (2015) [44]
GSR I3C 10 µM in vitro; HepG2 cells 1.4 Protein Krajka-Kuźniak et al. (2015) [44]
GSR PEITC 1 µM in vitro; HepG2 cells 1.7 Expression Krajka-Kuźniak et al. (2015) [44]
GSR PEITC 1 µM in vitro; HepG2 cells 1.4 Protein Krajka-Kuźniak et al. (2015) [44]
GSR PEITC 5 µM in vitro; HepG2 cells 2.3 Expression Krajka-Kuźniak et al. (2015) [44]
GSR PEITC 5 µM in vitro; HepG2 cells 1.5 Protein Krajka-Kuźniak et al. (2015) [44]
GSR SF 5 µM in vitro; rat cardiomyocytes 1.9–2.1 d Activity Angeloni et al. (2009) [82]
GSR SF 5 µM in vitro; rat cardiomyocytes 1.5–2 d Expression Angeloni et al. (2009) [82]
GSR SF 5 µM in vitro; rat cardiomyocytes 1.2–1.5 d Protein Angeloni et al. (2009) [82]

GSR SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 2 Expression Hu et al. (2006) [81]

GSR SF 0.1 µM in vitro; mouse cortical neurons 2 Activity Vauzour et al. (2010) [83]
GSTA I3C 2 µM in vitro; HepG2 cells 1.9 Expression Krajka-Kuźniak et al. (2015) [44]
GSTA I3C 2 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GSTA I3C 10 µM in vitro; HepG2 cells 1.8 Expression Krajka-Kuźniak et al. (2015) [44]
GSTA I3C 10 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSTA PEITC 1 µM in vitro; HepG2 cells 3.6 Expression Krajka-Kuźniak et al. (2015) [44]
GSTA PEITC 1 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSTA PEITC 5 µM in vitro; HepG2 cells 5.2 Expression Krajka-Kuźniak et al. (2015) [44]
GSTA PEITC 5 µM in vitro; HepG2 cells 1.6 Protein Krajka-Kuźniak et al. (2015) [44]
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Table 1. Cont.

PII/AO Enzyme GSHP Dosage/Treatment Type of Study; System Used Fold Change a Type of Change Reference

GSTA SF 0.2 µM in vitro; rat hepatic Clone 9 cells 3.1 Protein Lii et al. (2010) [84]
GSTA SF 1 µM in vitro; rat hepatic Clone 9 cells 4.5 Protein Lii et al. (2010) [84]
GSTA SF 5 µM in vitro; rat hepatic Clone 9 cells 6.9 Protein Lii et al. (2010) [84]
GSTA1 SF 5 µM in vitro; rat cardiomyocytes 1.5–2 d Expression Angeloni et al. (2009) [82]

GSTA1 SF 10 µM in vitro; human prostatic cancer
cells (LNCaP) 1.7 Expression Brooks et al. (2001) [85]

GSTA1 SF 10 µM in vitro; human prostatic cancer
cells (MDA Pca 2A) 1.7 Expression Brooks et al. (2001) [85]

GSTA1 SF 10 µM in vitro; human prostatic cancer
cells (MDA Pca 2B) 1.4 Expression Brooks et al. (2001) [85]

GSTA1 SF 10 µM in vitro; human prostatic cancer
cells (PC3) 1 Expression Brooks et al. (2001) [85]

GSTA1 SF 10 µM in vitro; human prostatic cancer
cells (TSU-Pr1) 1 Expression Brooks et al. (2001) [85]

GSTA1 SF 11 µM in onion/broccoli
extract Human clinical; enterocytes 2 Expression Petri et al. (2003) [86]

GSTA1 SF 10 µM in vitro; human Caco-2 cells 3 Expression Petri et al. (2003) [86]

GSTA1 SF 11 µM in onion/broccoli
extract in vitro; human Caco-2 cells 1.7 Expression Petri et al. (2003) [86]

GSTA1/2 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 2.3 Protein McMahon et al. (2001) [87]

GSTA1/2 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.4 Protein McMahon et al. (2001) [87]

GSTA2 PEITC 40 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.6 Expression Hu et al. (2006) [88]

GSTA2 SF 90 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.8 Expression Hu et al. (2006) [81]

GSTA2 SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 4.4 Expression Hu et al. (2006) [81]

GSTA3 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 2.2 Protein McMahon et al. (2001) [87]

GSTA3 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.8 Protein McMahon et al. (2001) [87]

GSTA4 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 3.8 Protein McMahon et al. (2001) [87]

GSTA4 SF 90 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.1 (2) c Expression Hu et al. (2006) [81]

GSTA4 SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.5 (2.7) c Expression Hu et al. (2006) [81]

GSTA4 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.9 Protein McMahon et al. (2001) [87]
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Table 1. Cont.

PII/AO Enzyme GSHP Dosage/Treatment Type of Study; System Used Fold Change a Type of Change Reference

GST e AITC 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 1.9 Activity Munday and Munday (2004) [89]

GST e AITC 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.1 Activity Munday and Munday (2004) [89]

GSTe AITC 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.4 Activity Munday and Munday (2004) [89]

GST e Erucin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 1.7 Activity Munday and Munday (2004) [89]

GST e Erucin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.1 Activity Munday and Munday (2004) [89]

GST e Erucin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.3 Activity Munday and Munday (2004) [89]

GST e I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice; intestinal
cytosol 1.3 Activity McMahon et al. (2001) [87]

GST e Iberin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 2.0 Activity Munday and Munday (2004) [89]

GST e Iberin 40 µmol per¨ kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.0 Activity Munday and Munday (2004) [89]

GST e Iberin 40 µmol per¨ kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.1 Activity Munday and Munday (2004) [89]

GST e MIX b 15% broccoli seed/85%
RM1 feed for 7 d

in vivo; Nrf2(+/+) mice; stomach,
small intestine, and liver 1.5 Activity McWalter et al. (2004) [78]

GST e MIX b Brussels sprouts extract (7
g tissue) for 4 d in vivo; Wistar rats; hepatic cells 1.3 Expression Sorensen et al. (2001) [90]

GST e MIX b 40 µmol ITC per kg body
wt. for 14 d

in vivo; Sprague-Dawley rats;
bladder 1.4 Activity Zhang et al. (2006) [91]

GST e MIX b 160 µmol ITC per kg
body wt. for 14 d

in vivo; Sprague-Dawley rats;
bladder 2.1 Activity Zhang et al. (2006) [91]

GST e MIX b 40 µmol ITC per kg body
wt. for 14 d

in vivo; Sprague-Dawley rats;
duodenum 1.5 Activity Zhang et al. (2006) [91]

GST e MIX b 160 µmol ITC per kg
body wt. for 14 d

in vivo; Sprague-Dawley rats;
duodenum 2.8 Activity Zhang et al. (2006) [91]

GST e SF 5 µM in vitro; rat cardiomyocytes 2–2.5 d Activity Angeloni et al. (2009) [82]
GST e SF 5 µM in vitro; rat cardiomyocytes 3–5 d Protein Angeloni et al. (2009) [82]
GST e SF 1 µM in vitro; rat hepatic Clone 9 cells 2 Activity Lii et al. (2010) [84]
GST e SF 5 µM in vitro; rat hepatic Clone 9 cells 2.6 Activity Lii et al. (2010) [84]

GST e SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.5 Activity McMahon et al. (2001) [87]
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GST e SF 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 2.5 Activity Munday and Munday (2004) [89]

GST e SF 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.3 Activity Munday and Munday (2004) [89]

GST e SF 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.2 Activity Munday and Munday (2004) [89]

GST e SF 313 nM in vitro; human BEAS-2B cells 1.1 Activity Ritz et al. (2007) [92]
GST e SF 625 nM in vitro; human BEAS-2B cells 1.2 Activity Ritz et al. (2007) [92]
GST e SF 1.25 µM in vitro; human BEAS-2B cells 1.4 Activity Ritz et al. (2007) [92]
GST e SF 2.5 µM in vitro; human BEAS-2B cells 1.7 Activity Ritz et al. (2007) [92]
GST e SF 5 µM in vitro; human BEAS-2B cells 2 Activity Ritz et al. (2007) [92]
GST e SF 10 µM in vitro; human BEAS-2B cells 2.1 Activity Ritz et al. (2007) [92]
GST e SF 313 nM in vitro; human NHBE cells 1.2 Activity Ritz et al. (2007) [92]
GST e SF 625 nM in vitro; human NHBE cells 1.7 Activity Ritz et al. (2007) [92]
GST e SF 1.25 µM in vitro; human NHBE cells 1.9 Activity Ritz et al. (2007) [92]
GST e SF 2.5 µM in vitro; human NHBE cells 2.5 Activity Ritz et al. (2007) [92]
GST e SF 5 µM in vitro; human NHBE cells 2.6 Activity Ritz et al. (2007) [92]
GST e SF 10 µM in vitro; human NHBE cells 2.8 Activity Ritz et al. (2007) [92]

GST e SF 9 µmol per day in vivo; ICR mice; small
intestine cells 1.3 Activity Thimmulappa et al. (2002) [79]

GST e SF 9 µmol per day in vivo; ICR mice; small
intestine cells 2.5–6 f Expression Thimmulappa et al. (2002) [79]

GST e SF 0.1 µM in vitro; mouse cortical neurons 1.7 Activity Vauzour et al. (2010) [83]

GST e SF 4 µM in vitro; mouse
embryonic fibroblasts 1.5 Activity Zhang et al. (2006) [91]

GST e SF 8 µM in vitro; mouse
embryonic fibroblasts 1.5 Activity Zhang et al. (2006) [91]

GST e SF 4 µM in vitro; rat bladder NBT-II cells 1.8 Activity Zhang et al. (2006) [91]
GST e SF 8 µM in vitro; rat bladder NBT-II cells 2.1 Activity Zhang et al. (2006) [91]
GSTM I3C 2 µM in vitro; HepG2 cells 2 Expression Krajka-Kuźniak et al. (2015) [44]
GSTM I3C 2 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GSTM I3C 10 µM in vitro; HepG2 cells 2.2 Expression Krajka-Kuźniak et al. (2015) [44]
GSTM I3C 10 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSTM PEITC 1 µM in vitro; HepG2 cells 3 Expression Krajka-Kuźniak et al. (2015) [44]
GSTM PEITC 1 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSTM PEITC 5 µM in vitro; HepG2 cells 4.2 Expression Krajka-Kuźniak et al. (2015) [44]
GSTM PEITC 5 µM in vitro; HepG2 cells 1.4 Protein Krajka-Kuźniak et al. (2015) [44]
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GSTM SF 0.2 µM in vitro; rat hepatic Clone 9 cells 1.9 Protein Lii et al. (2010) [84]
GSTM SF 1 µM in vitro; rat hepatic Clone 9 cells 3.5 Protein Lii et al. (2010) [84]
GSTM SF 5 µM in vitro; rat hepatic Clone 9 cells 5.0 Protein Lii et al. (2010) [84]

GSTM1 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.9 Protein McMahon et al. (2001) [87]

GSTM1 PEITC 40 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.5 (2.3) c Expression Hu et al. (2006) [88]

GSTM1 PEITC 40 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 1.9 (2.2) c Expression Hu et al. (2006) [88]

GSTM1 SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 4.4 Expression Hu et al. (2006) [81]

GSTM1 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.4 Protein McMahon et al. (2001) [87]

GSTM1 SF 13 µmol/d for 3 d Human clinical; nasal lavage cells 0.9 Expression Riedl et al. (2009) [93]
GSTM1 SF 51 µmol/d for 3 d Human clinical; nasal lavage cells 1.1 Expression Riedl et al. (2009) [93]
GSTM1 SF 64 µmol/d for 3 d Human clinical; nasal lavage cells 1.3 Expression Riedl et al. (2009) [93]
GSTM1 SF 76 µmol/d for 3 d Human clinical; nasal lavage cells 1.7 Expression Riedl et al. (2009) [93]
GSTM1 SF 89 µmol/d for 3 d Human clinical; nasal lavage cells 1.9 Expression Riedl et al. (2009) [93]
GSTM1 SF 102 µmol/d for 3 d Human clinical; nasal lavage cells 2.2 Expression Riedl et al. (2009) [93]
GSTM1 SF 5 µM in vitro; human BEAS-2B cells 1 Expression Ritz et al. (2007) [92]
GSTM1 SF 5 µM in vitro; human NHBE cells 2 Expression Ritz et al. (2007) [92]

GSTM3 PEITC 40 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 2 Expression Hu et al. (2006) [88]

GSTM5 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 5.1 Protein McMahon et al. (2001) [87]

GSTM5 SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 2 Expression Hu et al. (2006) [81]

GSTM5 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 0.9 Protein McMahon et al. (2001) [87]

GSTP DIM 5 µM in vitro; MCF10A breast cells 0.5 Expression Szaefer et al. (2015) [94]
GSTP DIM 10 µM in vitro; MCF10A breast cells 0.4 Expression Szaefer et al. (2015) [94]
GSTP DIM 5 µM in vitro; MCF10A breast cells 1 Protein Szaefer et al. (2015) [94]
GSTP DIM 10 µM in vitro; MCF10A breast cells 0.8 Protein Szaefer et al. (2015) [94]
GSTP DIM 5 µM in vitro; MCF7 breast cells 1.2 Expression Szaefer et al. (2015) [94]
GSTP DIM 10 µM in vitro; MCF7 breast cells 1.8 Expression Szaefer et al. (2015) [94]
GSTP DIM 5 µM in vitro; MCF7 breast cells 1.1 Protein Szaefer et al. (2015) [94]
GSTP DIM 10 µM in vitro; MCF7 breast cells 1 Protein Szaefer et al. (2015) [94]
GSTP DIM 5 µM in vitro; MDA-MB-231 breast cells 1.2 Expression Szaefer et al. (2015) [94]
GSTP DIM 10 µM in vitro; MDA-MB-231 breast cells 1.8 Expression Szaefer et al. (2015) [94]
GSTP DIM 5 µM in vitro; MDA-MB-231 breast cells 1 Protein Szaefer et al. (2015) [94]
GSTP DIM 10 µM in vitro; MDA-MB-231 breast cells 1.1 Protein Szaefer et al. (2015) [94]
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GSTP I3C 2 µM in vitro; HepG2 cells 2.8 Expression Krajka-Kuźniak et al. (2015) [44]
GSTP I3C 10 µM in vitro; HepG2 cells 3.3 Expression Krajka-Kuźniak et al. (2015) [44]
GSTP I3C 2 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GSTP I3C 10 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSTP I3C 10 µM in vitro; MCF10A breast cells 0.5 Expression Szaefer et al. (2015) [94]
GSTP I3C 50 µM in vitro; MCF10A breast cells 0.4 Expression Szaefer et al. (2015) [94]
GSTP I3C 10 µM in vitro; MCF10A breast cells 1 Protein Szaefer et al. (2015) [94]
GSTP I3C 50 µM in vitro; MCF10A breast cells 0.9 Protein Szaefer et al. (2015) [94]
GSTP I3C 30 µM in vitro; MCF7 breast cells 1.5 Expression Szaefer et al. (2015) [94]
GSTP I3C 50 µM in vitro; MCF7 breast cells 1.8 Expression Szaefer et al. (2015) [94]
GSTP I3C 30 µM in vitro; MCF7 breast cells 1.2 Protein Szaefer et al. (2015) [94]
GSTP I3C 50 µM in vitro; MCF7 breast cells 1.3 Protein Szaefer et al. (2015) [94]
GSTP I3C 10 µM in vitro; MDA-MB-231 breast cells 1 Expression Szaefer et al. (2015) [94]
GSTP I3C 50 µM in vitro; MDA-MB-231 breast cells 1.5 Expression Szaefer et al. (2015) [94]
GSTP I3C 10 µM in vitro; MDA-MB-231 breast cells 1 Protein Szaefer et al. (2015) [94]
GSTP I3C 50 µM in vitro; MDA-MB-231 breast cells 1 Protein Szaefer et al. (2015) [94]
GSTP PEITC 1 µM in vitro; HepG2 cells 2.7 Expression Krajka-Kuźniak et al. (2015) [44]
GSTP PEITC 5 µM in vitro; HepG2 cells 5 Expression Krajka-Kuźniak et al. (2015) [44]
GSTP PEITC 1 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GSTP PEITC 5 µM in vitro; HepG2 cells 1.4 Protein Krajka-Kuźniak et al. (2015) [44]
GSTP SF 1 µM in vitro; rat hepatic Clone 9 cells 1 Expression Lii et al. (2010) [84]
GSTP SF 5 µM in vitro; rat hepatic Clone 9 cells 5 Expression Lii et al. (2010) [84]
GSTP SF 0.2 µM in vitro; rat hepatic Clone 9 cells 5 Protein Lii et al. (2010) [84]
GSTP SF 1 µM in vitro; rat hepatic Clone 9 cells 7 Protein Lii et al. (2010) [84]
GSTP SF 5 µM in vitro; rat hepatic Clone 9 cells 8.1 Protein Lii et al. (2010) [84]

GSTP1 MIX b Broccoli sprout extract;
0.5 mg/L in vitro; human A549 cells 1.5 (24 h) g Expression Tan et al. (2010) [95]

GSTP1 MIX b Broccoli sprout extract;
1 mg/L in vitro; human A549 cells 1.6 (24 h) g Expression Tan et al. (2010) [95]

GSTP1 MIX b Broccoli sprout extract;
2 mg/L in vitro; human A549 cells 2.5 (24 h) g Expression Tan et al. (2010) [95]

GSTP1 MIX b Broccoli sprout extract;
2 mg/L

in vitro; human immortalized
HBE cells 3.2 (24 h) g Expression Tan et al. (2010) [95]

GSTP1 MIX b Broccoli sprout extract;
2 mg/L in vitro; human NHBE cells 2 (48 h) g Expression Tan et al. (2010) [95]

GSTP1 SF 13 µmol/d for 3 d Human clinical; nasal lavage cells 1 Expression Riedl et al. (2009) [93]
GSTP1 SF 51 µmol/d for 3 d Human clinical; nasal lavage cells 1.1 Expression Riedl et al. (2009) [93]
GSTP1 SF 64 µmol/d for 3 d Human clinical; nasal lavage cells 1.4 Expression Riedl et al. (2009) [93]
GSTP1 SF 76 µmol/d for 3 d Human clinical; nasal lavage cells 1.8 Expression Riedl et al. (2009) [93]
GSTP1 SF 89 µmol/d for 3 d Human clinical; nasal lavage cells 1.9 Expression Riedl et al. (2009) [93]
GSTP1 SF 102 µmol/d for 3 d Human clinical; nasal lavage cells 2 Expression Riedl et al. (2009) [93]
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GSTP1/2 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice; intestinal
cytosol 1 Protein McMahon et al. (2001) [87]

GSTP1/2 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice; intestinal
cytosol 0.9 Protein McMahon et al. (2001) [87]

GSTT I3C 2 µM in vitro; HepG2 cells 1.3 Expression Krajka-Kuźniak et al. (2015) [44]
GSTT I3C 10 µM in vitro; HepG2 cells 1.2 Expression Krajka-Kuźniak et al. (2015) [44]
GSTT I3C 2 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GSTT I3C 10 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
GSTT PEITC 1 µM in vitro; HepG2 cells 1.5 Expression Krajka-Kuźniak et al. (2015) [44]
GSTT PEITC 5 µM in vitro; HepG2 cells 2.5 Expression Krajka-Kuźniak et al. (2015) [44]
GSTT PEITC 1 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]
GSTT PEITC 5 µM in vitro; HepG2 cells 1.3 Protein Krajka-Kuźniak et al. (2015) [44]

GSTT3 PEITC 40 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.8 Expression Hu et al. (2006) [88]

HO-1 AITC 5 µM in vitro; NIH3T3 cells 10 Expression Ernst et al. (2011) [74]
HO-1 AITC 10 µM in vitro; NIH3T3 cells 20 Expression Ernst et al. (2011) [74]
HO-1 AITC 25 µM in vitro; NIH3T3 cells 45 Expression Ernst et al. (2011) [74]
HO-1 BITC 5 µM in vitro; NIH3T3 cells 5 Expression Ernst et al. (2011) [74]
HO-1 BITC 10 µM in vitro; NIH3T3 cells 11 Expression Ernst et al. (2011) [74]
HO-1 BITC 25 µM in vitro; NIH3T3 cells 24 Expression Ernst et al. (2011) [74]
HO-1 DIM 5 µM in vitro; NIH3T3 cells 4.3 Expression Ernst et al. (2011) [75]
HO-1 DIM 10 µM in vitro; NIH3T3 cells 7 Expression Ernst et al. (2011) [75]
HO-1 DIM 25 µM in vitro; NIH3T3 cells 13 Expression Ernst et al. (2011) [75]

HO-1 Erucin 25 µM precursor +
myrosinase; 6 h treatment in vitro; HT-29 cells 290 Expression Wagner et al. (2015) [96]

HO-1 Erucin 20 mg/kg precursor +
myrosinase for 7 d in vivo; C57BL/6 mice; brain 1.1 Expression Wagner et al. (2015) [96]

HO-1 Erucin 20 mg/kg precursor +
myrosinase for 7 d in vivo; C57BL/6 mice; liver 3 Expression Wagner et al. (2015) [96]

HO-1 Erucin 20 mg/kg precursor +
myrosinase for 7 d in vivo; C57BL/6 mice; mucosae 4.8 Expression Wagner et al. (2015) [96]

HO-1 I3C 25 µM in vitro; TRAMP C1 cells 1.5 Expression Wu et al. (2012) [77]
HO-1 I3C 50 µM in vitro; TRAMP C1 cells 1.8 Expression Wu et al. (2012) [77]
HO-1 I3C 75 µM in vitro; TRAMP C1 cells 2.8 Expression Wu et al. (2012) [77]
HO-1 PEITC 5 µM in vitro; NIH3T3 cells 33 Expression Ernst et al. (2011) [74]
HO-1 SF 5 µM in vitro; NIH3T3 cells 18.6 Expression Ernst et al. (2011) [75]
HO-1 SF 10 µM in vitro; NIH3T3 cells 27 Expression Ernst et al. (2011) [75]
HO-1 SF 5 µM in vitro; NIH3T3 cells 18 Expression Ernst et al. (2011) [74]
HO-1 SF 10 µM in vitro; NIH3T3 cells 27 Expression Ernst et al. (2011) [74]
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HO-1 SF 90 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 10.3 (12.2) c Expression Hu et al. (2006) [81]

HO-1 SF 13 µmol/d for 3 d Human clinical; nasal lavage cells 1 Expression Riedl et al. (2009) [93]
HO-1 SF 64 µmol/d for 3 d Human clinical; nasal lavage cells 1.4 Expression Riedl et al. (2009) [93]
HO-1 SF 76 µmol/d for 3 d Human clinical; nasal lavage cells 2.1 Expression Riedl et al. (2009) [93]
HO-1 SF 89 µmol/d for 3 d Human clinical; nasal lavage cells 2.1 Expression Riedl et al. (2009) [93]
HO-1 SF 102 µmol/d for 3 d Human clinical; nasal lavage cells 2.2 Expression Riedl et al. (2009) [93]
HO-1 SF 50 µM in vitro; human Caco-2 cells 3.8 Expression Traka et al. (2005) [97]
NQO1 AITC 5 µM in vitro; NIH3T3 cells 2.2 Expression Ernst et al. (2011) [74]
NQO1 AITC 10 µM in vitro; NIH3T3 cells 2.1 Expression Ernst et al. (2011) [74]
NQO1 AITC 25 µM in vitro; NIH3T3 cells 1.9 Expression Ernst et al. (2011) [74]

NQO1 AITC 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 1.9 Activity Munday and Munday (2004) [89]

NQO1 AITC 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.5 Activity Munday and Munday (2004) [89]

NQO1 AITC 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.6 Activity Munday and Munday (2004) [89]

NQO1 BITC 50 µM in vitro; human LS-174 cells 1.5 Activity Bonnesen et al. (2001) [98]
NQO1 BITC 50 µM in vitro; human LS-174 cells 15–20 h Protein Bonnesen et al. (2001) [98]
NQO1 BITC 5 µM in vitro; NIH3T3 cells 2 Expression Ernst et al. (2011) [74]
NQO1 BITC 10 µM in vitro; NIH3T3 cells 1.7 Expression Ernst et al. (2011) [74]
NQO1 BITC 25 µM in vitro; NIH3T3 cells 1.6 Expression Ernst et al. (2011) [74]
NQO1 BITC 2 µM in vitro; human NHBE cells 7.5 (24 h) g Protein Tan et al. (2010) [95]
NQO1 DIM 300 µM in vitro; human LS-174 cells 1.1 Activity Bonnesen et al. (2001) [98]
NQO1 DIM 300 µM in vitro; human LS-174 cells 2 Protein Bonnesen et al. (2001) [98]
NQO1 DIM 5 µM in vitro; NIH3T3 cells 1.7 Expression Ernst et al. (2011) [75]
NQO1 DIM 10 µM in vitro; NIH3T3 cells 1.7 Expression Ernst et al. (2011) [75]
NQO1 DIM 25 µM in vitro; NIH3T3 cells 2 Expression Ernst et al. (2011) [75]
NQO1 DIM 5 µM in vitro; MCF10A breast cells 1.3 Expression Szaefer et al. (2015) [94]
NQO1 DIM 10 µM in vitro; MCF10A breast cells 1.5 Expression Szaefer et al. (2015) [94]
NQO1 DIM 5 µM in vitro; MCF10A breast cells 1 Protein Szaefer et al. (2015) [94]
NQO1 DIM 10 µM in vitro; MCF10A breast cells 1 Protein Szaefer et al. (2015) [94]
NQO1 DIM 5 µM in vitro; MCF7 breast cells 2.3 Expression Szaefer et al. (2015) [94]
NQO1 DIM 10 µM in vitro; MCF7 breast cells 3.8 Expression Szaefer et al. (2015) [94]
NQO1 DIM 5 µM in vitro; MCF7 breast cells 1 Protein Szaefer et al. (2015) [94]
NQO1 DIM 10 µM in vitro; MCF7 breast cells 1.1 Protein Szaefer et al. (2015) [94]
NQO1 DIM 5 µM in vitro; MDA-MB-231 breast cells 4.1 Expression Szaefer et al. (2015) [94]
NQO1 DIM 10 µM in vitro; MDA-MB-231 breast cells 5.1 Expression Szaefer et al. (2015) [94]
NQO1 DIM 5 µM in vitro; MDA-MB-231 breast cells 1 Protein Szaefer et al. (2015) [94]
NQO1 DIM 10 µM in vitro; MDA-MB-231 breast cells 1.1 Protein Szaefer et al. (2015) [94]
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NQO1 Erucin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 1.7 Activity Munday and Munday (2004) [89]

NQO1 Erucin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.5 Activity Munday and Munday (2004) [89]

NQO1 Erucin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.3 Activity Munday and Munday (2004) [89]

NQO1 I3C 1 mM in vitro; human LS-174 cells 1.1 Activity Bonnesen et al. (2001) [98]
NQO1 I3C 1 mM in vitro; human LS-174 cells 2 Protein Bonnesen et al. (2001) [98]

NQO1 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.4 Activity McMahon et al. (2001) [87]

NQO1 I3C 0.5% (w/w)
supplemented RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 2.4 Protein McMahon et al. (2001) [87]

NQO1 I3C 10 µM in vitro; MCF10A breast cells 1.2 Expression Szaefer et al. (2015) [94]
NQO1 I3C 50 µM in vitro; MCF10A breast cells 1.8 Expression Szaefer et al. (2015) [94]
NQO1 I3C 10 µM in vitro; MCF10A breast cells 1.1 Protein Szaefer et al. (2015) [94]
NQO1 I3C 50 µM in vitro; MCF10A breast cells 1.1 Protein Szaefer et al. (2015) [94]
NQO1 I3C 30 µM in vitro; MCF7 breast cells 2 Expression Szaefer et al. (2015) [94]
NQO1 I3C 50 µM in vitro; MCF7 breast cells 2.7 Expression Szaefer et al. (2015) [94]
NQO1 I3C 30 µM in vitro; MCF7 breast cells 1.3 Protein Szaefer et al. (2015) [94]
NQO1 I3C 50 µM in vitro; MCF7 breast cells 1.7 Protein Szaefer et al. (2015) [94]
NQO1 I3C 10 µM in vitro; MDA-MB-231 breast cells 2 Expression Szaefer et al. (2015) [94]
NQO1 I3C 50 µM in vitro; MDA-MB-231 breast cells 3 Expression Szaefer et al. (2015) [94]
NQO1 I3C 10 µM in vitro; MDA-MB-231 breast cells 1 Protein Szaefer et al. (2015) [94]
NQO1 I3C 50 µM in vitro; MDA-MB-231 breast cells 1.2 Protein Szaefer et al. (2015) [94]
NQO1 I3C 25 µM in vitro; TRAMP C1 cells 1.7 Expression Wu et al. (2012) [77]
NQO1 I3C 50 µM in vitro; TRAMP C1 cells 2.7 Expression Wu et al. (2012) [77]
NQO1 I3C 75 µM in vitro; TRAMP C1 cells 3.8 Expression Wu et al. (2012) [77]

NQO1 Iberin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 2.2 Activity Munday and Munday (2004) [89]

NQO1 Iberin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 1.8 Activity Munday and Munday (2004) [89]

NQO1 Iberin 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.3 Activity Munday and Munday (2004) [89]

NQO1 MIX b 15% broccoli seed/85%
RM1 feed for 7 d in vitro; mouse Hepa 1c1c7 cells 3 Activity McWalter et al. (2004) [78]

NQO1 MIX b 15% broccoli seed/85%
RM1 feed for 7 d in vitro; rat RL-34 cells 5 Activity McWalter et al. (2004) [78]

NQO1 MIX b 15% broccoli seed/85%
RM1 feed for 7 d

in vivo; Nrf2(+/+) mice; stomach,
small intestine, and liver 1.5 Activity McWalter et al. (2004) [78]
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NQO1 MIX b 15% broccoli seed/85%
RM1 feed for 7 d

in vivo; Nrf2(+/+) mice; stomach,
small intestine, and liver 2 Protein McWalter et al. (2004) [78]

NQO1 MIX b Brussels sprouts extract
(7 g tissue) for 4d in vivo; Wistar rats; hepatic cells 2.6 Activity Sorensen et al. (2001) [90]

NQO1 MIX b Broccoli sprout extract;
2 mg/L in vitro; human A549 cells 1.9 (24 h) g Expression Tan et al. (2010) [95]

NQO1 MIX b Broccoli sprout extract;
2 mg/L

in vitro; human immortalized
HBE cells 4 (6d) g Expression Tan et al. (2010) [95]

NQO1 MIX b Broccoli sprout extract;
1 mg/L in vitro; human NHBE cells 2.1 (24 h) g Expression Tan et al. (2010) [95]

NQO1 MIX b Broccoli sprout extract;
2 mg/L in vitro; human NHBE cells 4.5 (24 h) g Expression Tan et al. (2010) [95]

NQO1 MIX b Broccoli sprout extract;
2 mg/L in vitro; human NHBE cells 5 (24 h) g Protein Tan et al. (2010) [95]

NQO1 MIX b 40 µmol ITC per kg body
wt for 14 d

in vivo; Sprague-Dawley rats;
bladder 2.4 Activity Zhang et al. (2006) [91]

NQO1 MIX b 160 µmol ITC per kg
body wt for 14 d

in vivo; Sprague-Dawley rats;
bladder 4.4 Activity Zhang et al. (2006) [91]

NQO1 MIX b 40 µmol ITC per kg body
wt for 14 d

in vivo; Sprague-Dawley rats;
duodenum 2.4 Activity Zhang et al. (2006) [91]

NQO1 MIX b 160 µmol ITC per kg
body wt for 14 d

in vivo; Sprague-Dawley rats;
duodenum 4.6 Activity Zhang et al. (2006) [91]

NQO1 PEITC 50 µM in vitro; human LS-174 cells 1.4 Activity Bonnesen et al. (2001) [98]
NQO1 PEITC 50 µM in vitro; human LS-174 cells 15–20 h Protein Bonnesen et al. (2001) [98]
NQO1 PEITC 5 µM in vitro; NIH3T3 cells 1.7 Expression Ernst et al. (2011) [74]

NQO1 PEITC 2 µM in vitro; human immortalized
HBE cells 6 (48 h) g Protein Tan et al. (2010) [95]

NQO1 PEITC 2 µM in vitro; human NHBE cells 10 (6d) g Protein Tan et al. (2010) [95]
NQO1 SF 5 µM in vitro; rat cardiomyocytes 3–5 d Activity Angeloni et al. (2009) [82]
NQO1 SF 5 µM in vitro; rat cardiomyocytes 1.5–2.2 d Expression Angeloni et al. (2009) [82]
NQO1 SF 5 µM in vitro; rat cardiomyocytes 2–3 d Protein Angeloni et al. (2009) [82]
NQO1 SF 50 µM in vitro; human LS-174 cells 2 Activity Bonnesen et al. (2001) [98]
NQO1 SF 50 µM in vitro; human LS-174 cells 15–20 h Protein Bonnesen et al. (2001) [98]

NQO1 SF 0.1 µM in vitro; human prostatic
cancer cells 1 g Activity Brooks et al. (2001) [85]

NQO1 SF 0.5 µM in vitro; human prostatic
cancer cells 1.1 g Activity Brooks et al. (2001) [85]

NQO1 SF 1 µM in vitro; human prostatic
cancer cells 1.3 i Activity Brooks et al. (2001) [85]
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NQO1 SF 5 µM in vitro; human prostatic
cancer cells 1.8 i Activity Brooks et al. (2001) [85]

NQO1 SF 8 µM in vitro; human prostatic
cancer cells 1.9 i Activity Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; human prostatic
cancer cells 1.9 i Activity Brooks et al. (2001) [85]

NQO1 SF 15 µM in vitro; human prostatic
cancer cells 1.8 i Activity Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; human prostatic cancer
cells (LNCaP) 2.6 Expression Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; human prostatic cancer
cells (MDA Pca 2A) 2.2 Expression Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; human prostatic cancer
cells (MDA Pca 2B) 1.9 Expression Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; human prostatic cancer
cells (PC3) 1.8 Expression Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; human prostatic cancer
cells (TSU-Pr1) 1.6 Expression Brooks et al. (2001) [85]

NQO1 SF 0.1 µM in vitro; normal human
prostatic cells 1.4 Activity Brooks et al. (2001) [85]

NQO1 SF 0.5 µM in vitro; normal human
prostatic cells 1.6 Activity Brooks et al. (2001) [85]

NQO1 SF 1 µM in vitro; normal human
prostatic cells 2.1 Activity Brooks et al. (2001) [85]

NQO1 SF 3 µM in vitro; normal human
prostatic cells 2.5 Activity Brooks et al. (2001) [85]

NQO1 SF 5 µM in vitro; normal human
prostatic cells 2 Activity Brooks et al. (2001) [85]

NQO1 SF 8 µM in vitro; normal human
prostatic cells 1.8 Activity Brooks et al. (2001) [85]

NQO1 SF 10 µM in vitro; normal human
prostatic cells 1.9 Activity Brooks et al. (2001) [85]

NQO1 SF 15 µM in vitro; normal human
prostatic cells 1.8 Activity Brooks et al. (2001) [85]

NQO1 SF 40 nmol Human clinical; skin 1 Activity Dinkova-Kostova et al.
(2007) [99]

NQO1 SF 170 nmol Human clinical; skin 1.5 Activity Dinkova-Kostova et al.
(2007) [99]
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NQO1 SF 340 nmol Human clinical; skin 1.6 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 50 nmol/d for 3 d Human clinical; skin 2.8 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 100 nmol/d for 3 d Human clinical; skin 3 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 150 nmol/d for 3 d Human clinical; skin 4.5 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 200 nmol/d for 3 d Human clinical; skin 2.7 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 100 nmol/cm2; 1 dose in vivo; SKH-1 hairless mice; skin 1.6 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 100 nmol/cm2; 3 doses
(1/d for 3 d)

in vivo; SKH-1 hairless mice; skin 2.7 Activity Dinkova-Kostova et al. (2007)
[99]

NQO1 SF 5 µM in vitro; NIH3T3 cells 2.3 Expression Ernst et al. (2011) [74]
NQO1 SF 10 µM in vitro; NIH3T3 cells 2.2 Expression Ernst et al. (2011) [74]
NQO1 SF 5 µM in vitro; NIH3T3 cells 2.3 Expression Ernst et al. (2011) [75]
NQO1 SF 10 µM in vitro; NIH3T3 cells 2.2 Expression Ernst et al. (2011) [75]
NQO1 SF 156 nM in vitro; human ARPE-19 cells 1.1 Activity Gao et al. (2001) [100]
NQO1 SF 313 nM in vitro; human ARPE-19 cells 1.4 Activity Gao et al. (2001) [100]
NQO1 SF 625 nM in vitro; human ARPE-19 cells 1.6 Activity Gao et al. (2001) [100]
NQO1 SF 1.25 µM in vitro; human ARPE-19 cells 1.8 Activity Gao et al. (2001) [100]
NQO1 SF 2.5 µM in vitro; human ARPE-19 cells 2.0 Activity Gao et al. (2001) [100]
NQO1 SF 5 µM in vitro; human ARPE-19 cells 2.2 Activity Gao et al. (2001) [100]
NQO1 SF 156 nM in vitro; human ARPE-19 cells 1.4 Activity Gao et al. (2004) [101]
NQO1 SF 313 nM in vitro; human ARPE-19 cells 1.7 Activity Gao et al. (2004) [101]
NQO1 SF 625 nM in vitro; human ARPE-19 cells 2.1 Activity Gao et al. (2004) [101]
NQO1 SF 1.25 µM in vitro; human ARPE-19 cells 2.6 Activity Gao et al. (2004) [101]
NQO1 SF 2.5 µM in vitro; human ARPE-19 cells 3.3 Activity Gao et al. (2004) [101]
NQO1 SF 0.2 µM in vitro; rat hepatic Clone 9 cells 5.1 Protein Lii et al. (2010) [84]
NQO1 SF 1 µM in vitro; rat hepatic Clone 9 cells 6.6 Protein Lii et al. (2010) [84]
NQO1 SF 5 µM in vitro; rat hepatic Clone 9 cells 3.9 Activity Lii et al. (2010) [84]
NQO1 SF 5 µM in vitro; rat hepatic Clone 9 cells 7.8 Protein Lii et al. (2010) [84]

NQO1 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.4 Activity McMahon et al. (2001) [87]

NQO1 SF 3 µmol/g supplemented
RM1 feed

in vivo; Nrf2(+/+) mice;
intestinal cytosol 1.2 Protein McMahon et al. (2001) [87]

NQO1 SF 5 µM in vitro; mouse Hepa 1c1c7 cells 4.5 Activity McWalter et al. (2004) [78]
NQO1 SF 5 µM in vitro; rat RL-34 cells 5.2 Activity McWalter et al. (2004) [78]
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NQO1 SF 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
bladder 1.9 Activity Munday and Munday (2004) [89]

NQO1 SF 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
duodenum 2.2 Activity Munday and Munday (2004) [89]

NQO1 SF 40 µmol per kg body wt.
for 5 d

in vivo; Sprague-Dawley rats;
forestomach 1.2 Activity Munday and Munday (2004) [89]

NQO1 SF 13 µmol/d for 3 d Human clinical; nasal lavage cells 1 Expression Riedl et al. (2009) [93]
NQO1 SF 51 µmol/d for 3 d Human clinical; nasal lavage cells 1.1 Expression Riedl et al. (2009) [93]
NQO1 SF 64 µmol/d for 3 d Human clinical; nasal lavage cells 1.5 Expression Riedl et al. (2009) [93]
NQO1 SF 76 µmol/d for 3 d Human clinical; nasal lavage cells 2.4 Expression Riedl et al. (2009) [93]
NQO1 SF 89 µmol/d for 3 d Human clinical; nasal lavage cells 2.6 Expression Riedl et al. (2009) [93]
NQO1 SF 102 µmol/d for 3 d Human clinical; nasal lavage cells 3 Expression Riedl et al. (2009) [93]
NQO1 SF 5 µM in vitro; human BEAS-2B cells 15 Expression Ritz et al. (2007) [92]
NQO1 SF 5 µM in vitro; human NHBE cells 3 Expression Ritz et al. (2007) [92]

NQO1 SF 1 µM in vitro; human immortalized
HBE cells 2 (24 h) g Expression Tan et al. (2010) [95]

NQO1 SF 2 µM in vitro; human immortalized
HBE cells 8 (48 h) g Protein Tan et al. (2010) [95]

NQO1 SF 0.5 µM in vitro; human NHBE cells 3.5 (24 h) g Expression Tan et al. (2010) [95]
NQO1 SF 1 µM in vitro; human NHBE cells 3.8 (24 h) g Expression Tan et al. (2010) [95]
NQO1 SF 2 µM in vitro; human NHBE cells 1.9 (24 h) g Expression Tan et al. (2010) [95]
NQO1 SF 2 µM in vitro; human NHBE cells 11.8 (6d) g Protein Tan et al. (2010) [95]

NQO1 SF 9 µmol per day in vivo; ICR mice; small
intestine cells 1.6 Activity Thimmulappa et al. (2002) [79]

NQO1 SF 9 µmol per day in vivo; ICR mice; small
intestine cells 2.5 Expression Thimmulappa et al. (2002) [79]

NQO1 SF 50 µM in vitro; human Caco-2 cells 2.5 Expression Traka et al. (2005) [97]
NQO1 SF 100 nM in vitro; mouse cortical neurons 8 Activity Vauzour et al. (2010) [83]

NQO1 SF 4 µM in vitro; mouse
embryonic fibroblasts 2.5 Activity Zhang et al. (2006) [91]

NQO1 SF 8 µM in vitro; mouse
embryonic fibroblasts 2.5 Activity Zhang et al. (2006) [91]

NQO1 SF 4 µM in vitro; rat bladder NBT-II cells 2.3 Activity Zhang et al. (2006) [91]
NQO1 SF 8 µM in vitro; rat bladder NBT-II cells 2.6 Activity Zhang et al. (2006) [91]
NQO1 SF 1 µM in vitro; TRAMP C1 cells 2.1 Expression Zhang et al. (2013) [102]
NQO1 SF 2.5 µM in vitro; TRAMP C1 cells 2.3 Expression Zhang et al. (2013) [102]
SOD I3C 10 µM in vitro; HepG2 cells 1.3 Expression Krajka-Kuźniak et al. (2015) [44]
SOD I3C 10 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
SOD I3C 2 µM in vitro; HepG2 cells 1.2 Expression Krajka-Kuźniak et al. (2015) [44]
SOD I3C 2 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
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SOD PEITC 1 µM in vitro; HepG2 cells 1.6 Expression Krajka-Kuźniak et al. (2015) [44]
SOD PEITC 1 µM in vitro; HepG2 cells 1.2 Protein Krajka-Kuźniak et al. (2015) [44]
SOD PEITC 5 µM in vitro; HepG2 cells 2.4 Expression Krajka-Kuźniak et al. (2015) [44]
SOD PEITC 5 µM in vitro; HepG2 cells 1.4 Protein Krajka-Kuźniak et al. (2015) [44]
TXNRD Erucin 1 µM in vitro; human MCF-7 cells 2.7 (8 h) g Expression Wang et al. (2005) [103]
TXNRD Erucin 12 µM in vitro; human MCF-7 cells 7.3 (8 h) g Expression Wang et al. (2005) [103]
TXNRD Erucin 3 µM in vitro; human MCF-7 cells 4.3 (8 h) g Expression Wang et al. (2005) [103]
TXNRD Erucin 6 µM in vitro; human MCF-7 cells 5.6 (24 h) g Expression Wang et al. (2005) [103]

TXNRD Erucin 12 µM; 48 h
after treatment in vitro; human MCF-7 cells 4 Activity Wang et al. (2005) [103]

TXNRD Erucin 12 µM; 48 h
after treatment in vitro; human MCF-7 cells 4 Protein Wang et al. (2005) [103]

TXNRD Iberin 1 µM in vitro; human MCF-7 cells 3.7 (8 h) g Expression Wang et al. (2005) [103]
TXNRD Iberin 3 µM in vitro; human MCF-7 cells 4.4 (8 h) g Expression Wang et al. (2005) [103]
TXNRD Iberin 6 µM in vitro; human MCF-7 cells 5.6 (24 h) g Expression Wang et al. (2005) [103]
TXNRD Iberin 12 µM in vitro; human MCF-7 cells 5.8 (8 h) g Expression Wang et al. (2005) [103]

TXNRD Iberin 12 µM; 48 h
after treatment in vitro; human MCF-7 cells 4 Activity Wang et al. (2005) [103]

TXNRD Iberin 12 µM; 48 h
after treatment in vitro; human MCF-7 cells 3 Protein Wang et al. (2005) [103]

TXNRD SF 5 µM in vitro; rat cardiomyocytes 2–2.7 d Activity Angeloni et al. (2009) [82]
TXNRD SF 5 µM in vitro; rat cardiomyocytes 1.2–1.5 d Expression Angeloni et al. (2009) [82]
TXNRD SF 5 µM in vitro; rat cardiomyocytes 1.5–1.9 d Protein Angeloni et al. (2009) [82]
TXNRD SF 10 µM in vitro; human Caco-2 cells 2.2 (25 m) g Expression Bacon et al. (2007) [104]
TXNRD SF 10 µM in vitro; human Caco-2 cells 1.7 (50 m) g Protein Bacon et al. (2007) [104]
TXNRD SF 2 µM; 24 h after treatment in vitro; human Caco-2 cells 1.1 Expression Bacon et al. (2007) [104]
TXNRD SF 5 µM; 24 h after treatment in vitro; human Caco-2 cells 1.7 Expression Bacon et al. (2007) [104]

TXNRD SF 10 µM; 24 h
after treatment in vitro; human Caco-2 cells 2.2 Expression Bacon et al. (2007) [104]

TXNRD SF 20 µM; 24 h
after treatment in vitro; human Caco-2 cells 3.5 Expression Bacon et al. (2007) [104]

TXNRD SF 2 µM; 48 h after treatment in vitro; human Caco-2 cells 1.1 Protein Bacon et al. (2007) [104]
TXNRD SF 5 µM; 48 h after treatment in vitro; human Caco-2 cells 1.4 Protein Bacon et al. (2007) [104]

TXNRD SF 10 µM; 48 h
after treatment in vitro; human Caco-2 cells 1.6 Protein Bacon et al. (2007) [104]

TXNRD SF 20 µM; 48 h
after treatment in vitro; human Caco-2 cells 1.5 Protein Bacon et al. (2007) [104]

TXNRD SF 10 µM in vitro; human HepG2 cells 4 (25 m) g Expression Bacon et al. (2007) [104]
TXNRD SF 10 µM in vitro; human HepG2 cells 2.2 (50 m) g Protein Bacon et al. (2007) [104]
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TXNRD SF 2 µM; 24 h after treatment in vitro; human HepG2 cells 2.1 Expression Bacon et al. (2007) [104]
TXNRD SF 5 µM; 24 h after treatment in vitro; human HepG2 cells 2.7 Expression Bacon et al. (2007) [104]

TXNRD SF 10 µM; 24 h
after treatment in vitro; human HepG2 cells 2.5 Expression Bacon et al. (2007) [104]

TXNRD SF 20 µM; 24 h
after treatment in vitro; human HepG2 cells 0.8 Expression Bacon et al. (2007) [104]

TXNRD SF 2 µM; 48 h after treatment in vitro; human HepG2 cells 1.5 Protein Bacon et al. (2007) [104]
TXNRD SF 5 µM; 48 h after treatment in vitro; human HepG2 cells 2 Protein Bacon et al. (2007) [104]

TXNRD SF 10 µM; 48 h
after treatment in vitro; human HepG2 cells 2.7 Protein Bacon et al. (2007) [104]

TXNRD SF 20 µM; 48 h
after treatment in vitro; human HepG2 cells 2.1 Protein Bacon et al. (2007) [104]

TXNRD SF 102 µmol single dose Human clinical; gastric mucosa 1.5 Expression Gasper et al. (2007) [80]
TXNRD SF 344 µmol single dose Human clinical; gastric mucosa 2.1 (1.6) c Expression Gasper et al. (2007) [80]

TXNRD SF 50 mg per kg; 6 h after i.p.
injection

in vivo; tub/tub P14 mice; retinal
cells 2.4 Protein Kong et al. (2007) [105]

TXNRD SF 50 mg per kg; 12 h after
i.p. injection

in vivo; tub/tub P14 mice; retinal
cells 1.8 Protein Kong et al. (2007) [105]

TXNRD SF 50 µM in vitro; human Caco-2 cells 8.8 Expression Traka et al. (2005) [97]
TXNRD SF 0.1 µM in vitro; mouse cortical neurons 2.6 Activity Vauzour et al. (2010) [83]
TXNRD SF 1 µM in vitro; human MCF-7 cells 3.4 (8 h) g Expression Wang et al. (2005) [103]
TXNRD SF 3 µM in vitro; human MCF-7 cells 4.1 (8 h) g Expression Wang et al. (2005) [103]
TXNRD SF 6 µM in vitro; human MCF-7 cells 4.8 (24 h) g Expression Wang et al. (2005) [103]
TXNRD SF 12 µM in vitro; human MCF-7 cells 5.4 (8 h) g Expression Wang et al. (2005) [103]

TXNRD SF 12 µM; 48 h
after treatment in vitro; human MCF-7 cells 5 Activity Wang et al. (2005) [103]

TXNRD SF 12 µM; 48 h
after treatment in vitro; human MCF-7 cells 3 Protein Wang et al. (2005) [103]

TXNRD1 SF 90 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.6 Expression Hu et al. (2006) [81]

TXNRD1 SF 90 mg/kg; 12 h
after treatment in vivo; Nrf2(+/+) mice; liver 2 Expression Hu et al. (2006) [81]

TXNRD3 SF 90 mg/kg; 3 h
after treatment in vivo; Nrf2(+/+) mice; liver 2.4 Expression Hu et al. (2006) [81]
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UGT family 2 SF 9 µmol per day in vivo; ICR mice; small
intestine cells 8 Expression Thimmulappa et al. (2002) [79]

UGT1A1 SF 11 µM in onion/broccoli
extract Human clinical; enterocytes 2.4 Expression Petri et al. (2003) [86]

UGT1A1 SF 11 µM in onion/broccoli
extract in vitro; human Caco-2 cells 1.5 Expression Petri et al. (2003) [86]

UGT1A6 SF 9 µmol per day in vivo; ICR mice; small
intestine cells 1.4 Expression Thimmulappa et al. (2002) [79]

a Fold changes were at times estimated from graphs or approximated from reported ranges; b Treatments involved a mixture of glucosinolate hydrolysis products reported in more
detail in the corresponding reference; c The first numeral indicates fold change based on qRT-PCR experiments. Values in parentheses indicate mean fold changes for all reported
microarray probes of a given gene; d Range of significant fold changes over a time course; e Isoform not given; f Range of fold changes for several GST isoforms quantified using a
microarray; g Values reported are the most significant positive fold change following treatment with the indicated compound or plant extract for different time periods. The treatment
period is indicated in parentheses following the fold change; h Range reported in text; numerical values from Western blots not reported in tables or figures; i Values are mean fold
changes from four prostate cancer cell lines: LNCaP, MDA Pca 2a, MDA Pca 2b, and TSU-Pr1; Abbreviations: ARPE, arising retinal pigment epithelial; BITC, benzyl isothiocyanate;
CAT, catalase; DIM, 3,31-diindolylmethane; GCL, glutamate-cysteine ligase; GCLC, glutamate-cysteine ligase catalytic subunit; GPX, glutathione peroxidase; GSH, glutathione; GSR,
glutathione reductase; GST, glutathione S-transferase (A, alpha; P, pi; M, mu; T, tau); GSHP, glucosinolate hydrolysis product; HO-1, heme oxygenase 1; I3C, indole-3-carbinol; ITC,
isothiocyanate; NHBEC, normal human bronchial epithelial cells; NQO1, NADPH:quinone oxidoreductase-1; PEITC, phenethyl isothiocyanate; SF, sulforaphane; TXNRD, thioredoxin
reductase; UGT, UDP-glucuronosyltransferase.
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In addition to the direct benefits of Nrf2 induction on cellular xenobiotic metabolism, there is also
evidence of possible crosstalk between the Nrf2 and NFκB pathways (reviewed by Li et al. [106]) as
well as evidence that these compounds block the phosphorylation and subsequent degradation of the
protein that acts to sequester NFκB in the cytosol. Degradation of this protein would lead to increased
nuclear translocation of NFκB, which is associated with inducing transcription of pro-inflammatory
genes commonly found to be upregulated in cancer cells (reviewed by Cheung and Kong [107]).
This is just one example of multiple chemopreventive bioactivities of GSHPs, which demonstrates the
complexity underlying the crosstalk and co-regulation that exists between cellular stress mechanisms
and their effect on the initiation, promotion, and/or progression of cancer.

4. Nrf2/Keap1/ARE Signaling Cascade

Regarding chemopreventive bioactivity induced by GSHPs, one mechanism that has been well
described is the Keap-1/Nrf2/ARE signaling cascade present in mammalian cells (reviewed by
Jaramillo and Zhang [108] and Kansanen et al. [109]). In this signaling pathway, expression of many
PII and AO enzymes is promoted by the binding of Nrf2 transcription factors to ARE sequences in
the promoter regions of these genes [110]. It is believed that under basal conditions, the transcription
factor Nrf2 is sequestered by Keap1 in the cytoplasm. The generally accepted mechanism by which this
occurs is that two Keap1 proteins, which are part of a larger Keap1-Cul3-E3 ubiquitin ligase complex,
bind to the ETGE and DLG motifs in the Neh2 domain of Nrf2 and promote polyubiquitination and
subsequent proteasomal degradation of Nrf2 [69,111–114]. However, when Keap1 reacts with any of a
number of bioactive molecules, polyubiquitination may be impeded.

It is hypothesized that the cysteine residues of Keap1 can react with a number of electrophilic
compounds. The modification of the thiol groups of these cysteine residues is thought to alter
the conformation of Keap1 [115–117]. This, in turn, causes the Keap1 dimer to release the DLG
motif of Nrf2, which is suggested to prevent Nrf2 polyubiquitination and degradation [111–113].
This proposed mechanism results in Keap1 becoming saturated with Nrf2, allowing newly synthesized
Nrf2 to be freely translocated to the nucleus. Once in the nucleus, Nrf2 forms a heterodimer
with one of a number of small masculoaponeurotic fibrosarcoma (sMaf) proteins [118] allowing
for the binding of the heterodimer to antioxidant response elements (AREs) in the promoter regions
of a number of genes involved in cell metabolism and detoxification [118–120], while other Maf
proteins can act as repressors [121]. In the absence of Nrf2, sMaf proteins form homodimers and
bind to AREs, but effectively act as repressors due to their inability to stimulate transcriptional
activation [122]. This mechanism for Nrf2/Keap1 regulation of ARE-dependent genes, including those
encoding PII and AO enzymes, has been well supported by a number of other studies not already
mentioned [123–125]. The Nrf2/Keap1/ARE signaling cascade is discussed in more detail by a number
of reviews [30,126–128].

5. In Vitro Evidence of ARE-Dependent Gene Induction by ITCs

The utility of ITCs for inducing ARE-dependent gene transcription and activity has been
thoroughly studied for several years. Popular approaches for such research have been reviewed
by Fuentes et al. [129]. There have been a number of ITCs found in Brassica crops that have shown
the ability to induce PII and/or AO gene expression/activity, although perhaps through slightly
different mechanisms. These include but are not limited to SF, PEITC, AITC, benzyl ITC (BITC), iberin,
erucin, and the ITC-derived compounds, I3C and DIM. These GSHPs can be found in a number of
Brassica crops, although with variable abundance due to environmental and genetic factors. A few
of the Brassica crops considered to be good sources of one or several of these GSHPs are broccoli,
various mustards, cabbage (most types), and gai-lan (Chinese broccoli) (Becker et al., in preparation for
submission [130]).

SF induces ARE-dependent gene expression through reaction with Keap1. The reaction of SF
with Keap1 cysteine residues (primarily C38, C151, C368, and C489; [131]) results in the formation of
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thionoacyl adducts. However, unlike some other inducers of Nrf2-dependent genes, SF was shown
not to result in polyubiquinaton of Keap1 [132,133]. It is believed that the formation of thionoacyl
adducts on Keap1 in the presence of SF reduces the binding affinity of Keap1 for Cul3, resulting in
an inability to eliminate Nrf2 through proteasomal degradation and migration of free Nrf2 to the
nucleus [131,134,135]. Additionally, there is some evidence that a transcriptional coregulator called
SPBP may be involved in SF perception and Nrf2 induction [136]. The effects of SF treatment on AO
and PII enzymes in vitro have been studied in a wide variety of human and murine cell lines, including
LNCaP, PC-3, TSU-Pr1, MDA PCa 2a, MDA PCa 2b, MDA-MB-231, transgenic adenocarcinoma of
mouse prostate (TRAMP) C1, HeLa, HT-29, CaCo-2, HepG2, Hepa1c1c7 and MCF-7 [85,102,137–139].
The protective effect of SF against oxidative stress has been well documented as this compound was
identified several years ago as a strong inducer of PII and AO enzymes, and subsequently, an effective
chemopreventive agent.

Much of the early work with SF was reviewed by Fahey and Talalay [140], with a more recent
review conducted by Guerrero-Beltran et al. [141]. The studies reviewed by these authors generally
attributed the protective effect of SF, no matter the tissue, to increases in transcription and/or activity
of one or several PII and/or AO enzymes. Some studies also went as far as to show these effects to be
Nrf2-dependent using Nrf2 inhibitors or Nrf2-deficient cell lines. Other studies not included in the
review by Guerrero-Beltran et al. have shown similar results. For example, Mizuno et al. [76] showed SF
treatment (1 µM) to increase nuclear translocation of Nrf2 as well as expression of γ-glutamylcysteine
synthetase (γ-GCS) and HO-1 in rat neuronal cells. In this experiment, the researchers hypothesized
that the protective effect of SF observed is primarily due to the increase in γ-GCS expression and
subsequent increase in intercellular reduced GSH, based on results from experiments with inhibitors
of γ-GCS and HO-1. Also, as a side note, the level of SF used in this and many SF bioactivity studies is
well within the range of 0.943–2.27 µM reported to be present in human plasma and erythrocytes 1 h
following ingestion of approximately 200 µmol of ITCs in the form of broccoli sprouts [142].

While results from several studies using different tissues show similar results from SF treatment,
there is evidence that there are mechanisms other than the Keap1 pathway by which SF induces Nrf2
expression/activity. This is shown in a study using mouse TRAMP cells, a prostate cancer model
that was previously reported as containing an epigenetic mechanism that leads to decreased Nrf2
and downstream gene expression [143]. Using these cells, Zhang et al. [102] reports that SF treatment
results in the demethylation of the first five CpG sites in the Nrf2 promoter, leading to an increase in
Nrf2 mRNA and protein expression. The beneficial effect of SF on oxidative stress may not be limited
to induction of Nrf2-dependent genes. In addition to the well-demonstrated effectiveness of SF in that
capacity, there is evidence that SF may act directly as a radical scavenger from superoxide through the
action of SOD and from hydrogen peroxide without enzymatic interaction [144].

The mechanism for PEITC induction of ARE-dependent genes is believed to occur via
increased extracellular signal-regulated kinase (ERK)- and/or c-Jun-NH2-kinase (JNK)-dependent
phosphorylation of Nrf2. Upon treatment with PEITC, increased phosphorylation by ERK and/or
JNK results in improved migration of Nrf2 to the nucleus and ARE-dependent gene expression.
Support for this mechanism comes from results that show an attenuation of the effects of PEITC
treatment by ERK/JNK inhibition and or genetic knockout [145,146]. This mechanism also appears to
be partially responsible for the Nrf2 induction by SF and AITC [146]. In a recent study, PEITC-induced
Nrf2-dependent PII and AO enzyme induction was tested in HepG2 cells. At concentrations of
1 µM and 5 µM, PEITC was shown to significantly increase Nrf2 mRNA, nuclear Nrf2 protein,
and phosphorylated nuclear Nrf2 by approximately 2-fold, 1.3-fold, and 1.5-fold, respectively. Both PII
and AO enzymes showed increases in expression and protein abundance following PEITC treatment.
Both tested concentrations of PEITC increased expression and protein abundance of all four major
classes of GSTs while NQO1 expression and abundance was only significantly increased by 5 µM
PEITC treatment. Several AO enzymes (SOD, CAT, GPX, and GSR) also responded to both tested
concentrations of PEITC with significant increases in both transcript and protein abundance [44].
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In another study, PEITC was also shown to increase expression of HO-1 and an ARE-driven luciferase
reporter gene in PC-3 cells. Even though no statistical analysis was presented in this study, a clear
positive trend was observed in both HO-1 and ARE/luciferase up to concentrations of 7.5–10 µM
PEITC. However, ARE/luciferase activity decreased at 20 µM, and there were signs of cytotoxicity
with long term exposure to higher concentrations [147].

In addition to SF and PEITC, other ITCs common in Brassica vegetables have shown evidence
of the ability to induce the ARE-dependent genes. For example, SF, PEITC, BITC, and AITC were
generally shown to increase transcript and protein abundance of γ-GCS, HO-1, and NQO1 when
applied to NIH3T3 fibroblast cells at the lowest dose tested (5 µM) [74]. A similar study using the same
four ITCs and mouse skin papilloma cells found analogous results, with significant increases in NQO1
and GST activity. The authors also showed that the measured area under time-concentration curve of
intracellular concentrations of a given ITC were strongly correlated with the induction of the measured
enzymes as well as glutathione (GSH) content. Comparable correlations were found for all four ITCs
using human HepG2 cells and an ARE-luciferase reporter [148]. While Nrf2 signaling is no doubt
one of the major contributors to the chemopreventive bioactivity of PEITC, several other mechanisms
besides Nrf2 activation have been proposed to contribute, including induction of apoptosis and cell
cycle arrest. Several of these potential mechanisms are discussed in depth in a review by Qin et al. [149].

A few studies also exist exploring the effect of I3C treatment on AO and PII enzymes in vitro.
One such study was briefly discussed above for its evaluation of PEITC induction of AO and PII
enzymes. I3C showed similar results to PEITC in this study, although the tested concentrations were
double that of PEITC (2 and 10 µM). Even though I3C was shown to significantly increase transcript
and protein abundance of many of the same PII and AO enzymes as PEITC, some differences existed.
In general, PEITC treatments resulted in greater increases in transcript and protein for the genes
tested, even at lower concentrations. These differences were most extreme for transcript abundance
of a number of genes (SOD, GPX, and all tested GSTs), but were less evident when evaluating the
corresponding protein abundance [44]. In yet another study, TRAMP C1 cells modified to contain an
ARE-luciferase reporter were treated with I3C at concentrations of 25, 50, 75, and 100 µM. Treatments
were shown to increase luciferase reporter activity in a dose-dependent manner, with an effective
dose (statistically different from control) of 50 µM. Likewise, Nrf2 and several downstream genes
(glutamate-cysteine ligase catalytic subunit [GCLC], NQO1, and HO-1) were upregulated, in terms of
mRNA levels. Induction was, again, dose-dependent with effective doses being reached at 75, 25, 25,
and 75 µM for Nrf2, GCLC, NQO1, and HO-1, respectively [77]. The mechanism(s) for I3C induction
of Nrf2 have yet to be fully elucidated, but one study suggests that at least one mechanism is indirect,
acting through suppression of the production of reactive oxygen species (ROS) upon treatment of the
cytotoxic compounds, such as dexamethasone (Dex). In this study, I3C treatments as low as 5 µM
resulted in a negation (statistically speaking) of cytotoxic effects of Dex as determined by cell viability
comparisons to a control in MC3T3-E1 osteoblastic cells. Also, 10 µM and 20 µM I3C pretreatment
prior to treatment with Dex reduced the production of superoxide by 30% and 40%, respectively, when
measured as percent of the control. Superoxide levels were also found, roughly, to negatively associate
with Nrf2 and downstream gene expression in the Dex and Dex+I3C treatments. This led the authors
to hypothesize that in their study, the induction of Nrf2 and downstream genes by I3C was largely due
to the attenuation of Dex-induced ROS production and any Nrf2-repression mechanisms that those
ROS levels may have imposed [150].

While the experiments discussed above use I3C as a treatment, there is evidence that I3C
undergoes oligomerization in cell culture [151], just as it does in acidic conditions like the stomach [152].
This means that other compounds, such as 3,31-diindolylmethane (DIM), may be responsible for some of
the bioactivity associated with I3C. Yet, a reminder of just how complex the mechanisms of bioactivity
underlying the chemopreventive properties of these compounds can be seen in an experiment done
by Szaefer et al. [94]. In this study, three different breast cell lines, two of which were tumorigenic,
were treated with both I3C (10, 30, and 50 µM) and DIM (5 and 10 µM). Levels of transcript and protein
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were measured for a number of genes, including NQO1 and GST-π (GSTP). I3C and DIM showed
similar patterns of induction for these genes, but some slight differences are seen depending on the
gene being measured and the cell line, an indication of possible interactions between treatment and
genotype. However, it is difficult to determine if the observed differences are real, as no ANOVA
was reported for this study to test for statistical significance of any of these effects. One thing that is
suggested from the results of the Szaefer et al. study is that the effective dose of DIM for induction
of Nrf2 and downstream genes is much lower than I3C, as treatments of 5 µM and 10 µM DIM
showed similar levels of induction of both mRNA and protein of NQO1 and GSTP as 30 µM and
50 µM I3C, respectively. Along with Nrf2 induction, I3C and its derivatives exhibit chemopreventive
bioactivity through a number of other mechanisms, including suppression of proliferation of cancer
cells from various tissues through regulatory repression of cyclin-dependent kinases, induction of
apoptosis, and modulation of expression of several transcription factors (reviewed by Aggarwal and
Ichikawa [153]). However, these indole-derived GSHPs are generally considered to be inferior to
the aliphatic-derived ITCs in terms of chemopreventive potential, mainly due to their bifunctional
nature [70,71].

6. Response of AO and PII Enzymes to ITC Treatment in Animal Studies

As with in vitro studies, SF has been the most studied ITC in animal models. SF has generally been
shown to inhibit PI enzymes while inducing PII enzymes, such as NQO1, TXNRD, GST, and HO-1,
in a variety of tissues/cell types [23,73]. However, the inhibitory effect of SF on PI enzymes may not be
universal for all genetic backgrounds. A report by Hu et al. [81] detected increases in PI gene expression
following treatment with SF in Nrf2 wild-type mice compared to Nrf2 knockouts. This inconsistency
in results from different studies concerning the action of SF on PI enzymes is indicative that the
mechanisms of bioactivity of SF, probably the most-studied ITC, are still not fully understood.

One factor that has been considered as research on SF and other GSHPs moved from in vitro to
in vivo studies is that the bioactivity of a given GSHP depends on the level of bioavailability, or ease of
absorption by the body or a given tissue, of that compound [154]. Studies show high bioavailability of
SF in CD-1 mice following oral administration of 2.5 mg/kg broccoli sprout preparations. Modeling
of SF uptake in this experiment indicated that SF absorption is principally perfusion-limited [155].
Similarly high levels of bioavailability have been measured in humans [156–158], independent of GSTP1
polymorphism [156]. It has also been observed that the bioavailability of SF is greatly dependent upon
whether or not functional myrosinase is included with SF’s precursor GS, glucoraphanin. Use of fresh
Brassica tissue and/or supplementation with myrosinase results in a higher bioavailability of SF in
both mice [155] and humans [156–158].

The AO and PII inductive effects of PEITC have also been tested in animal models. One such study
treated Nrf2 wild-type and knockout mice with a dosage of 40 mg/kg PEITC. Microarray analysis
of liver mRNA revealed upregulation for a large number of genes both 3 h and 12 h after treatment.
These included a number of AO and PII genes along with several genes associated with heat shock
proteins, ubiquitin/26 S proteasome subunits, and lipid metabolism [88]. Like SF, PEITC appears to be
highly bioavailable. Oral bioavailability in rats was calculated to be at or near 100% for doses of 10 and
100 µmol/kg [159]. In addition, half-life of PEITC in rat is reported to be between 4 and 22 h, depending
on the tissue [160]. The high bioavailability of PEITC, much like SF, contributes to the promise of
this phytochemical being absorbed in effective doses through dietary means. A disadvantage of
PEITC compared to SF is that this compound is much more volatile [161], less water soluble [162], and
therefore more likely to be lost from the Brassica vegetable during preparation (i.e., after cutting of
plant tissue leads to hydrolysis of gluconasturtiin, the precursor GS of PEITC). However, consumption
of salad crops like watercress, from a genus closely related to Brassica, can deliver large doses of
gluconasturtiin, active myrosinase, and subsequently, PEITC at estimated levels of 37 µmol per
ounce [163]. Another aliphatic ITC common to Brassica crops that is gaining attention is erucin, from
the precursor GS glucoerucin. This ITC was recently found to induce HO-1 expression in vitro and
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in vivo, possibly acting through a similar mechanism of Nrf2 activation as PEITC [96]. Interestingly,
erucin can also undergo interconversion to SF in vivo, although the interconversion ratio of SF and
erucin is not consistent across individuals [156].

As mentioned above, indole-derived GSHPs are considered less effective chemopreventive
compounds due to their bifunctional induction capabilities. Both I3C and DIM have been tested
for their high dose toxicity and PI enzyme induction in Sprague-Dawley rats using doses equivalent
to 5–7x the maximal human dose for I3C and 1 or 10x for DIM. After 12 months of feeding, no major
indicators of toxicity were observed, but the I3C diet was shown to significantly increase PI protein
levels. The high dosage DIM diet also caused PI protein induction, but generally at a lower level than
I3C and with some differences between tissues for both compounds [70]. These results along with
those of previously discussed studies indicate the superiority of DIM as a chemopreventive agent
compared to I3C due to its lower bifunctional induction [70] and lower effective dose for the induction
of PII enzymes in vitro [94]. In some trials, DIM treatments showed results similar to those of in vitro
studies. In one such study, DIM administered intravenously to male Sprague-Dawley rats at a dose of
10 mg/kg resulted in significant increases in mRNA levels of NQO1, GSTP1, and UGT1A1 in blood
lymphocytes, peaking approximately 1–2 h after DIM treatment. Concentrations of DIM in plasma
were also measured, but due to the poor bioavailability of DIM, calculated in this study as 1%–3%,
plasma concentrations were relatively low, peaking around 9 µg/mL five minutes after administration.
DIM was also shown to be quickly metabolized, with a terminal half-life of 0.737 h [164]. The low
bioavailability of DIM has been corroborated by other research [165,166]. This fact has raised concerns
that the levels of DIM needed to elicit a response in mice may not be achievable through dietary intake
of Brassica crops. Wu et al. [164] calculated that the dosage used in their experiment would translate to
a human dosage of 1.6 mg/kg. Concentrations of DIM in both green and red kale leaf tissue, a crop
containing relatively high amounts of DIM’s precursor GS (glucobrassicin), have been shown to be
less than 1 µg/mg dried tissue [167]. One caveat is that liver concentrations of DIM have been shown
to be six to eight times that of plasma in mice [166], indicating that a smaller dose may be necessary to
reach effective dose levels in liver cells [164].

7. Clinical and Epidemiological Evidence for the Importance of ITCs in Chemoprevention

Although there has been significant evidence that a diet rich in GSHPs can have chemopreventive
effects, this relationship often is not found to be significant in epidemiological studies. A review by
Higdon et al. [42] discusses this common observation. The authors looked at several epidemiological
studies for the four types of cancer with the highest mortality rates in the U.S.: lung, colorectal,
breast, and prostate. Though there are obvious differences between these cancers, there seemed
to be some commonalities in the results of the different epidemiological studies. For each type of
cancer, the authors concluded that even though many small case-control studies found a significant
inverse relationship between cruciferous vegetable intake and cancer rates, the larger prospective
cohort studies often did not find the same significant relationship. There were a few exceptions to
this generalization. Some of the prospective cohort studies found significant inverse relationships,
but usually in specific populations within the full data set of the study [168–172]. The different
results between the two types of studies may be due to participation bias in case-control studies,
wherein control groups who choose to participate are more health conscious and have better eating
habits compared to non-participating controls [173]. However, as the authors of the review indicate,
the inconsistency of results may be due to a more complex relationship between cruciferous vegetable
intake and cancer risk than what was previously thought.

Although results of different epidemiological studies can often be contradictory, a review of 87
case-control studies that were performed prior to 1996 indicated that a majority (67%) show an inverse
relationship between cancer risk and cruciferous vegetable consumption [174]. Building on this, Jeffery
and Keck [175] make the case that there is enough evidence to proceed with larger clinical trials
testing the efficacy of purified SF, semi-purified SF, and/or whole broccoli for inducing detoxification
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enzyme activity. The authors reviewed a number of epidemiological, in vitro, and in vivo studies
examining the link between cruciferous vegetable intake, or bioactive GSHPs, and cancer. In this article,
all epidemiological studies reviewed showed a significant (p < 0.05) decrease in cancer risk associated
with cruciferous vegetable consumption for various types of cancer including: bladder [176], lung [177],
lymphoma [178], prostate [179,180], breast [181], kidney [182], and ovarian [183]. These results were
further supported with a number of in vitro studies showing several anti-tumorigenic activities in
various mammalian cancer cell types after treatment with SF. Also reported were several in vivo animal
model studies showing decreased tumor growth, incidence, and/or multiplicity using broccoli, SF, and
ITCs as treatments. Finally, several small clinical studies were reported that further corroborated the
observed results in epidemiological, in vitro, and animal model studies described above. These studies
reported positive associations between broccoli or broccoli sprout consumption and several different
biomarkers linked to efficacy of the treatment for inducing cellular detoxification mechanisms. More
recent reviews and/or meta-analyses have also corroborated the conclusion that consumption of
cruciferous (Brassica) vegetables, in general, results in a decreased risk of several cancer types [184–191].

Singh and Singh [23] expanded on the case made by Jeffery and Keck, widening the scope
to include PEITC and BITC. Again, the authors cited evidence supporting the chemopreventive
potential of these compounds through a number of mechanisms, including cellular ROS modulation,
and called for a transition into large-scale clinical research of dietary ITCs. However, the authors
of both reviews discussed above admitted to challenges that exist when considering the transition
into human clinical trials with ITCs, including formulation of ITC treatments that are repeatable and
suitable for oral administration as well as identifying proper dosage and treatment scheduling due to
the rapid metabolism and excretion of ITC derivatives/conjugates.

Another major factor to be considered when planning clinical trials testing the chemopreventive
properties of ITCs, possibly through the use of dietary intervention with Brassica vegetables, is the
inter- and intra-individual variation in bioavailability of SF, and likely other GSHPs. Although the
mechanism of ITC uptake is likely complex, bioavailability of these compounds is generally attributed
to differences in the GST genotype and/or microbiota composition of the subject [158,192,193]. Yet,
the magnitude of the impact of those factors on SF and other GSHP bioavailability/bioactivity is
still not fully clear. It is hypothesized that due to the major role of GSH in the conjugation and
elimination of SF, GSTM1-null individuals would benefit more from SF consumption due to the
increased time that SF would be in the body [42,194]; however, this has not been fully confirmed
by epidemiological evidence [73]. A number of studies have shown no significant effect of GST
genotype on ITC uptake and/or Nrf2 and downstream gene activation [156,195], while other research
shows a significant genotype effect [196–198]. The effect of GST genotype may depend on the specific
GST being considered as well as the level of dietary ITC consumption [197]. The true influence of
microbiota on GSHP bioavailability has also been questioned, as germ-free mice show only slightly
altered profiles of excreted GS metabolites [199]. Also, even though high and low ITC excretors have
been described [200], specific gut microorganisms could not be associated with this capability [201].

There is still work to be done towards implementing large-scale fully randomized placebo control
trials (reviewed by Fahey et al. [202]). However, several smaller clinical trials have occurred over the
past couple decades, generally using Brassica vegetables as the ITC delivery matrix. Several of these
studies were reviewed by Boddupalli et al. [30] and James et al. [73]. In general, the research discussed
in these reviews showed induction of ARE-mediated enzymes and/or reduction of biomarkers for
oxidative stress accompanying treatment with GSHPs. One study in particular showed that ingestion
of a broccoli soup made with broccoli containing three times the normal glucoraphanin resulted in
increased SF uptake in a dose-dependent manner [80]. This result indicates that improvement of
Brassica crops for increased content of certain favorable GSs would be worthwhile and would result
in higher intake of dietary ITCs for those who consumed said crops. A series of studies by Riso et al.
not included in the aforementioned reviews reported similar beneficial results following dietary
intervention with broccoli. Specifically, two of these studies reported a reduction of oxidized purines
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in smokers and a reduction in H2O2-induced strand breaks following broccoli consumption [203,204].
Also, this group reported an increase in GST activity only for GSTM1-positive individuals 6 h following
broccoli consumption compared to 3 h and 24 h [205].

8. Conclusions

The results of these reports discussed above suggest that the level of the chemopreventive effect
of Brassica vegetables may depend on the interaction of several variables, including the level of
consumption of other dietary factors (vitamins, lipids, other phytochemicals, etc.) [30,206] and the
individual’s genotype/metabolism [177,196,207,208]. In addition, the GS and subsequent GSHP
profiles (presence/absence of certain GS/GSHPs) [42], as well as the presence/absence of active
myrosinase [156–158], are also important variables in determining the chemopreventive effect of
consuming a given Brassica vegetable. The activation of Nrf2 and downstream genes by Brassica ITCs
and ITC-derived carbinols is a major factor in the chemopreventive properties displayed by these
compounds. However, it is not the only chemopreventive mechanism stimulated by these compounds
(e.g., apoptosis, cell cycle arrest, epigenetic regulation).

While there is a bulk of in vitro and in vivo evidence that many aliphatic-derived ITCs and perhaps
some indole-derived GSHPs can be delivered at effective levels through modest increases in dietary
intake of Brassica vegetables containing these compounds, caution has still been advised by the
academic community when considering how large the ITC doses used in human trials can safely be.
In high concentrations, these compounds have been shown to have genotoxic potential [209] and
lead to cellular stress through alkylation and depletion of cellular thiols, damage to mitochondria,
and elevated levels of reactive oxygen species (reviewed by Zhang et al. [210]). Also, there have been a
few reports of increased cancer incidence in some animal models following ITC treatment, possibly
depending on the specific ITC and timing of ITC treatment (pre- or post-initiation) [23]. Furthermore,
constitutive activation of Nrf2 in cancer cells may be associated with drug resistance (reviewed by
Huang et al. [211]). Despite these possible complications, the case has been made, partly in the two
reviews by Jeffery and Keck [175] and Singh and Singh [23], for progression into larger-scale human
clinical trials testing the chemopreventive and post-initiation cancer suppression potential of dietary
ITCs. While many of the early studies show promising results in the modulation of Nrf2 and other
chemopreventive molecular mechanisms with GSHPs, there is still much to learn about how these
phytochemicals alter cellular metabolism in humans. Specifically, understanding the reasons behind
inter- and intra-individual variation for ITC uptake, the effect of ITC mixture and/or delivery matrix,
and the correct treatment dosage/timing for desired metabolic response are major goals of ongoing
and future research, including human clinical trials.
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