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Abstract
Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus,
the differences between these species are unlikely to be in gene content but could be
caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs)
comprise ∼ 5% of the human genome. The LTRs of ERVs contain many regulatory
sequences, such as promoters, enhancers, polyadenylation signals and factor-binding
sites. Thus, they can influence the expression of nearby human genes. All known
human-specific LTRs belong to the HERV-K (human ERV) family, the most active
family in the human genome. It is likely that some of these ERVs could have integrated
into regulatory regions of the human genome, and therefore could have had an impact
on the expression of adjacent genes, which have consequently contributed to human
evolution. This review discusses possible functional consequences of ERV integration
in active coding regions. Copyright  2002 John Wiley & Sons, Ltd.
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Introduction

Humans tend to think of themselves as being
something special, truly different from other ani-
mals, but at the molecular level it is obvious that
we are very similar to the chimpanzee species.
The average DNA sequence difference between
human and chimpanzee is only 1.24% [7] and
probably only 0.5% in active coding regions [9].
In the light of this data, one could ask the
question: what genetic differences separated us
from apes and made us human? So far, only
a few significant human-specific genomic fea-
tures have been identified (reviewed in [8]). Eigh-
teen of the 23 pairs of modern human chro-
mosomes are virtually identical to chimpanzee
chromosomes, with the most significant differ-
ences between the human and chimpanzee kary-
otypes being a telomeric fusion of chimpanzee
chromosomes 12 and 13 to form human chro-
mosome 2, and pericentric inversions in several
chromosomes [30]. Among known human-specific

differences in gene coding regions, the most impor-
tant is the inactivation of the human CMP-N -
acetylneuraminic acid (CMP-Neu5Ac) hydroxy-
lase gene, which leads to an absence of CMP-
N -glycolylneuraminic acid (CMP-Neu5Gc) on the
surface of all human cells and, consequently, an
increased quantity of CMP-Neu5Ac [10]. How-
ever, as early as 1975, King and Wilson con-
cluded [15]: ’their (human and chimpanzee) macro-
molecules are so alike that regulatory muta-
tions may account for their biological differ-
ences’ and it is most probable that the differ-
ences between human and chimpanzee could be
caused by differences in the regulatory systems
of their genomes. To date, there are only a
few examples of differences in regulatory regions
between these species [8,12]. Among the best can-
didates that could play a role in generating such
differences in regulatory regions are transpos-
able elements and, of these, especially retroele-
ments (REs).
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Retroelements — Endogenous
retroviruses

Retroelements are mobile elements that transpose
via an RNA intermediate. There are three main
groups of REs: long interspersed elements (LINEs),
short interspersed elements (SINEs) and long ter-
minal repeat (LTR) elements. Endogenous retro-
viruses (ERVs), which are members of the LTR
elements, are the most complex REs. They are
widespread throughout vertebrates and the number
of ERVs in a haploid genome could be between
tens of copies and several tens of thousands of
copies [11]. A full-length provirus consists of three
major genes, gag, pol and env, and is flanked by
LTRs (Figure 1A). LTRs contain many regulatory
sequences (Figure 1B), such as promoter, enhancer,
polyadenylation signal and factor-binding sites.

REs could influence gene regulation by
expressing their retroviral genes, inducing genomic

rearrangements, providing new regulatory sequen-
ces or simply by disrupting gene functions. The
involvement of REs in the regulation of gene
expression has been demonstrated in a number of
studies [4,18,24,25].

It is universally recognized that ERVs are the
remnants of exogenous retroviral germ cell infec-
tions [4,18,24,25]. After invasion of the host cell,
viral RNA is converted into cDNA, which then
integrates into the host genome. Over time, many
ERVs have disappeared from host genomes due
to homologous recombination between two LTRs
(generating solitary LTRs), as demonstrated by the
lower number of full-length proviruses than solitary
LTRs in modern vertebrate genomes.

Human ERVs

Over 41% of the human genome is represented by
retroelements; 13% LINEs, 20% SINEs and 8%
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Figure 1. The structure of HERV-K as an example of ERVs. (A) Structural scheme of provirus. LTR (long terminal repeat)
consisting of stretches designated U3, R and U5; gag, group-specific antigen gene; pol, polymerase gene; env, envelope
gene. The arrow indicates a transcription start point. (B) Structural scheme of LTR with the positions of the promoter,
polyadenylation signal, enhancer core and putative factor-binding sites marked. TBF, TATA-box binding factor; CBF/NF1,
CCAAT binding factor/nuclear factor 1; HRE, hormone-response element; C/EBP, core/enhancer binding protein; NFκB,
nuclear factor κB; YY1, yin yang-1
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LTR elements [16]. Most of the LTR elements are
from ERVs. Human ERVs (HERVs) are specific
for primate genomes. Their expression has been
found in almost every human tissue and organ,
including placenta and embryonic tissues, differ-
ent tumours, lung and kidney [18,23,25]. HERV
transcripts commonly contain many mutations in
their ORFs and do not code for any functional pro-
teins. However, some proviruses have intact ORFs,
which are evidenced by the presence of retroviral
proteins or the detection of their enzymatic activ-
ities in some human tissues [2,3,18,26]. Further-
more, in addition to retroviral proteins, virus-like
particles (VLPs) have been found in human tissues,
which were shown to be able to bud from the cell
membrane, but to be unable to infect cells [18].
Recently, Mi et al. [22] showed that the HERV-
W Env protein (also called syncytin) expresses in
placenta and takes part in the syncytiotrophoblast
formation. Since syncytin has been detected only
in the primate lineage and not in other mammals,
it could explain differences in placental biology
between primates and other mammals. It is not
known whether HERVs retained a transpositional
capability after the divergence of the human and
chimpanzee evolutionary branches, but the pres-
ence of human-specific HERVs suggests that some
of them were still active.

All known human-specific HERVs belong to
HML-2 subfamily of the HERV-K family. This
is one of the largest ERV groups in the human
genome, represented by about 170 full-length
proviruses [27] and 2000 solo LTRs [20]. It has
been suggested that HERV-K (HML-2) is the most
biologically active retroviral group in the human
genome and contains many young members. Some
of them are human-specific and, because of their
regulatory potential, they could have influenced the
expression of adjacent genes and thus contributed
to human evolution [2,17,20,28].

Recently, in our laboratory two different meth-
ods for a whole-genome comparison of integrations
of interspersed repeats between closely related
genomes were invented and applied to the genome-
wide identification of human-specific HERV-K
LTRs [5,19]. Using one of these methods (called
targeted genomic differences analysis; TGDA) we
found 23 new human-specific LTR members and
estimated a lower limit of the total number of
them as 67 [5]. Applying another method, known
as DiffIR (differences in integration sites of low

and medium copy number interspersed repeats),
led to the discovery of 11 new human-specific
LTR members [19]. On the basis of known human-
specific LTR sequences, we created a consensus
sequence of the evolutionarily young HERV-K
(HML-2) LTRs and searched for similar sequences
in the human genome databases. We found ∼
140 LTRs with 97–100% identity to the consen-
sus and checked 19 selected LTRs for their pres-
ence in human and non-human primate genomes.
Seventeen of these 19 LTRs were human-specific.
Since only ∼ 90% of the human genome sequence
was available at that time, we concluded that the
total number of human-specific HERV-K (HML-
2) LTRs could be about 140 [6]. We have also
shown that there were at least three active groups
of HERVs after the divergence of the human
and chimpanzee evolutionary branches. These are
HERV-K (HML-2), with LTRs of groups II-T, HS-
a and HS-b, and they are represented by 1, 89 and
53 copies in the human genome, respectively [6].

The effects of HERVs on gene regulation
and their potential contribution to
human evolution

Many of the identified human-specific LTRs are
located in promoter or enhancer regions, as well as
in introns of known or candidate genes [6], e.g.
one such LTR is situated in the second intron
of the cbf2 gene (CCAAT-binding factor). Cbf
takes part in regulating the expression of many
genes, which are involved in various cell pro-
cesses, such as heat-shock activated genes. Another
human-specific LTR is located ∼ 6 kb upstream
of the transcription start of the fntb gene (β sub-
unit of CAAX box-farnesyltransferase). Fntb is
required for protein farnesylation, which facilitates
protein–membrane association and also promotes
protein–protein interactions. There are at least 30
known genes that are co-localized with human-
specific LTRs, and several other candidate genes;
examples are: ppm1G (protein phosphatase 1G);
mmp24 (matrix metalloproteinase 24); and il23a
(interleukin 23, α subunit) [6]. Changes in the
expression of such proteins would become appar-
ent, even at the organism level. The identified
human-specific LTRs could have influenced the
expression of these genes during the process of
human and chimpanzee divergence and contributed
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to human evolution. To date, human-specific LTRs
have been detected in the genomes and transcrip-
tomes of various human cancer cells [14,29].

Analyses of individual non-human-specific
HERV members have shown their ability to
affect the regulation of human genes. Jurka and
Kapitonov [13] analysed the leptin receptor (OBR),
which is involved in energy expenditure, produc-
tion of sex hormones and other important biological
processes, and found two alternative forms (short
and long) of expressed protein. The short form is
generated as a result of alternative splicing within
a HERV-K (HML-2) LTR and, moreover, this LTR
encodes 67 terminal leptin receptor amino acids.
Medstrand and Mager analysed the effect of two
HERV-E LTRs, one of which had integrated into
the 5′ flanking region of the apoC1 (apolipopro-
tein C-I) gene and the other into the 5′ flanking
region of the ednrb gene (endothelin B recep-
tor), on the expression of the adjacent genes [21].
They showed that apoC1 and ednrb have alterna-
tive promoters within the LTRs, and that transcrip-
tion from the alternative endrb promoter is much
stronger than from the native promoter. Transcrip-
tion from the apoC1 LTR promoter is equal to that
from native promoter, but the presence of the LTR
increases the apoC1 promoter activity in human
and baboons (in this case the LTR plays the role
of an enhancer). Recently, we have demonstrated
promoter and enhancer activity of human-specific
LTRs in reporter gene assays [1]. However, fur-
ther analysis is needed to verify the hypothesis that
ERVs have played a role in human evolution.

To determine the significance of ERVs in human
evolution we need to analyse not only young ERV
members, but also old ones. Some old members,
which existed in all primates and retained trans-
positional activity after the human–chimpanzee
divergence, could have transposed to another locus
in the human genome, but not in the chimpanzee
genome. Even if such an ERV did transpose in
the chimpanzee genome, it is almost impossible
that it would transpose to the same site as in the
human genome. Furthermore, as a result of muta-
tions, inactive (or silent) proviruses could become
transcriptionally (or even transpositionally) active.
Thus, old ERVs could express their proteins, form
VLP or transpose. Old solitary LTRs could acquire
a new functional capacity due to specific mutations
in the human genome, e.g. they could become new
promoters or enhancers, or alternative splice sites,

or factor-binding sites could appear within their
sequence. Recently, Schon et al. found a subgroup
of HERV-W LTRs, which have mutations between
the CCAAT-box and TATA-box forming the con-
sensus sequence of the Sp1 binding site [23].

Conclusion

Retroviral LTRs contain various regulatory sequen-
ces in a compact state. The appearance of such
elements in a host genome could dramatically
change the expression of adjacent genes or even
inactivate them. In some cases, the effects of these
integrated elements could be of benefit to the
host cell. In this way, HERVs could have been
an impulsive force in the divergence of human
and chimpanzee.
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