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Abstract: The study describes the acoustic emission (AE) activity during human femur 

tissue fracture. The specimens were fractured in a bending-torsion loading pattern with 

concurrent monitoring by two AE sensors. The number of recorded signals correlates well 

with the applied load providing the onset of micro-fracture at approximately one sixth of 

the maximum load. Furthermore, waveform frequency content and rise time are related to 

the different modes of fracture (bending of femur neck or torsion of diaphysis). The 

importance of the study lies mainly in two disciplines. One is that, although femurs are 

typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE 

will enrich the understanding of the process in ways that cannot be achieved using only the 

mechanical data. Additionally, from the point of view of monitoring techniques, applying 

sensors used for engineering materials and interpreting the obtained data pose additional 

difficulties due to the uniqueness of the bone structure. 
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1. Introduction 

Acoustic emission (AE) is a non-invasive technique used in several situations to monitor the 

fracture behaviour of different types of materials. Piezoelectric sensors are attached on the surface of 

the material being tested in order to record the transient elastic waves generated by cracking events. 

This provides valuable input on the failure development from the start of loading and certainly before 

the fracture is visible [1]. The values of AE parameters and the accumulated number of recorded 

activities are correlated to the sustained load and the damage condition of the materials [2–5]. 

Furthermore, indices based on the energy or amplitude of the waveforms help to characterize the 

intensity of fracture and hopefully make projections for the future life of engineering components [6,7]. In 

different types of materials, AE has shown a capacity to characterize the fracture mode corresponding 

to different stresses (normal vs. shear) or between different mechanisms like cracking and fibre pull-out or 

delamination of successive layers. There are plenty of examples in materials like concrete, metals, 

ceramics, composites and rock [2–8]. However, the application of AE in human bone tissue entails 

specific difficulties. A serious one is the limited number of tests that can be conducted since the 

samples are excised from cadavers. Literature surveys regarding the use of AE in the biomedical field 

can be found in Browne et al. [9] and Shrivastava and Prakash [10]. Specific studies have used AE for 

characterization of bone behaviour. Ossi et al. [11] reported that transmission of the AE energy in 

bovine bones depends on the amount of saturation. In addition, Agcaoglu and Akkus [12] claimed that 

during fatigue loading, AE indicates the onset of failure in the human tibia cortical bone. Another 

study from Van Toen et al. confirmed the capability of AE signals to detect time of injury and to 

discriminate between failures of different spinal components in dynamic loading. The AE signals from 

compressive bone fractures were linked with higher amplitudes and frequencies than those from tensile 

failures of ligaments [13]. Substantial AE was recorded during tensile loading of the anterior cruciate 

ligament (ACL, knee joint), showing that along with the elongation of the tissue, the frequency content 

of AE was also increased [14]. In a pioneering work in the 1980s, AE was monitored on a simplified 

prosthetic system implanted into cadaveric tibia and femur bones [15]. It was found that the AE 

activity (and therefore, “the propensity for failure”) increases at a lower strain rate and that higher 

amplitude emissions were recorded for higher load. Furthermore, AE has been applied for assessment 

of knee joint osteoarthritis and friction [16] and monitoring of hip implants [17–19]. 

Apart from the relatively limited number of experimental works, another difficulty is the geometry 

of the specimens, which usually includes curvatures and poses problems in terms of positioning and 

stability of the AE sensors. An important factor is also the interpretation of the results. Since the 

background is not strong in the field (compared to the exhaustive studies in concrete, metal or other 

engineering materials), it is not easy to explain the trends or the values of AE parameters. Despite the 

difficulties, these studies are very significant, since bone fractures and specifically fractures of the 

femur (hip fracture) are a very common cause of eventual loss of life, or at least loss of quality of life, 
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for millions of aged people [20]). In any case, the understanding of the pattern according to which the 

tissue is broken as well as the mechanical properties of the tissue are important for medical doctors who 

are studying their surgical repair. Fracture in bone tissue is a very complicated process that depends on 

several parameters: the relative fraction of bone tissue over void space, the geometrical arrangement of 

the bone tissue, i.e., “architecture”, the thickness as well as the mechanical properties of the tissue, and 

the applied load configuration [21,22]. While the static stress and strain fields of long bone under various 

types of loading (axial, torsional, bending) can be simulated reliably [23], the simulation of damage 

propagation becomes much more complicated due to the abovementioned microstructure-related 

reasons. Therefore, AE monitoring can shed light on the process from the moment of first cracking to 

the ultimate failure. It should be stressed, however, that apart from AE, considerable effort has been 

made in the ultrasonic assessment of bone condition, which helps in the diagnosis of osteoporosis or 

healing of bones [24–27]. Vibrational behaviour examined by PZT patch sensors has also been utilized 

in long femur bones in order to differentiate between intact bone and bone with different sizes of 

cracks [28]. 

In addition to their significance, AE tests in bones involve a great scientific challenge related to 

experimental techniques. The mechanical parts of the test, as well as the monitoring, pose certain 

difficulties, and the way to overcome these is not straightforward. From the AE point of view, the 

challenge is mainly the details of sensor placement and, certainly, the interpretation of the activity 

observed due to (so far) limited experience. 

In this study, results of fracture tests on whole human femur bones with AE monitoring are described. 

The setup applies a mixed bending-torsion monotonic loading up to failure. The AE activity shows the 

onset of micro-cracking as well as its development. AE parameters like the frequency content and rise 

time exhibit certain shifts with the increase of load, showing that the fracture mechanisms are not 

stable throughout loading. Additionally, specimens that obviously fractured with different patterns 

demonstrate major changes in their AE activity. This is in accordance with previous studies, where it 

was shown that different fracture orientations relatively to the osteons resulted in different fracture 

toughness [29], implying that monitoring of the released energy could record these changes during 

fracture. Discussion also extends to the correlation between AE parameters and the thickness of the 

cortical shell. 

2. Experimental Details 

This study was performed on 11 femur specimens excised from cadavers. The specimens were 

supplied by the Anatomy Department of the School of Medicine of the Vrije Universiteit Brussel 

(Brussels, Belgium) and had been preserved using a formol solution injection into the vessels. 

In order to perform the test, a large part of each bone was cast in concrete, as seen in Figure 1. The 

“head” of the femur was 120 mm outside from the fix point in all specimens. To avoid fracture at the 

fix point as a cantilever under bending, a support was provided in the main body of all specimens 

(point of minimum elevation) by a metal bolt (Figure 1 top and bottom). The monotonic load was 

applied by a piston, resulting in a vertical force on the head. The geometry resulted in a combination of 

bending and torsion, also leading to different fracture patterns as will be discussed in a next section. 

The clinical relevance of the selected loading geometry is that the experimental design, resulting in a 
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combination of bending and torsion, was chosen in order to mimic neck fractures occurring as a 

consequence of falls. 

 

Figure 1. Different angle views of the test. 

Concerning the AE monitoring, two broadband transducers were used. The first was placed near the 

fix point and the second underneath the head (Figure 1). The exact position of the sensors could not be 

identical in all specimens due to differences in geometry and local curvature. The sensors were “pico” 

sensors with a relatively broadband response and peak sensitivity at 450 kHz. The specific sensors 

were selected due to their response but also due to their small size (diameter of 5 mm) which enabled 

placement on the curved surfaces of the specimens. The AE signals were pre-amplified by 40 dB and 

acquired in a Mistras micro-II board (totally 8 channels) with sampling rate of 10 MHz. The threshold was 

set at 30 dB, while the peak and hit definition times (PDT and HDT) were 200 μs and 800 μs 

respectively. Acoustic coupling was improved by the use of Vaseline grease between the sensors and 

the contact points on the femur, while tape was used to secure the sensors during the experiment. Since 

two sensors were used, the capability of linear localization was assessed despite the complicated and 

anisotropic geometry. It was seen that excitations produced by pencil lead breaks before loading in 

three areas (femur head, middle of diaphysis and fix point) were correctly classified in the actual 

regimes (e.g., close to sensor 2, in the center between the sensors, and close to sensor 1 respectively). 
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More accurate localization would require multiple sensors as in the work of Qi et al. [19]. Although 

wave propagation is very complicated and different modes are created as measured in a recent 

ultrasonic study on the same specimens [30], a representative pulse velocity resulting in acceptable 

localization was 3500 m/s.  

A typical AE waveform is seen in Figure 2. Amplitude (A) is generally an important parameter as it 

correlates to the intensity of the fracture incident. Energy stands for the area under the rectified waveform. 

Additionally, the rise time (RT) is the delay between the first threshold crossing (or first count) and the 

peak amplitude. Rise time over amplitude (RA value) is also important, defined as RT divided by A 

and is measured by μs/V. Average frequency (AF) is the number of threshold crossings over the 

duration and it is a good approximation of the frequency content of the waveform. Other important 

frequency parameters like the “central frequency” and the “peak frequency” require the FFT of the 

waveform in order to calculate the centroid and the frequency with the maximum magnitude respectively. 

 

Figure 2. Typical AE waveform.  

3. Results and Discussion 

3.1. AE Activity 

The total AE activity of indicative femur specimens is discussed herein. The cumulative number of 

hits recorded from the two sensors separately is depicted with the load history in Figure 3a. For the 

early stage of loading, there is no activity showing that there was no contribution of random noise. The 

activity started at the load level of 0.5 kN which is 14% of the maximum load and is the manifestation of 

initiation of micro-cracking phenomena. The recording rate of AE hits over time was continuously 

increasing until a point when the sensors registered a sharp increase. A few seconds later, a macro-fracture 

event was evident by a transient load drop (from 3.38 to 3.29 kN, see the arrow). After this drop, the 

specimen did not bear much higher load, being macroscopically broken at 3.6 kN. These macroscopic 

fracturing events were seen in all specimens, resulting in a strong load drop and vertical increase of the 

recorded AE activity. Apart from the information on the onset of cracking, important trends can be seen 

through AE waveform parameters. For example, in Figure 3b, the RT values of all hits of sensor 1 

(close to the fixing point) are depicted for the same specimen. The majority of them are up to 20 μs, 

with only a few being up to 60 μs. At around 2 min in the loading, the sliding average line obtains a 

steady increasing trend (see twin arrows in Figure 3b) and just before the first strong fracture event, a 

group of points between 40 and 60 μs are recorded (dashed ellipse), causing an even stronger increase 



Sensors 2015, 15 5808 

 

 

on the sliding average line. Another fluctuation is noted at the moment of load drop. In the engineering 

field, an increase of RT usually signifies shift from tensile cracking to shearing [1,8,31–33]. Shearing 

may be expressed by fiber pull-out, delamination or cracking due to shear stresses. Although the 

experience in AE testing in human bones is limited, the type of test including both bending and torsion 

moments does not exclude different dominant mechanisms for individual specimens. Indeed, the 

fracture pattern of this specimen is shown in Figure 4a. The crack ran diagonally through the diaphysis 

with no apparent connection to the femur head, which establishes a reasonable connection to torsion of 

the diaphysis. 

 

Figure 3. Load history and (a) cumulative AE activity of different sensors; and (b) rise 

time (RT) of sensor #1, for femur specimen #8. The RT solid line in (b) is the sliding 

average with window of 30 points.  

  

Figure 4. Fractured femur specimens: (a) diagonal crack through the diaphysis (#8) and  

(b) femur head detachment (#7). 

Another example of cumulative AE activity is seen in Figure 5a concerning another sample. The 

continuous activity started at 13% of the ultimate load similar to the previous specimen. The AE rate 

increased for sensor #1 earlier than #2, indicating that more cracking activity was occurring near the 

fix point. However, the activity of sensor #2 placed beneath the head started to increase at 

approximately 2:20, which was the precursor of the macroscopic fracture event at 2:52 s (again 

indicated by an arrow). This vertical increase of the AE activity of sensor #2 is in agreement with the 

visual observation of the specimen after the test, which fractured near the head, as seen in Figure 4b. 

Taking a look at the RT in Figure 5b, it is obvious that the level of values does not exhibit steady 
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strong trends as in the previous case, rather than momentary fluctuations being at lower levels in 

general. Specifically, only 6.2% of the hit populations are above 40 μs (see reference dashed horizontal 

line), while in the previous case which fractured by a diagonal crack, the corresponding percentage 

was much larger at 21.1%. 

 

Figure 5. Load history and (a) cumulative AE activity of different sensors and (b) RT of 

sensor #2, for femur specimen #7. The rise time solid line in (b) is the sliding average with 

window of 30 points.  

The load at which AE started to be recorded in all specimens is seen in Table 1. This information is 

related to the moment when systematic cracking was initiated within the specimens. Despite the 

inherent heterogeneity and the differences between samples, most of them exhibit the start of  

micro-cracking in between 10%–15% of the maximum load, with only a few exceptions.  

Table 1. Load at the onset of AE recording as a percentage of the maximum sustained load. 

Specimen # Load (%) 

1 6.7 
2 15.4 
3 9.2 
4 29.6 
5 10 
6 13.9 
7 13.1 
8 14.1 
9 38.3 

10 16.7 
11 13.6 

3.2. Correlation with Thickness 

The thickness of the femur consists of three layers with high heterogeneity. Cross-sections of 

cortical bone clearly show age-dependent differences [34,35]. In this study, the age of the cadavers 

was between 73 to 95 years old. Therefore, the cortical bone area is expected to be relatively low since 

the compact bone cross section decreases with age. Five specimens were cut vertically to study their 

cross section by microscope, and an example is given in Figure 6. The thickness measurements are 

based on the cortical layer, which seemingly is the outer thick part of the sections. The value of 
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thickness was measured as average of several measurements in the radial direction. It is clear from the 

photographs of the microscope that the thickness in the femur is not uniform due to the inhomogeneous 

geometry of the tissue. For the specific case, different measurements range between 4.8 and 8.1 mm 

with an average value of 5.9 mm. 

  

Figure 6. Cross section of a femur specimen with different thickness measurements. 

In search of parameters that are sensitive to the material’s condition, the energy content of different 

frequency bands was analyzed. These bands were defined as shown in Figure 7a from previous experience 

up to 500 kHz. Content in higher bands is not expected due to attenuation of the material. Concerning 

the five samples that were studied in the microscope, the strongest correlation is noted between the energy 

of the band between 300–500 kHz and the average bone thickness and it is presented in Figure 7b. This 

partial power is the percentage of the area of the specific frequency band divided by the total band of  

0–500 kHz, shown in Figure 7a. Specimens with thicker layer of cortical bone (around 7 mm in 

average) exhibited AE with 17% of its energy in the highest frequency range, between 300 and 500 kHz. 

As the average thickness decreased to 5.5 mm, the energy of this high frequency band decreased to almost 

10%. This correlation is certainly preliminary and should be validated in larger number of specimens. 

However, it is encouraging in the sense that parameters obtained by a monitoring technique like AE, 

exhibit relation to a physical property of the tissue. The fact that the sensors’ peak sensitivity is within this 

range (i.e., 450 kHz) could be related to the strength of the correlation but cannot be taken for granted as 

the attenuation of the material is also dominant on the final frequency content of the received signal. 

 

Figure 7. (a) Correlation between partial power of the band 300–500 kHz with the average 

thickness of the bones; (b) Illustration of partial power feature.  
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3.3. Fracture Mode Influence on AE Parameters 

As mentioned earlier, the fracture test includes three points of boundary conditions. These are the  

fix point on the concrete cube, the support provided by the bolt and the load application point. Due to 

the distance between the load point and the supporting bolt the load results in torsion for the main bone 

(diaphysis), as seen in Figure 1. However, the same force applies a bending moment on the part of the 

femur between the loading point and the supporting bolt (mainly the spherical head and its connection 

to the rest of the body, which is called the “neck”). Therefore, the loading can be regarded as a mixture 

of bending and torsion. Reasonably, it can be argued that if the fracture occurs between the supporting 

bolt and the fix point, it includes strong torsion character triggered by the shear stresses on the load 

bearing cortical bone. On the other hand, if the fracture occurs at the level of the neck, this is closer to 

bending failure where normal stresses play more important role. Below, some examples of the 

different fracture patterns are depicted. Figure 8a,b concerns fracture through the femur diaphysis. In 

the case of Figure 8a, the specimen was totally separated into two parts by a diagonal crack which 

nearly reached the fix point. The same pattern is seen in Figure 8b, with the specimen nearly separated 

in two, while the area around the head has not sustained obvious damage. On the other hand,  

Figure 8c,d shows two examples of femur neck fracture. In the case of (c) the head was totally 

separated from the rest of the specimen, while in (d) the crack formed around the head and propagated 

slightly into the body of the bone. Based on the geometry of the test and the final fracture pattern, it can 

be argued that the first two cases of fracture were mostly due to torsion/shear stresses, while the two 

latter were mostly due to normal stresses of bending of the femur neck. 

As mentioned, one of the benefits of AE for most engineering materials is that it helps to 

characterize the fracture mode. It has been established that fracture due to shear stresses emits AE 

waveforms of long duration, high RA values and low frequency content. This has been repeatedly 

examined in engineering materials like concrete [8,31–33]. Therefore, since two distinct fracture 

patterns were also observed in these tests, it was deemed appropriate to examine if the above 

connection between AE waveforms and fracture mode holds for human bone tissue as well. For the 

purpose of the analysis, the signals during the major fracturing moments of the specimens were used. 

This is because it is certain that micro-fracturing occurred in different places of the specimen 

throughout the whole duration of loading. By including the total population, trends would be mixed 

and conclusions would be difficult. However, focusing on the moment of load drop, it is certain that the 

recorded AE corresponds to the fracture mode responsible for the ultimate failure. This way, 

comparisons can be made between specimens that were fractured following different patterns. The data 

were plotted in the AF-RA axes as typically done for other engineering materials [31–33]. Each of the 

following figures include populations of two specimens (one with torsion crack and one with bending 

crack), in order to make the comparisons easier. Later, the average values of some indicative AE 

parameters are depicted in Table 1. 
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Figure 8. Different fracture patterns: (a) and (b) through the femur body; (c) and (d) on the 

femur head. 

In all cases in Figure 9, most of the points are concentrated at a narrow zone of low RA values 

spanning frequencies mostly up to 300 kHz. Only a small part of the population extends to higher RA 

values. For all the comparisons in Figure 9a–c, it is obvious that the points occupying the lower-right part  

of the plot (high RA and low AF) belong to the torsion fracture rather than bending. Characteristically, in 

Figure 9a, 89% of the AE hits with the highest RA value (16 out of 18) belong to torsion fracture. For 

the next subfigures, the trend remains (6 out 7 hits and 9 out of 10 for the cases in Figure 9b,c respectively). 

In total, 85% to 90% of the activity with the highest RA is due to fracture of the main body, while only 

10%–15% is due to the femur neck bending fracture. Therefore, it is reasonable to conclude that shear 

stresses (in this case due to torsion loading of the diaphysis) lead to fracturing events with longer RT 

and higher RA compared to bending of the femur neck, which results in strong normal stresses (tensile 

at the top and compressive at the bottom of the neck). It is mentioned that in an earlier study of 

bending-torsion load in human femur samples including unloading and reloading, RT has been 

identified as a parameter to distinguish between cracking and friction of the existing crack banks [17]. It 

was concluded that shorter signals belong to cracking and longer to friction. However, exact values are 

not supplied, so direct comparisons are not possible even if differences in terms of AE systems and 

loading conditions could be disregarded. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Plot AF vs. RA for three pairs of femur specimens, as monitored by sensor 2  

(at the head). Couples for comparison: (a) specimen 2 and 7; (b) specimens 6 and 11;  

(c) specimens 1 and 8. 

Table 1 shows the average values for some indicative AE parameters for the six specimens which 

exhibited a quite clear pattern of fracture either due to bending of the neck or torsion of the diaphysis. 

As aforementioned, the values are not the average of the whole population, but of the population 
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during the moments of serious fracture, (accompanied by load drops) where the activity line increases 

almost vertically. The activity of the two sensors is separated in order to enable comparisons between 

the same sensors, which were placed at similar locations in the specimens. The differences are clearer 

for RT and RA, while for AF there is overlap. Specifically, bending failure monitored by any sensor 

resulted in RT lower than 30 μs, while torsion failure between 30 and 85 μs. Correspondingly average 

RA values for bending are typically below 2000 μs/V, while for torsion fracture the values are higher 

than 2000 μs/V with the exception of specimen 8 for channel 1. For frequency, differences are not as 

strong, but still there is a shift of more than 20 kHz in average between the two modes of fracture 

(higher for bending). The three parameters shown in Table 2 have been used to characterize the 

fracture mode in engineering materials [8,31–33]. In general their sensitivity is attributed to the 

different proportion between slow transverse (shear) and fast longitudinal waves emitted by the motion 

of the crack sides under shear or tensile load [36]. In thin structures or materials this could be translated 

to symmetric and antisymmetric modes, which again exhibit similar changes in velocity [37]. However, 

other parameters (mainly energy-related) like the “amplitude” and the area under the rectified signal 

envelope or counts neither yielded similar correlations nor exhibited sensitivity to the mode in this 

study. From the total number of AE descriptors, RT and RA showed the clearest possible result while 

no serious correlation was drawn by other descriptors. 

Table 2. Average values of basic AE parameters for different fracture patterns and sensor locations. 

Fracture Type Specimen Code AE Channel * RISE TIME (μs) A-FRQ (kHz) RA (μs/V) 

Torsion fracture 
through the 

body 

FRL2  
1 82.5 106.9 14544.9 
2 67.7 132.3 6339.3 

FRL11  
1 34.5 176.6 6339.4 
2 39.1 91.3 4014.4 

FRL8 
1 35.1 129.7 1744.8 
2 31.5 105.0 5342.2 

Bending fracture 
of the head 

FRL7  
1 3.6 62.9 720.1 
2 10.5 168.3 1503.9 

FRL6  
1 18.9 150.8 1659.0 
2 12.6 117.5 1140.2 

FRL1  
1 28.4 132.7 2396.6 
2 7.3 226.8 746.3 

* The sensor of channel 1 is near the fix point, channel 2 below the femur head. 

Despite the change in average values, there is strong overlap between the populations as seen in  

Figure 9 above. This is inevitable since fracture is a random phenomenon, passing this randomness on 

to the corresponding emissions. In many cases populations overlap and the extremes of the populations 

are used to characterize the processes [38,39] as they modify the population distribution. Figure 10 

shows the frequency distribution of the total number of RA values collected at moments of torsion 

fracture (a) and of bending fracture (b) separately for each channel. In both fracture cases, the values 

most frequently recorded are between 0.1–1 ms/V. However, for bending fracture, the population of 

RA values higher than 10 ms/V is nearly zero (1% or less for channels 1 and 2); for torsion fracture, 



Sensors 2015, 15 5815 

 

 

however, the corresponding percentage is approximately 10%—specifically, 11.4% for sensor 1 and 9.4% 

for sensor 2, as seen in the dashed ellipse in Figure 10a. 

 
(a) 

 
(b) 

Figure 10. Frequency distribution of RA values for both sensors: (a) torsion fracture and  

(b) bending fracture. 

The transition to higher RA values has been reported in several cases of engineering materials when 

fracture is shifting from tensile cracking to shearing. As an example, in bending of concrete beams, the 

moments of debonding between the external reinforcing patches and concrete are characterized by RA 

of double value compared to the constant concrete micro-cracking [38]. In addition, fibre pull-out and 

debonding between fibrous layers of mortar exhibit much higher values of RA compared to early stage 

cracking due to bending in textile reinforced cement beams [40]. Similar shifts in AE parameters have 

been obtained in steel bar reinforced concrete specimens, prestressed concrete members, frames and metal 

plates, under monotonic or cyclic loading, among others [41–44]. The known behaviour of engineering 

materials which has been studied more extensively through the years serves as a guideline for interpretation 

of AE data in bone tissue in relation to the developed loading conditions.  

Typical full waveforms recorded during moments of fracture can be seen in Figure 11. The first 

cases (a and b) concern emissions during torsion fracture, while (c and d) involve bending of the neck. 

The difference in rise time is evident, while the denser cycles imply higher frequency for the  

bending emissions.  
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Figure 11. Typical AE waveforms recorded by sensor #2 (beneath the head) during torsion 

fracture of the diaphysis (a,b), and bending fracture of the head (c,d).  

The abovementioned trends str a first step in interpreting the AE signals during fracture in this 

specific human bone tissue. It seems that the trends learnt from other materials may still be valid for 

the explanation of such a heterogeneous tissue as human bone. One matter that should always be 

highlighted in AE studies in such media is the effect of wave propagation. Bone is not a homogeneous 

and isotropic material system. Therefore, wave propagation interacts with porosity, plate geometry and 

curvatures. The result is strong dispersion and attenuation which distort the waveform parameters [24,30]. 

The elastic energy released by the fracture incidents forms wave modes with different speeds and 

therefore the waveform changes shape as it propagates to the sensor. This means that parameters like RT, 

RA and AF are changing values throughout propagation. The values recorded by the sensors correspond 

to the waveforms as received by the sensors at their positions and are not necessarily the same as those 

emitted by the fracture events. This is the reason that AE values should be compared only between the 

same sensors so that the propagation conditions, even though not identical, are as similar as possible. 

4. Conclusions 

This paper studies AE activity during fracture of human femur bone tissue. The fracture of this 

specific bone is common, especially in aged people. Results show that AE activity, as monitored by 

PZT sensors attached on the surface of the specimens, can be used to determine the start of cracking 

which occurs much earlier than macroscopic fracture. In the present case, AE activity revealing  

micro-cracking started at a load as low as one seventh of the maximum load. The increase of rate of 

recorded signals is a precursor of serious fracture phenomena, while the parameters of the obtained 

waveforms reveal specific information as to the dominant fracture mechanisms. Specimens which 

fractured due to torsion exhibited higher percentage of longer AE signals compared to samples that 

were broken by bending on the femur head. Mechanical and physical properties as well as thickness 

are also taken into account in an effort to examine the possibility of applying AE methodologies to 

interpret fracture of bones based on the experience from other engineering materials. Incorporating AE 
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monitoring during mechanical testing of tissue is certainly a challenge with open questions, like sensor 

positioning and coupling, wave distortion due to microstructure and geometry. However, it can 

certainly increase the data obtained in areas other than mechanical data alone, and help medical doctors 

and bioengineers in understanding the fracture of a complicated material such as human bone.  
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