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DNA replication and transcription are vital cellular processes during which the genetic
information is copied into complementary DNA and RNA molecules. Highly complex
machineries required for DNA and RNA synthesis compete for the same DNA template,
therefore being on a collision course. Unscheduled replication–transcription clashes
alter the gene transcription program and generate replication stress, reducing fork
speed. Molecular pathways and mechanisms that minimize the conflict between
replication and transcription have been extensively characterized in prokaryotic cells and
recently identified also in eukaryotes. A pathological outcome of replication–transcription
collisions is the formation of stable RNA:DNA hybrids in molecular structures called R-
loops. Growing evidence suggests that R-loop accumulation promotes both genetic and
epigenetic instability, thus severely affecting genome functionality. In the present review,
we summarize the current knowledge related to replication and transcription conflicts
in eukaryotes, their consequences on genome stability and the pathways involved in
their resolution. These findings are relevant to clarify the molecular basis of cancer and
neurodegenerative diseases.

Keywords: replication–transcription conflicts, R-loops, replication stress, cancer, neurodegeneration, genetic
instability, epigenetic instability

Introduction

DNA replication and transcription are vital processes in all living organisms during which spe-
cialized polymerases copy the genetic information into complementary DNA and RNA molecules.
Both processes must be completed with high fidelity to preserve genetic information and cell func-
tionality. The DNA duplex, which is packed into chromatin, must be separated into two DNA
single strands (ssDNA) before being replicated or transcribed, thus generating positive supercoils
ahead the polymerases. DNA and RNA polymerases act in coordination with multiple enzymes
and accessory factors, which include helicases that open the DNA duplex and topoisomerases
that solve DNA topological constrains. Replication and transcription machineries are assembled
at precise genomic locations, called origins, and promoters, respectively, and can travel for several
DNA kilobases in 5′–3′ direction before being dismantled at termination sites. During transcrip-
tion, several RNA polymerases transcribe one DNA strand, while the other remains transiently in
single stranded conformation at the transcription bubble. During DNA synthesis, two replication
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machineries, called replisomes, move in opposite directions from
one origin and duplicate both lagging and leading strands in a
coordinated fashion, only once in each S-phase of the cell cycle.
Replication and transcription compete for the same DNA tem-
plate and can therefore interfere with each other. Transcription
can arrest DNA synthesis and compromise replication fork sta-
bility, thus causing replication stress. Since the polarity of DNA
and RNA synthesis is the same, a replication fork encounters
the transcription machinery head-on on the lagging strand tem-
plate and codirectionally on the leading strand. Although both
types of collisions can disrupt or arrest replication forks in vivo
(Deshpande and Newlon, 1996; Azvolinsky et al., 2009; Dutta
et al., 2011; Merrikh et al., 2011; Alzu et al., 2012), several lines
of evidence indicate that frontal clashes between replication and
transcription mainly affect genome stability. The organization
of bacterial genomes imparts in fact a co-orientation bias of
replication and transcription of highly expressed and/or essen-
tial genes, thus avoiding deleterious head-on conflicts (Rocha,
2008). A preference for co-orientation of replication and tran-
scription was also observed in human genome (Huvet et al.,
2007). Moreover, head-on replication–transcription collisions are
prevented by specific fork barriers at highly expressed riboso-
mal DNA (rDNA) in eukaryotic organisms (Kobayashi, 2014).
From bacteria to humans, actively transcribed genes exhibit ele-
vated spontaneous mutation and recombination rates, which are
stimulated by replication (Prado and Aguilera, 2005; Kim et al.,
2007; Gottipati et al., 2008; Paul et al., 2012). Transcription-
associated recombination (TAR) and transcription-associated
mutagenesis (TAM) increase when the lagging strand template
is the transcribed strand (Prado and Aguilera, 2005; Kim et al.,
2007; Paul et al., 2012), suggesting that head-on replication–
transcription collisions are more detrimental to fork stabil-
ity than codirectional ones. Protein–protein clashes on the
lagging strand template, which contains ssDNA loop, would
be particularly dangerous for fork integrity. Some evidence
indeed suggests that the replisome may contact the transcrip-
tion machinery (Mirkin and Mirkin, 2005). However, it is also
possible that positive supercoils generated by polymerases mov-
ing toward each other, prevent a direct clash between them.
In this case, fork arrest, and DNA damage may rather result
from DNA topological constrains formation (Olavarrieta et al.,
2002).

The replication fork has to face both nascent RNA and pro-
teins, when it encounters the transcription machinery. RNA
biogenesis proteins that co-transcriptionally process nascent
RNA, including the splicing factor ASF/SF2, the THO/TREX
mRNA export complex and the mRNA cleavage and polyadeny-
lation machinery, prevent the re-hybridization of RNA to
the transcribed DNA strand and therefore the formation of
dangerous R-loop structures that could affect fork progres-
sion (Li and Manley, 2005; Gomez-Gonzalez et al., 2011;
Wahba et al., 2011; Stirling et al., 2012). R-loop formation is
favored by negative supercoiled DNA (Drolet, 2006), which
accumulates behind the advancing RNA polymerase accord-
ing to the twin-supercoiled domain model (Liu and Wang,
1987). It is therefore likely that the excess of positive super-
coiled DNA accumulating in head-on encounters between the

replisome and the transcription machinery may contribute to
R-loop stabilization at the transcription bubble (Bermejo et al.,
2012).

R-loops are physiological intermediates of several biologi-
cal processes, including eukaryotic and prokaryotic immune
responses or transcription termination (Skourti-Stathaki and
Proudfoot, 2014). However, several studies from bacteria to
humans suggest that uncontrolled accumulation of R-loops can
affect genome integrity and proper chromatin organization, most
likely by interfering with DNA synthesis.

Mechanisms that Regulate
Replication–Transcription Conflicts in
Eukaryotic Cells

In prokaryotic cells, DNA synthesis starts at single origins of
replication and since highly transcribed and/or essential genes
are located on the leading strand template, harmful head-on
conflicts between replication and transcription are prevented by
genome organization (Rocha, 2008). Nevertheless, bacteria have
evolved different strategies to resolve replication–transcription
conflicts. These strategies relay on both auxiliary DNA helicases
of the replisome that remove proteins and/or R-loops and tran-
scription regulators that rescue stalled/backtracked RNA poly-
merases (Merrikh et al., 2012). Eukaryotic chromosomes are
replicated from multiple origins differentially selected for firing,
thus increasing the complexity of the replication–transcription
interference.

Growing evidence suggests that the Ataxia telangiectasia
mutated and Rad3-related (ATR) checkpoint kinase and down-
stream factors play a central role in coordinating replication
with transcription. In mammals, the ATR pathway controls the
stability of both common fragile sites (CFSs) and early repli-
cating fragile sites (ERFSs), specific genomic regions prone to
rearrangements under replication stress (Casper et al., 2002;
Barlow et al., 2013). Some of these fragile elements correspond
to R-loop accumulating long genes or highly transcribed genes
(Helmrich et al., 2011; Barlow et al., 2013). Recent studies in
budding yeast have suggested some mechanisms by which ATR
pathway coordinates replication with transcription (Figure 1).
The stress-activated protein kinase Hog1 phosphorylates Mrc1,
a downstream component of the ATR pathway, and Mrc1 phos-
phorylation is crucial to slow down fork progression and to
prevent TAR due to collisions with transcription (Duch et al.,
2013). Moreover, the temporarily inhibition of transcription at
fork passage mediated by the ATR pathway is a preferred mecha-
nism to prevent replication–transcription collisions at both RNA
Polymerase III (RNAPIII)- and RNA Polymerase II (RNAPII)-
transcribed genes. ATR pathway actively controls the disassembly
of the pre-initiation complex at tRNA genes (Nguyen et al.,
2010) and assists fork progression and stability at RNAPII tran-
scribed genes by inhibiting topological constrains caused by gene
gating (Bermejo et al., 2011). This process, which is mediated
by THO/TREX and TREX-2 complexes and nucleoporins, cou-
ples RNAPII transcription to mRNA export through the nuclear
envelope (Blobel, 1985; Bermejo et al., 2012). Although required
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FIGURE 1 | Eukaryotic mechanisms that manage replication–
transcription conflicts. Schematic representation of a head-on encounter
between the replisome and RNAPII. The cotrascriptional processing of nascent
RNA, including its export through the nuclear envelope mediated by the
THO/TREX and TREX2 complexes, can impede replication forks progression.
The ATR checkpoint pathway temporarily inhibits RNA export by
phosphorylating nucleoporins, thus allowing fork advancement. However, this
process may generate harmful R-loop structures, more likely in head-on
replication–transcription encounters. Multiple factors, including the accessory
DNA/RNA helicases of the replisome Sen1/SETX and Pif1, the RNA exosome,
RNaseH2, and Toposomerase I, may cooperate in limiting R-loop accumulation

at the fork. The FACT complex, which interacts with SETX, could be involved in
the re-establishment of chromatin status upon replication–transcription
collisions. R-loops can be also processed into DSBs by XPG and XPF
endonucleases. Hog1-dependent Mrc1 phosphorylation and RecQL5 modulate
the speed of the replisome or RNAPII, respectively, while Dicer dislodges RNAPII
at fork passage. Failure to promptly remove R-loops (gray box) causes not only
DSBs, but also chromatin condensation through the accumulation of H3S10P
and H3K9me2 markers, which contributes to fork arrest and gene silencing.
Unrestrained R-loop accumulation has been also linked to repeats expansion
and inflammation events, thus contributing to cancer and neurodegeneration
(refer to text for further details).

for gene expression, gene gating might aggravate transcription-
associated topological problems, contributing to fork instability
and it is therefore inhibited by ATR-dependent phosphorylation
of nucleoporins (Bermejo et al., 2011). It has been proposed that,
upon checkpoint-dependent gene gating inhibition, R-loop accu-
mulation is favored at the twin supercoiled domain by head-on
encounters between transcription and replication (Alzu et al.,

2012; Bermejo et al., 2012). In this scenario, Topoisomerases I
could be crucial to restrain R-loop accumulation by counteracting
DNA negative supercoils (Tuduri et al., 2009).

Moreover, factors that remove transcription blocks and
nascent RNA, similarly to what described for bacteria, could
be also crucial to promote fork progression. Several helicases
involved in replication fork stability maintenance, including
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HARP, WRN, BLM, Sen1, and Pif1, can remove RNA:DNA
hybrids in vitro (Kim et al., 1999; Boule and Zakian, 2007;
Popuri et al., 2008; Chakraborty and Grosse, 2011; Grierson
et al., 2012; Kassavetis and Kadonaga, 2014). For yeast Pif1
and Sen1 DNA/RNA helicases a role in preventing replication–
transcription interference has been also ascertained in vivo. In
particular, members of the Pif1 helicase family assist fork pro-
gression through several type of natural barriers, including tran-
scription blocks (Ivessa et al., 2003; Azvolinsky et al., 2009;
Paeschke et al., 2011), while Sen1 is specifically required to
prevent RNA:DNA hybrids accumulation at the fork in head-
on encounters with RNAPII transcribed genes (Alzu et al.,
2012). In human, both Senataxin/SETX, the ortholog of Sen1,
and Aquarius, an helicase structurally related to Senataxin,
prevent DNA damages caused by RNA:DNA hybrids accu-
mulation, suggesting that this function has been evolution-
arily conserved (Yuce and West, 2013; Sollier et al., 2014).
Another suggested distinct role of Sen1/Senataxin is to pro-
mote transcription termination by removing R-loops (Mischo
et al., 2011; Skourti-Stathaki et al., 2011). It is therefore possi-
ble that specific termination factors are engaged at fork passage
to inhibit transcription. The above scenario is also consistent
with the finding that the exosome, a multi-protein complex
that degrades aberrant RNA molecules and is involved in tran-
scription termination, co-localizes with Senataxin at R-loop-
dependent nuclear foci in response to replication stress (Richard
et al., 2013). The exosome could cooperate with Senataxin in
removing R-loops by degrading RNA moiety (Richard et al.,
2013).

RNaseH proteins, a class of enzymes that specifically degrades
RNA in RNA:DNA hybrids, are also likely crucial to pre-
vent replication–transcription interference. In budding yeast,
RNaseH1 and RNaseH2 show specificity for R-loop resolu-
tion and RNaseH2 could have uniquely access to replication-
associated RNA:DNA hybrids by interacting with the replisome
(Wahba et al., 2011; Chon et al., 2013).Moreover, a yeast genome-
wide study reported RNA:DNA hybrids accumulation at long or
short genes in cells inactivated for RNaseH1/2 or Sen1, respec-
tively (Chan et al., 2014). This data suggests that different anti-
R-loop pathways could act at different genomic locations, even
though how this is achieved remains unclear.

Finally, modulators of RNA polymerase activity have been
involved in preventing replication–transcription collisions in
eukaryotic cells. The human RecQL5 is a member of RecQ DNA
helicases family that interacts with RNAPII (Aygun et al., 2008).
RecQL5 acts as elongator factor tomodulate RNAPII speed and to
prevent chromosomal rearrangements across transcribed genes
and certain CFSs (Saponaro et al., 2014). A recent study in fission
yeast suggests another mechanism involving Dicer, a component
of the RNA interference pathway (RNAi), in preventing tran-
scription at putative sites of collisions with replication (Castel
et al., 2014). Dicer, independently from the other components
of the canonical RNAi pathway, promotes the release of RNAPII
from the 3′ end of highly transcribed genes and from antisense
transcribed rDNA regions. Transcription inhibition prevents the
loss of rDNA repeats through homologous recombination. This
specific function of Dicer at transcribed genes resembles the one

of the RNAi pathway at pericentromeric regions, where it coor-
dinates replication with transcription. In this way, RNAi pathway
protects stalled forks from unscheduled homologous recombina-
tion, whose engagement interferes with the proper establishment
of epigenetic modifications (Zaratiegui et al., 2011).

While it is evident that multiple pathways are involved in deal-
ing with replication–transcription conflicts in eukaryotic cells
(Figure 1), further studies are required to dissect their intercon-
nections and the checkpoint-mediated regulation. These studies
will be relevant to understand the causes of unrestrained R-loop
accumulation that triggers both genetic and epigenetic instability
in replication–transcription interference.

Replication–Transcription Conflicts as
a Cause of Genetic and Epigenetic
Instability

Strong evidence from bacteria to humans indicates that tran-
scription damage DNA by arresting replication fork progres-
sion. Indeed stalled replication forks accumulate ssDNA gaps
and become prone to unscheduled recombination events and
DNA double strand breaks (DSBs) formation. R-loops are
thought to contribute to fork arrest, although the mech-
anism involved is unclear. An acknowledged model sug-
gests that the RNA:DNA hybrid in the R-loop hampers
fork progression, although R-loop bypass mechanisms could
also be envisaged. Supporting this idea and consistent with
in vitro observations in bacterial system, mRNA mediated re-
priming of DNA synthesis at the leading strand has been
observed during codirectional collisions with transcription
(Pomerantz and O’Donnell, 2008). Moreover, another pos-
sible by-pass mechanism could relay on the uncoupling of
leading and lagging strand synthesis and replication across
the non-transcribed strand (Alzu et al., 2012). This path-
way may require post-replication repair mechanisms, such
as template switching and/or translesion DNA synthesis, for
DNA replication across RNA:DNA hybrids (Gomez-Gonzalez
et al., 2009). However, these by-pass processes may con-
tribute to TAR and TAM occurrence, thus causing genome
instability. The R-loop structure, which resembles the one
of a D-loop recombination intermediate, could be processed
by specific endonucleases leading to DSBs. In agreement
with this idea, a recent study showed that in cells lacking
Senataxin, Aquarius or the splicing factor ASF/SF2, unsched-
uled R-loops are processed into DSBs by XPG and XPF
endonucleases, together with the Cockayne syndrome group B
protein belonging to the transcription-coupled nucleotide exci-
sion repair (TC-NER) pathway (Figure 1; Sollier et al., 2014).
These data clearly suggest that uncontrolled R-loop forma-
tion causes DSBs, although how R-loop processing by TC-
NER pathway is coordinated with replication remains to be
elucidated.

Recent findings suggested that pathological accumulation of
R-loops and/or RNA:DNA hybrids is also linked to complex
genomic rearrangements, including quasi-palindrome-associated
mutations (Kim et al., 2013) and nucleotide repeat expansions,
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which underline several human neurological disorders (Lin et al.,
2010; Groh et al., 2014; Haeusler et al., 2014; Loomis et al., 2014;
Rigby et al., 2014).

In addition, uncoordinated replication–transcription clashes
may also interfere with proper chromatin markers deposition,
causing epigenetic instability (Figure 1). Chromatin markers are
maintained through DNA replication by coupling the deposi-
tion of recycled parental histones to newly synthesized histones
on duplicated DNA (Alabert and Groth, 2012). Defective fork
progression at natural replication barriers such as G4 forming
sequences leads to accumulation of repressive chromatin markers
and gene silencing (Paeschke et al., 2011; Schiavone et al., 2014).
Moreover, accumulation of stalled replication forks induced by
treatment with the anticancer drug doxorubicin causes gene
repression (Im et al., 2014). R-loops and/or RNA:DNA hybrids
also influence the chromatin status. For instance, R-loop for-
mation associates with unmethylated CpG island promoters in
human genome (Ginno et al., 2012) and is linked to RNAi-
directed heterochromatin formation at mammalian gene termi-
nators (Skourti-Stathaki et al., 2014) and at centromeres in fission
yeast (Nakama et al., 2012). While in these contexts R-loops pro-
mote a proper chromatin organization, it has been shown that an
excessive R-loop accumulation at certain DNA regions induces
unscheduled chromatin condensation. A recent study demon-
strated that human, worm, or yeast cells depleted for Senataxin,
RNaseH or the THO complex accumulate at transcribed genes
both R-loops and phosphorylated H3 at S10 (H3S10P), a mitotic
marker of chromatin condensation (Castellano-Pozo et al., 2013).
R-loops are also linked to increased levels of the heterochro-
matin marker H3 dimetylated K9 (H3K9me2) in nematode cells
inactivated for the THO complex (Castellano-Pozo et al., 2013).
Furthermore, colocalization of R-loops and H3K9me2 has been
also reported at the FXN gene expanded in Fragile X syn-
drome, likely contributing to its transcriptional silencing (Groh
et al., 2014). It has been proposed that R-loop-mediated chro-
matin compaction would not only prevent transcription, but also
contribute to impair fork progression (Castellano-Pozo et al.,
2013). The idea that replication–transcription conflicts impact
on chromatin structure is also supported by additional recent
findings on the chromatin remodeling FACT complex, which
physically interacts with Senataxin (Yuce and West, 2013; Hill
et al., 2014). The FACT complex seems to be crucial to re-
establish proper chromatin status after replication fork passage
throughout transcribed DNA regions (Herrera-Moyano et al.,
2014).

Altogether, it appears that failure to coordinate replication
with transcription not only damages DNA, but also prevents gene
expression, thus seriously affecting cell functionality.

Replication–Transcription Conflicts:
Implications for Cancer and
Neurodegenerative Diseases

Replication stress is a hallmark of precancerous cells and is
responsible for the gross chromosomal rearrangements observed
in advanced tumors (Bartkova et al., 2006; Di Micco et al., 2006;

Burrell et al., 2013). In human cells, transcription promotes
oncogene-induced replication stress (Jones et al., 2012) and con-
tributes to the expression of both ERFSs and CFSs, which match
to regions of chromosomal abnormalities observed in cancer cells
(Helmrich et al., 2011; Barlow et al., 2013). As mentioned above,
recombinogenic RNA:DNA hybrids and/or R-loops are tightly
connected to replication–transcription conflicts, suggesting that
dysfunctions in R-loops metabolism contributes to cancer devel-
opment (Table 1; Tuduri et al., 2010; Bermejo et al., 2012). This
idea is supported by recent studies that have involved the well-
characterized tumor suppressor genes BRCA1 and BRCA2 in
R-loop processing (Bhatia et al., 2014; Hill et al., 2014; Hatchi
et al., 2015). In particular, the finding that BRCA1 interacts with
Senataxin and with factors crucial for fork recovery from replica-
tion stress, such as the FACT and theMMS22–TONSL complexes
(Hill et al., 2014), raises the possibility that BRCA1 limits the
replication–transcription conflicts.

It is interesting to note that the most characterized factors
that counteract R-loop accumulation have been implicated in
neurological disorders (Table 1). Senataxin is mutated in juve-
nile forms of Ataxia and amyotrophic lateral sclerosis (ALS)
(Chen et al., 2004; Moreira et al., 2004), while RNaseH2 in the

TABLE 1 | Eukaryotic factors that limit replication-transcription conflicts
and/or R-loop accumulation.

Factors Human diseases

Kinases and checkpoint factors

Hog1

Mrc1

ATR Seckel syndrome (OMIM 210600)

R-loop processing endonucleases

XPG, XPF Xeroderma pigmentosum (OMIM 278750)

RNA degradation factors

RNaseH1

RNaseH2 Aicardi-Goutières syndrome (OMIM 610333, 610181, 610329)

Exosome Pontocerebellar hypoplasia (OMIM 614678)

RNA:DNA helicases

Senataxin ALS4 (OMIM 602433), AOA2 (OMIM 606002), cancer

BLM Bloom syndrome (OMIM 210900)

WRN Werner syndrome (OMIM 277700)

HARP Schimke immunoosseous dysplasia (OMIM 242900)

PIF1 Breast cancer

Aquarius

RNA Polymerase II modulators

Dicer

RecQL5 Cancer

R-loop associated chromatin remodeller

FACT complex Cancer

mRNA biogenesis factors

THO/TREX Cancer

TREX-2 Cancer

ASF/SF2 Cancer

Further anti R-loop factors

BRCA1, BRCA2 Breast-ovarian cancer

Top1 Cancer
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neuroinflammatory Aicardi–Goutières disorder (Crow et al.,
2006). The observation that replication and homologous recom-
bination do not occur in neurons raises the question of whether
replication-associated and recombinogenic R-loops contribute
to neurodegeneration. It is possible that unscheduled accumu-
lation of R-loops impacts on the functionality of glial cells,
a population of cycling cells that interacts with neurons and
whose dysfunctions contribute to neurodegeneration (Lobsiger
and Cleveland, 2007). Furthermore, uncontrolled R-loop accu-
mulation during neurogenesis could have long-term effects on
genome integrity and gene expression in mature neurons. Indeed
persistent RNA:DNA hybrids are associated to repeats insta-
bility, transcriptional silencing and replication-dependent DSBs
accumulation at GAA/TTC tracts, which characterize Frederich
Ataxia and Fragile X neurological syndromes (Zhang et al., 2012;
Groh et al., 2014; Loomis et al., 2014). Stable RNA:DNA hybrids
are also linked to GGGGCC-expansion in C9ORF72, the most
common genetic alteration in the neurodegenerative disorders
ALS and frontotemporal dementia (Reddy et al., 2010; Haeusler
et al., 2014).

Of interest, recent findings suggested that RNA:DNA hybrids
containing viral or bacterial derived sequences can stimulate the
innate immune system response (Kailasan Vanaja et al., 2014;
Mankan et al., 2014; Rigby et al., 2014). The identification of
RNA:DNA hybrids as activators of innate immunity has obvi-
ous implications for autoimmune diseases, including Aicardi–
Goutières neuroinflammatory disorder. Moreover, if RNA:DNA
hybrids directly contribute to trigger chronic inflammations sta-
tus, this would have broad implications for the onset of cancer

and neurodegenerative diseases (Figure 1; Amor et al., 2014;
Hagerling et al., 2014).

Concluding Remarks

Almost 30 years of pioneering works in simple model organisms
and recent studies in human cells have established that uncoordi-
nated replication–transcription conflicts and unscheduled R-loop
accumulation significantly contribute to cause genetic and epi-
genetic instability associated to replication stress, a pathological
condition that alters chromosomal structure and functionality.
In humans increasing evidence links the inactivation of factors
that limit replication–transcription interference and R-loop for-
mation with cancer and/or neurodegenerative disorders onset
(Table 1). An accurate dissection of the molecular mechanisms
that prevent transcription-induced replication stress could there-
fore provide a future framework for understanding the molecular
basis of cancer and neurodegeneration.
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