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Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and

suicidality. Given that women suffer from major depression at twice the rate of men, it is

important to understand how ketamine works in the female brain. This review explores

three themes. First, it examines our current understanding of the etiology of depression

in women. Second, it examines preclinical research on ketamine’s antidepressant effects

at a neurobiological level as well as how ovarian hormones present a unique challenge

in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is

highlighted to help better understand how ovarian hormonesmight interact with ketamine

in the female brain.
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OVARIAN HORMONES & DEPRESSION

Sex differences inmood disorder prevalence are common and can emerge during adolescence (1, 2).
Depression rates are nearly two-fold higher in women than men aged 14–25 (3). Yet, these sex
differences decrease with age, such that depression prevalence among men and women tend to
be similar around late adulthood (4). A cross-national comparison revealed that women aren’t at
even more increased risk for depression in countries where sex inequalities are more marked (5)
although some caveats were noted in the analysis. This could indicate that potentially confounding
factors are not responsible for the differences in prevalence rates. Other findings suggest that sex
differences in depression prevalence may be due to inherent factors such as sex steroid hormones
in combination external factors such as increased exposure to early life adversity and gender
inequities (6).

Estrogens are a family of ovarian hormones, often collectively referred to as estrogens (E), of
which there are three subtypes, viz. estrone, estradiol, and estriol. The most potent estrogen, in
terms of its affinity for estrogen receptors in both rodents and humans, is 17β- estradiol (7). The
ovaries synthesize and release the bulk of E in a cyclical manner, peaking during ovulation. Yet, in
both sexes, the adrenal glands as well as neurons and glial cells in the central nervous system also
synthesize and release E, albeit in much smaller amounts.

Like E, another ovarian hormone, progesterone (P) is mostly synthesized in the ovaries in a
cyclical manner, specifically by the corpus luteum, a temporary gland formed during the ovulatory
phase of the human menstrual cycle and after the proestrus phase of the rat estrus cycle. The estrus
cycle is the term for the female sex steroid cycle in most non-primate mammals. P is also produced
by the placenta once it’s formed during gestation, and the adrenal glands, and again by cells in the
central nervous system where it’s formed by steroidogenesis from cholesterol in both males and
females (8, 9).
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Douma et al. (10) suggest that a reduction of E levels, a
continued deficit of E, or changes in E levels throughout the
menstrual cycle are correlated with mood-related distress (11).
This idea is also supported by multiple studies demonstrating a
link between post-partum depression (PPD) and E levels (12–14).
PPD is the emergence of a depressive episode after parturition
(i.e., giving birth). This disorder affects between 7 and 20% of
women who have given birth and is thought to be caused by
fluctuations in E and P levels [see Schiller et al. (15) for review].
While some studies have been unsuccessful in establishing a
relationship between hormone levels and PPD in women (16, 17)
others have found that treating PPD with estradiol alleviates
symptoms (12, 18). Animal models have shown that E and
P removal can lead to depressive-like behaviors (19, 20) and
hormone replacement can ameliorate these behaviors. It would
be wrong, however, to perceive depression as simply linked to a
decrease in ovarian hormones in females. Indeed, premenstrual
dysphoric disorder (PMDD) illustrates how an increase, rather
than decrease, in ovarian hormones is associated with depressive
symptoms (21, 22).

PMDD affects 3–8% of premenopausal women and can repeat
monthly. Symptoms, such as depressive mood, occur in the
luteal phase when P and E are on the rise (23). Importantly, the
hormonal profiles of women with PMDD are indistinguishable
from those without (24). This suggests that PMDD sufferers are
perhaps more reactive to ovarian hormones at a neurobiological
level. Furthermore, early menarche, i.e., first menstruation, in
girls (prior to 11.5 years of age) has been associated with
an increase in E and an increase in depressive disorders in
adolescence (25). Other evidence demonstrating an ovarian
hormone-depression link comes from menopause and hormone
replacement therapy (HRT) in older women.

In the past a substantial proportion of post-menopausal
women making use of HRT at one point in their lives, with
some estimates being as high as 38% (26). Today, due to efforts
demonstrating associations between HRT and various negative
health outcomes, post-menopausal women will typically receive
HRT between the ages of 50–59 (or <10 y post-menopause) and
for shorter time periods (27–29). In such cases HRT typically
consists of E, but progestins, such as P, can also be administered
either alone or in tandem with E (26, 30). The effects of HRT on
depressed mood during menopause are promising. One meta-
analysis of 26 studies reveals that E have a considerable effect
size (d = 0.69) toward decreasing depressed mood, whereas
P solely or in tandem with E was associated with less potent
effects (31).

Considering the evidence, it is clear that ovarian hormones
may worsen or improve depressive symptoms, but the direction
of the relation can change due to various factors. The
fluctuating nature of the menstrual cycle, as well as the
physiological and cellular changes it entails, renders simplistic
generalizations unworkable. To better understand the role of the
menstrual cycle in depression one should consider how hormone
fluctuations affect the expression of depressive symptoms in
tandem with cellular processes, particularly in the brain. To
do so, we must firstly consider the neurobiological basis
of depression.

HYPOTHESES OF DEPRESSION

There are multiple models suggesting what may cause
depression, none of which are mutually exclusive, highlighting
the complexity of the underlying etiology. One of the more
prolific, but dated, theories of depression is the monoamine
hypothesis. Put simply, this theory suggest that major depressive
disorder (MDD) is caused by depleted levels of the monoamine
neurotransmitters dopamine, norepinephrine, or serotonin; or
some combination of these (32, 33). While there is evidence
in support this theory, for example monoamine depletion
diets (34), there is plenty that contradicts it, i.e., the slow
onset and moderate efficacy of antidepressants targeting
monoamines (35–39).

Another hypothesis, the glutamate hypothesis of depression,
posits that MDD is linked to altered glutamate transmission and
metabolism in the brain. Studies indicate that there is an increase
of glutamate in the plasma of depressed patients compared
to healthy controls (40, 41). This can be reversed with the
administration of SSRIs (40, 42). This idea suggests that excessive
glutamate transmission, associated with a decrease in synaptic
clearance by neighboring glial cells, results in cellular toxicity and
a reduction in brain volume (43). Brain imaging studies show that
individuals suffering from MDD and anxiety-related disorders
have smaller hippocampal and prefrontal cortical volumes (44–
47). This theory attributes such atrophy to inflammatory glial
cells transitioning to an inflammatory state, causing lowered
synaptic clearance, neurotoxicity, and phagocytosis of healthy
neurons. Moreover, stress, a major predictor of depression (48,
49), has been shown to increase synaptic glutamate in the
hippocampus [HPC; (50)] and prefrontal cortex of rats (51).
It is proposed that while glial cells carry out the inflammatory
response, glutamate metabolism and synaptic clearance may
decline, resulting in modified glutamate transmission which
could contribute to the emergence of depression. In vivo
studies have found lower levels of glutamate metabolites in the
cingulate (52) and frontal regions (53) of the prefrontal cortex.
These alterations in glutamate metabolism have been intricately
associated with depression and treatment resistance (45).

THE NEUROTROPHIC THEORY OF
DEPRESSION

Another idea is that neurodegeneration and atrophy is of
paramount importance to depression’s etiology, also known
as the neurotrophic hypothesis of depression. Stress can,
under some circumstances, cause neuronal apoptosis, dendritic
atrophy, and decreases in trophic factors in the HPC, where
atrophy and a lower volume is often observed among depressed
individuals (54–56). Santarelli et al. (57) showed that induction
of hippocampal neurogenesis is necessary for antidepressants
to produce behavioral effects in a mouse model of depression.
Furthermore, electroconvulsive therapy (ECT), causes increases
in trophic factors in the HPC of rats (58).

Brain-derived neurotrophic factor (BDNF) is the most well-
studied trophic factor in the context of antidepressants and
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research supports the idea that BDNF plays an important role
in MDD. Post-mortem research shows that the HPC of humans
with MDD had lowered levels of BDNF, while those who were
taking antidepressants at the time of their death had higher
levels (59). Similar effects have been observed in both the HPC
and prefrontal cortex (PFC) of suicide victims in comparison
to controls (60, 61). It has been proposed that BDNF levels, in
both serum (62–65) and plasma (66, 67) are a viable biomarker
for MDD and even prescription adherence. This is supported by
studies showing that BDNF levels are increased when humans
(63, 68–71), or rodents (58, 72) are administered antidepressants.
When BDNF itself is administered, either directly to the HPC
(73, 74), or peripherally (75), antidepressant-like effects are
observed in rodents. Work by Shirayama et al. (73) showed that
these effects last for as long as 10 days after the infusion, long
after the protein has degraded, suggesting that BDNF triggers
mechanisms which sustain its effects on plasticity. Finally,
other, non-pharmacological antidepressant interventions, such
as exercise (76) and ECT (58) have been shown to increase central
BDNF levels in rodents.

THE NEUROINFLAMMATORY (CYTOKINE)
THEORY OF DEPRESSION

The neuroinflammatory model of depression, also known as
the cytokine hypothesis, is comprehensive in the sense that it
ties together both the monoamine and neurotrophic theories of
depression. To put it simply, this theory posits that depression is
caused by inflammatory processes (77–80) that involvemicroglia.

Microglia, a type of macrophage, can act as part of the
brain’s immune response and make up approximately 10% of
cells in the central nervous system. Microglia are responsible for
many processes such as inducing apoptosis in nearby neurons
and synaptic pruning, both of which are necessary for healthy
brain development and maintaining homeostasis (81–84). A
microglial response to threats could entail the release of reactive
nitrogen and oxygen species to cause oxidative stress and/or
apoptosis in infected neurons (79). Microglia also release small
proteins known as cytokines, which can be pro-inflammatory
such as; interleukin (IL)−1, 2, 6, and 18 (83, 85, 86), tumor
necrosis factor (TNF) α (87) and interferon (IFN) γ (88), or
anti-inflammatories, such as IL-4, 10, and 13 (89–91). One
signal that microglia use to extend their processes toward a
target neuron is adenosine triphosphate [ATP; (92)]. It was
found that N-methyl-D-aspartate receptor (NMDA) receptor
activation mediates this ATP release. However, it is hypothesized
that this mechanism of microglial surveillance has evolved
because ATP is also released during apoptosis, thus acting as
a “find me” signal for all immune cells (92–94). Importantly,
microglia often engage in phagocytosis, when they extend a
cup-shaped process to engulf a given target (95). The idea
that microglia-mediated neuroinflammation contributes to the
etiology of depression is not a new one (96, 97). Sickness
behavior, an adaptive behavioral strategy where motivational
state is reorganized to optimize coping with illness (98) may be
related to depressive behaviors. While sickness behavior clearly

demonstrates how depressive behavior is elicited by immune
challenges, the neuroinflammatory hypothesis of depression
posits that stress is the first step leading to depression (79).

Common psychosocial stressors, such as lack of social support
or exam stress have been shown to increase the production
and release of pro-inflammatory cytokines (99, 100). Researchers
have shown that the Trier social stress test elicits increases in
circulating IL-6 (101) and Il-1β (102). Aschbacher et al. (102)
showed that peripheral immunoreactivity to stress even predicts
future depressive symptoms in a cohort of post-menopausal
women and menopause has been associated with an increase
in pro-inflammatory cytokines (103). Studies of older adults
have also found that levels of peripheral pro-inflammatory IL-1
family cytokines were positively correlated with future depressive
symptoms (104, 105).

van den Biggerlaar et al. (105) demonstrated that ex vivo
whole blood cytokine production in response to LPS (i.e.,
lipopolysaccharide, which is used to generate an immune
response) administration also predicted future depressive
symptoms. Stress-induced increases in pro-inflammatory
cytokines, which are increased in people with depression (77–
80, 97, 106–108), have been positively correlated with severity of
depressive symptoms (109). Pro-inflammatory cytokines affect
the CNS through several mechanisms which are hypothesized to
then cause depression.

Centrally administered LPS, which causes microglia to release
pro-inflammatory cytokines, has been shown to reduce rat
hippocampal neurogenesis (110). In fact, the number of activated
microglia, indicated by CD68 labeling, was inversely correlated
with new neurons. These findings showed that new hippocampal
neurons simply do not survive around activated microglia.
Conversely, inhibiting microglial activation, via minocycline,
gives rise to increases in new neurons. The damaging effects
of activated microglia to their neighboring neurons are likely
mediated by cytokines such as IL-1β and IL-6 (111, 112).
Monje et al. (113) also confirmed that microglial activation is
negatively associated with neurogenesis. This work ties together
both the neuroinflammatory and neurodegenerative hypotheses
of depression.

Common to both the monoamine and neuroinflammatory
hypotheses of depression is the kynurenine pathway, which
consists of the following reactions: Tryptophan, an essential
amino acid and precursor for the monoamine neurotransmitter
serotonin [5-HT; (114, 115)], is catabolized into kynurenine by
the enzyme, and rate-limiting factor (116), indoleamine 2,3-
dioxygenase [IDO; (117)]. Kynurenine is then converted into
either quinolinic acid (QUIN), a neurotoxic NMDA-receptor
agonist, or kynurenic acid, an NMDA, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), and kainate receptor
antagonist, which has been also shown to be protective against
excitotoxicity (118, 119). The kynurenine pathway is controlled
by the immune system, with the synthesis of certain downstream
metabolites, like QUIN, occurring within microglia (120, 121).
When this pathway is more actively engaged, for example
due to pro-inflammatory cytokines which induce IDO (122–
124), less tryptophan is available for 5-HT synthesis (125–129).
This directly relates the neuroinflammatory and monoamine
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hypotheses of depression. Indeed, this process resulting in 5-HT
depletion has been implicated in the etiology of depression for
decades (130).

KETAMINE: A NOVEL ANTIDEPRESSANT

The first administration of ketamine to humans occurred at
Jackson prison in 1964 soon after its synthesis (131). Decades
later, it was discovered to have rapid antidepressant effects among
individuals with MDD (132). Historically, ketamine was largely
used as an animal anesthetic and sedative and still is today.
Additionally, sub-anesthetic doses of ketamine have robust
analgesic effects while having little impact on the respiratory
system in comparison to opioids, like morphine or fentanyl
(133). Ketamine’s neuroprotective and anti-inflammatory effects
led to its use in emergency medicine for burn patients and its
calming and dissociative effects have led it to be administered
to patients who are suicidal or in shock (134, 135). When
Berman et al. (132) first reported ketamine’s antidepressant
effects among individuals with MDD, it was largely ignored.
It was another 5 years before the study was replicated (136),
prompting the original study to become highly cited. Since Zarate
et al. (136) replicated Berman’s work, ketamine’s antidepressant
effects have been well-established. A clinical trial was initiated at
the National Institute ofMental Health (137), and themedication
Spravato (S- ketamine) by Johnson & Johnson was approved
by the U.S. Food and Drug Administration as a breakthrough
treatment in March 2019, although only indicated for TRD.
The neurobiological mechanisms responsible for ketamine’s
antidepressant effects are not yet fully understood, but several
theories have been postulated.

THE GLUTAMATE BURST HYPOTHESIS OF
KETAMINE ACTION

The glutamate burst hypothesis [a.k.a. the disinhibition
hypothesis; (138)] posits that ketamine effectively reverses the
synaptic and dendritic spine atrophy, notably in the PFC and
HPC, known to be associated with stress and depression. Central
to this hypothesis is the NMDA receptor (NMDAR).

The NMDA receptor is composed of GluN1 and GluN2
subunits, typically two of each, forming a heterotetramer. The
complex can also contain GluN3 subunits (139, 140). The
subunits are further divided into isoforms (GluN1A, GluN1B,
GluN2A, etc.). NMDARs can be thought of as both ligand
and voltage gated. For the channel to open, glycine (or D-
serine) must bind to GluN1, glutamate must be bound to GluN2
subunits, and the neuronal membrane must be depolarized
to a sufficient degree such that the Mg2+ blockade at the
center of the receptor pore is removed. Only when these
conditions are met does the channel become permeable to
Na+, K+, and importantly Ca2+ ions, producing a plethora of
intracellular second messenger cascades (141). Ketamine is a
non-competitive NMDAR antagonist, but like other NMDAR
ligands, its pharmacological interactions vary based on subunit

composition. Ketamine, MK-801, and phencyclidine, block the
NMDAR channel at the same site, and are more likely to
do so when the receptor is composed of GluN1/GluN2A or
GluN1/GluN2B subunit configurations (139).

Gerhard et al. (142) suggest that ketamine leads to a burst
of glutamatergic transmission which ultimately reverses synaptic
and dendritic spine atrophy, and that this occurs in five steps.
The glutamate burst hypothesis: a proposed mechanism of
action for ketamine. First, ketamine blocks NMDARs located
on inhibitory GABA interneurons. The same research group
showed this occurs preferentially through blocking NMDARs
on GABA interneurons in mice, specifically in the mPFC (143).
This disinhibition occurs preferentially on GABA interneurons
likely due to their higher frequency of firing compared to
pyramidal neurons. Faster firing allows for NMDARs to be freer
of their Mg2+ ion blockade, granting ketamine greater access
to the NMDA channel to inhibit its opening (138). This idea
is supported by both human research, by evidence showing
ketamine increases overall PFC activity in healthy individuals
(144), and rodent research, by evidence that MK-801, specifically
increases pyramidal neuron-firing in the PFC (145). Second,
by blocking the NMDA channels on GABA interneurons,
ketamine reduces tonic firing of these interneurons, subsequently
resulting in a disinhibition of glutamate neurons, and a burst in
glutamate release. Gerhard et al. (143) showed that ketamine’s
blockade of NMDARs on GABA interneurons in the mPFC
caused a disinhibitory net effect in the form of an increase in
excitatory postsynaptic currents in layer V primary neurons.
Furthermore, the effect appeared to occur through GluN2B-
containing NMDARs in male mice only, as was demonstrated
via knockdown and genetic deletion models in mice, suggesting
sex-differences at a molecular level (143). Third, as a result of a
presynaptic glutamate burst, AMPA receptors are activated and
upregulated on postsynaptic sites of PFC pyramidal neurons,
resulting in greater depolarization of the postsynaptic membrane.
Nearby post-synaptic voltage-gated calcium channels open and
an influx of calcium occurs. Fourth, BDNF is released by the
postsynaptic neuron and binds to tropomyosin receptor kinase
B (TrkB) receptors, also on the postsynaptic neuron, initiating
several intracellular second messenger cascades. TrkB receptors
auto-phosphorylate, allowing them to affect cellular function
for extended periods of time. This could explain how centrally
administered BDNF produces prolonged antidepressant effects
(73). Lastly, targets of rapamycin complex 1 (mTORC1) signaling
proteins are rapidly phosphorylated, increasing spine density in
the PFC via proteins like postsynaptic density protein (PSD) 95,
and synapsin. The importance of the mTORC1 signaling cascade
is illustrated by paradigms which block mTORC1 via rapamycin,
reducing ketamine’s antidepressant-like effects in animal models
(138, 142, 146, 147).

Furthermore, convergent pathways which increase
synaptogenesis and protein synthesis (such as the mTOR
pathway) have been proposed as potential mechanism for the
antidepressant properties of psychedelic drugs as such lysergic
acid diethylamide, psilocybin, or dimethyltryptamine in addition
to ketamine [reviewed in Aleksandrova and Phillips (148)].
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BEYOND THE GLUTAMATE BURST
HYPOTHESIS

Another hypothesis of ketamine’s mechanism of action–
proposed, in part, by several research groups–holds that a
glutamate burst is not necessary (149–151). Instead, ketamine’s
NMDA antagonism blocks spontaneous miniature excitatory
postsynaptic currents at rest, which are mediated by NMDA
activation. It is suggested that it is the deactivation of eukaryotic
elongation factor 2 (eEF2) kinase (a.k.a. CaMKIII), not the
activation of mTORC1, at the root of this effect. Deactivation
of eEF2 kinase, via ketamine administration, was shown to
induce BDNF and dendritic protein translation, including
AMPA subunits, in mouse models. This paradigm suggests
that NMDA receptor activity at rest allows for eEF2 kinase
to chronically phosphorylate eEF2, which then suppresses
translation. It is suggested that acutely blocking NMDA,
via ketamine, stops eEF2 phosphorylation via eEF2 kinase
deactivation, which produces antidepressant-like effects (149–
151).

A third ketamine hypothesis (152) posits that NMDA
antagonism, and subsequent second-messenger cascades, is not
central to ketamine’s antidepressant effects. This is because
ketamine’s R enantiomer produces greater antidepressant-like
effects in rodent models than the S enantiomer, despite R-
ketamine having an almost four-fold lower affinity (Ki= 2.57) for
the NMDA receptor than S-ketamine [Ki= 0.69; (153)]. Research
supporting this hypothesis shows that ketamine’s antidepressant
effects actually occur via its metabolites, specifically 2R and
6R hydroxynorketamine (2R−6R HNK), acting on AMPA
receptors. Administering deuterated ketamine, which is not
metabolized into other compounds due to a change in its
molecular structure, produces no antidepressant-like effects
in rodent models. Furthermore, administering 2R-6R HNK
with 2,3-dihydroxy-6-nitro-7-sulfamoyl- benzo(f)quinoxaline-
2,3-dione (NBQX), an AMPA receptor antagonist, causes
no antidepressant-like effects, whereas, without NBQX, the
2R-6R HNK metabolites produces the most potent effects
compared to other metabolites (152). Proponents of this
theory, therefore suggest ketamine’s mechanism of action
lies with its ability to activate AMPA receptors (152, 154,
155).

KETAMINE IN FEMALES

For the above hypotheses of ketamine’s antidepressant effects,
most of the data has been derived from studies on males.
As one might expect, there is a growing body of evidence
which suggests that these theories do not hold the same for
females. In support of the glutamate burst hypothesis, male
rodents with social isolation stress (SIS) have a decrease in
sucrose preference, a measure of anhedonia, as well as decreases
in medial PFC (mPFC) neuron spine density, PSD- 95, and
synapsin. Three hours after a single ketamine infusion all
of these effects are reversed. In females, SIS also leads to a
decrease in mPFC spine density, PSD-95 and synapsin, yet no

changes in sucrose preference and none of these effects were
reversed by ketamine (156). Furthermore, ketamine induces
hippocampal glutamate in males but not females, and induces
aspartate in the mPFC in females but not males (157). All
this evidence is contrary to the glutamate burst hypothesis
and suggests that the glutamatergic system in females reacts
to ketamine differently than in males. Interestingly, female
rats require half the minimum dose that males do to produce
antidepressant effects, but this effect is only seen when both
E2 and P are present (158, 159). This suggests that there are
sex differences in the mechanism of action of ketamine and
that ovarian hormones may play a role in how it acts in the
female brain.

Carrier and Kabbaj (158) have shown that ketamine does
not decrease eEF2 in the HPC and PFC of female rats, whereas
this decrease has been shown to occur consistently in males
(149–151, 158). One theory, supported by evidence in both
males and females, places primary importance on ketamine’s
metabolites. However, while both 2R and 6R-HNK are more
abundant in females than males, so too are 2S and 6S-HNK
(152, 160). This evidence may explain the sex differences in
terms of sensitivity to ketamine’s antidepressant-like effects in
rodents, but it only muddies the waters in terms of how ketamine
may be exerting sex-specific effects. Making the story even
less clear, the few meta-analyses conducted among clinically
treated individuals have revealed no sex differences in ketamine’s
antidepressant effects (161), or a slightly higher sensitivity among
males, but only at 7 days post-infusion (162). Although more
research emphasizing potential sex differences must be carried
out to replicate these findings, this suggests that there exists no
difference between the sexes among humans in terms of response
to ketamine.

When looking to the more clinically relevant S-ketamine,
researchers have shown it is eliminated at a faster rate in
women than in men, although this investigation was performed
in the context of analgesia (163). In fact, there is a dearth of
research investigating clinical sex differences when it comes to
the efficacy of S-ketamine in comparison to racemic ketamine.
One non-inferiority clinical trial (N = 63) looked to compare
efficacy between the two molecules and found there were
no differences between S-ketamine and racemic ketamine
in improving depression. Sex differences were not analyzed
but given the size, and results, of the study it is unlikely
that sex might have accounted for clinically relevant effects
(164). Following this trend, Bahji et al. (165) conducted a
meta-analysis to explore whether any differences might exist
between the two molecules and examined 24 studies (N =

1,877), but failed to include sex-differences in any analyses
or discussion. Importantly, the authors did find that IV
racemic ketamine alleviates the symptoms of depression more
effectively than intranasal S-ketamine. The literature is lacking
a critically important meta-analysis of sex-differences among
ketamine clinical trials. Nevertheless, a much more recent
and comprehensive theory on the etiology of depression may
be the missing link in explaining ketamine’s effects in the
female brain.
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MICROGLIA, NEUROINFLAMMATION, AND
KETAMINE

Recently, the kynurenine pathway was suggested as a mechanism
through which ketamine might affect neurodegeneration via
microglia-mediated neuroinflammation (166). Several studies
now have shown that LPS induces QUIN in microglia (167–169).
Moreover, higher levels of neurotoxic QUIN was found in the
cerebrospinal fluid of suicide victims (170). Furthermore, QUIN
was increased specifically in microglia in the post-mortem brains
of severely depressed individuals (171).

Establishing ketamine’s relevance to this paradigm-shift
in our understanding of the neurobiology of depression,
Walker’s et al. (172) showed that ketamine reverses LPS-
induced depressive-like behavior in rodents. What’s more,
this effect occurred when ketamine was given 10 h after
LPS administration, giving the inflammatory and kynurenine
pathways enough time to be activated. Pre-treatment with
ketamine blocked LPS-induced depressive-like behavior from
developing. Interestingly, ketamine had no impact on LPS-
induced inflammatory activation in the form of plasma
cytokine levels. The researchers hypothesized that ketamine,
an NMDA antagonist, was instead blocking QUIN’s ability to
act as an NMDA-receptor agonist. As mentioned previously,
a requirement for ketamine’s antidepressant effects to take
hold is the upregulation of AMPA-mediated glutamatergic
neurotransmission, likely due to ketamine’smetabolites (152, 154,
155). Their hypothesis was confirmed via administering NBQX
15min before ketamine, restoring depressive-like behavior (166,
172).

Verdonk et al. (173) were the first to show that microglia
are a direct target of ketamine and, specifically, the production
of QUIN within microglia. In a mouse model of LPS-
induced depression ketamine induced changes in microglia
resulting in a neuroprotective phenotype. They observed that
ketamine reversed the LPS-induced increase in QUIN in brain
parenchyma, whereas ketamine had no effect on QUIN in
control animals. Translating this work to a clinical perspective,
the researchers also tested kynurenine pathway metabolite
concentration in 15 individuals with TRD in response to
ketamine. They found that the KYNA:QUIN ratio before the
first ketamine infusion to be a significant predictor of final
Montgomery–Åsberg Depression Rating Scale (MADRS) score.
This effect was driven primarily by QUIN plasma levels. QUIN
concentrations before each ketamine infusion were the best
predictor of ketamine efficacy and were the only significant
predictor of relative change (i.e., before and after ketamine) in
MADRS scores. These findings by Verdonk et al. (173) confirm
the hypothesis ofWalker et al. (172) that ketamine directly affects
microglial QUIN levels, in both mice and humans, resulting
in protection from neuroinflammatory processes, and that the
degree to which ketamine impacts QUIN levels correlates with
relief of depressive symptoms in humans.

Further linking ketamine to inflammatory processes,
researchers have shown that ketamine reverses the effects of LPS,
in the form of pro-inflammatory cytokine release, in microglia
in vitro (174). This makes sense, given that others have shown

that NMDA and LPS have very similar effects on microglia.
Both produce a release in pro- inflammatory cytokines and the
adoption of a more amoeboid-like shape, indicating a more
active state (175). NMDA receptors have been implicated in
cytokine-induced neurotoxicity in previous research as well.
When Chao et al. (176) administered both IL-β and TNF-α
to in vitro fetal brain cells, they noticed a marked increase in
neuronal injury. When these cytokines were administered in
conjunction with MK-801, the increase in neuronal injury was
ablated. Recently, researchers showed that ketamine reduced
pro-inflammatory cytokines, microglia phagocytic markers in
the rat HPC, and depressive-like behavior in a rat model (177),
see Figure 1.

Much of the evidence presented thus far, points to
microglia playing a pivotal role in ketamine’s antidepressant
effects. Ketamine’s NMDA-antagonism make it capable of
stopping neuronal ATP release, stopping microglia from
potentially damaging nearby neurons, as previously discussed
(92). Ketamine reduces the neurotoxic effects of QUIN being
produced within microglia (173). Ketamine also reduces the
microglial response to otherwise activation-inducing molecules
like LPS (174) and stops microglial production of pro-
inflammatory cytokines (177). Unfortunately, the vast majority
of this research has been conducted using the male sex. Similarly,
the theoretical bases which guide such experiments has also,
historically, used the male sex. An important consequence of this,
beyond the inability of generalizing these findings to 50 percent
of the population, is the lack of understanding how ketamine
might interact with ovarian hormones. Fortunately, extensive
research has been conducted investigating the role of estrogens
on microglia.

OVARIAN HORMONES AND
NEUROINFLAMMATION

The classical mechanism through which lipid-soluble hormones
like E2 act on neurons and glia is via nuclear estrogen receptors
(ERs). Hormones like E2 diffuse across the cell membrane
passively and bind to nuclear receptors in the cytoplasm.
These ligand-bound receptors dimerize with other ligand-bound
receptors, forming a hetero or homodimer (178–180), and
translocate to the nucleus where they act as transcription factors.
Nuclear estrogen receptors were thought to only function this
way, but more recently membrane-bound estrogen receptors
have been discovered, such as G- protein-coupled estrogen
receptor 1 (GPER1), and act more rapidly (181). Estrogens,
as a whole, have been found to be neuroprotective toward
multiple pathologies, most notably those in which microglia are
implicated, such as Alzheimer’s disease (182–186) and multiple
sclerosis (187–190).

One way that E2 impacts microglia is via the nuclear
estrogen receptor (ER) α. Researchers have found that systemic
administration of E2 reduces LPS-induced microglia activity in a
dose-dependent manner by decreasing the expression of proteins
associated with phagocytosis, by inhibiting morphological
changes, and by inhibiting cell migration. ER knockout mouse
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FIGURE 1 | Ketamine’s effects on the kynurenine pathway leads to lowered levels of neurotoxic quinolinic acid (QUIN) via inhibition of cytokine production, and

lowered effects of QUIN/NMDA binding by blocking the NMDA receptor. (1) Ketamine binding blocks the NMDA receptor, reducing the neurotoxic effects of QUIN

released from microglia. (2) This decreased neurotoxicity decreases ATP release from the synapse. (3) As a result, the microglia no longer extend toward this “find me”

signal and the inflammatory reaction is dampened, and the microglia assumes a less reactive state. In addition, ketamine was found to mitigate the reaction of

microglia to inflammatory stimuli such as stress or LPS and decreased the production of proinflammatory cytokines. Created with BioRender.com.

models demonstrated that ERα is responsible for these effects.
For example, microglia activity was unaffected by the absence
or presence E2 administration in ERα-null mice (191). Previous
research by Bruce-Keller et al. (192) showed that, in a dose-
dependentmanner, E2 attenuatesmicroglia phagocytosis, and the
release of superoxide, a neurotoxic free radical. These effects were
mediated by the phosphorylation of mitogen-activated protein

kinase (MAPK). Additionally, Vegeto et al. (193) also found that
E2 reduces the buildup of free-radicals, specifically, nitrous oxide,
in microglia.

Another way that E2 can impact microglia is via GPER1. E2
binding to GPER1, located predominantly on the endoplasmic
reticulum, but also the Golgi apparatus and nuclear membrane,
results in the mobilization of intracellular calcium, and the
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FIGURE 2 | The differential roles of ovarian hormones in the microglial immune response. PGRMC1 activation induces microglial activation whereas PR and E2

quiesces it. PGRMC1 binds to progesterone leading to the inhibition of neurite outgrowth, microglia activation through the expression of CD11b and CD18, and the

inhibition of BDNF. Conversely, GPER1 activation by E2 reduced the expression of proinflammatory cytokines TNF-α and IL-1β. In addition, E2 reduces microglial

phagocytosis and cell migration through activation of the MAPK pathway and inhibits the release of reactive oxygen species NO and O2−. PR activation also has an

anti- inflammatory effect through the inhibition of a various of inflammatory cytokines. Created with BioRender.com.

production of nuclear phosphatidylinositol 3,4,5-trisphosphate
[PIP3; (194)]. PIP3 is an effector of multiple downstream
signaling proteins, particularly the protein kinase AKT which
plays a crucial role in several cellular processes, such as
cell survival (195–197) and proliferation (198, 199). Zhao et
al. (200) were the first to show that GPER1 mediates E2’s

anti-inflammatory effects on microglia in a rat model of cerebral
ischemia. Both E2, or the GPER1 agonist, G1, alone were
able to attenuate LPS-induced increases in pro-inflammatory
TNF-α and IL-1β. Co-administration of the GPER1 antagonist,
G15, with E2 reversed these anti-inflammatory effects, and
E2 administration to GPER1- knockdown rats had reduced
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FIGURE 3 | The glutamate burst hypothesis: a proposed mechanism of action for ketamine. The upper panel shows a glutamatergic synapse tonically inhibited by a

GABAergic interneuron with decreased spine density and altered glutamatergic transmission due to stress and depression. The lower panel delineates putative steps

for ketamine’s antidepressant effect. (1) Ketamine binds to an NMDA receptor on a GABAergic interneuron. (2) This reduces the tonic inhibition of a glutamatergic

presynaptic terminal which causes the release of bursts of glutamate. (3) Increased signal transmission leads to upregulation of AMPA receptors, increased

depolarization, and influx of Ca2+ through Voltage gated calcium channels. (4) Higher intracellular Ca2+ leads to the release of BDNF which binds to the TrKB receptor.

The Akt pathway is activated followed by the mTOR pathway. (5) This leads to the synthesis of synaptic proteins and increased spine density. Created with

BioRender.com.
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anti-inflammatory effects. As little is known about the effects
of estrogens on microglia, even less is known about the effects
of progesterone.

P acts on neurons and glia through classical genomic
mechanisms by binding to nuclear progesterone receptor (PR),
of which there are two isoforms (PRA, PRB), and via non-
classical, a.k.a. non-genomic, membrane-bound progesterone
receptors [mPRs; (201)]. Tameh et al. (202) found that a
mechanism responsible for P’s ability to mediate neuronal
survival signaling cascades is through upregulation of certain
NMDA subunits, specifically GluN1, GluN2A, and GluN3A,
which mediate neuronal survival signaling cascades (203, 204).
By upregulating these subunits, P serves to inhibit NMDA-
mediated apoptosis.

Work by Bali et al. (205) revealed that P exerts its effects
on microglia by binding to progesterone receptor membrane
component 1 (PGRMC1, a.k.a. 25-Dx, a.k.a. ventral midline
antigen or VEMA). PGRMC1 belongs to neither the classical,
nor the membrane-bound progesterone receptor subfamilies,
but rather the membrane-associated progesterone receptor
(MAPR) family (206). PGRMC1 is the P-binding protein in a
single-transmembrane protein complex (207–209) and has been
found on the membranes of the Golgi apparatus, endoplasmic
reticulum, andmitochondria of CNS cells (210, 211). Both E2 and
P upregulate PGRMC1 expression in the ovariectomized rat HPC
(212). Activating PGRMC1 with P reinstates neuronal activity
(213), enhances spinogenesis (214), and enhances neuronal
migration and myelination from Schwann cells in the spinal
column, where PGRMC1 has been found in the cell membrane
(208, 215). What’s more, P has been found to induce BDNF
expression, an effect which has been shown to be mediated
by both the classical PR in cortical slice explants (216), and
by PGRMC1 in cultured glial cells (217). This suggests that
ketamine, E2, and P, each on their own, would increase BDNF
expression. However, this is contradictory to seminal research
which showed that P can antagonize E2’s synaptogenesis-
inducing effects at certain time points (218).

Prior to the discovery that PGRMC1 is crucial for microglial
activation (205), work by the same authors showed that
P antagonizes E2-mediated neurite outgrowth in vitro, but
only when microglial cells were also present. P had no
effect on neurite outgrowth with only neurons and astrocyte
cocultures (219). This line of research culminated in several
additional important findings. Firstly, activating PGRMC1
induces microglial activation to the same degree as stimulation
from LPS, as indicated by CD11b protein expression. Second,
when microglia are activated via P-binding to PGRMC1
they inhibit new neurite outgrowth. Third, that P binding
to PGRMC1 inhibits BDNF release from astrocytes, further
hindering neuritogenesis. Fourth, PGRMC1 knockdown stopped
LPS and injury (in vitro scratch-wounding) induced microglia
activation (205, 220). Together, these findings suggest that
PGRMC1 is critical for microglial activation, and that E2 and
P may be acting to antagonize one another, with E2 causing
quiescence in microglia, but P activating them. This is of
course counter-intuitive when considering P’s well-researched
neuroprotective effects in the context of ischemia (221–229).

Looking to P’s broader effects on inflammation could, perhaps,
clarify this dichotomy. P also has multiple anti-inflammatory
effects in LPS-stimulated microglia in vitro, as indicated by Lei et
al. (230). LPS upregulated the pro-inflammatory cytokine TNF-
α, inducible nitric oxide synthase (iNOS), an enzyme precursor
for the free radical nitric oxide (NO), and cyclooxygenase-2
(COX-2), an enzyme precursor for prostaglandin. All of which
are upregulated during inflammation. P attenuated these LPS-
induced increases in a dose- dependent manner. Additionally,
P decreased the LPS-induced phosphorylation of several other
kinases such as p38, c-Jun N-terminal kinase, and extracellular
regulated kinase MAPKs.

Importantly, P decreased the LPS-induced activation of the
protein complex nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB). NF-κB is a transcription factor which
controls the expression of various target genes, especially those
involved in immune and inflammatory responses (230). NF-κB
and pro-inflammatory cytokines have a bidirectional connection:
NF-κB is activated by pro-inflammatory cytokines, and directly
promotes pro-inflammatory cytokine production by binding
to cytokine promoter regions in the genome (231). These
pleiotropic effects of P, along with the PGRMC1 activational
mechanism, all specific to microglia, demonstrate the relevance
of understanding how P, E2, and ketamine might interact with
one another. Of course, much more comprehensive research
still needs to be done to understand the complexity of these
phenomena–see Figure 2.

KETAMINE BINDS TO ERα

It has been shown that estrogens act to mediate enhanced
sensitivity to ketamine in depression models using rodents (156–
158). Furthermore, both female mice (152) and humans (160)
metabolize ketamine to produce higher levels of the crucially
important ketamine metabolites 2R-6R/2S-6S HNK than males.
It is thought that this occurs due to women having higher levels
of the CYP2A6 and CYP2B6 enzymes, responsible for ketamine’s
metabolism (232). E2 and P are capable of inducing these
enzymes (233), with E2 doing so via ERα (234). ERα is therefore
critical in understanding how ketamine and ovarian hormones
might interact. In most tissues, including the CNS, E2 binding to
ERs precipitates an upregulation of PRs (235). Thanks to work
by Alves et al. (236) it is known that this occurs via E2 binding to
ERα receptors in the HPC of wild- type mice (237). Both E2 and
P lead to the induction of PGRMC1 in female ovariectomized rat
hippocampal neurons in the CA1, CA3, and DG (212), although
it is unclear which ER/PR-binding mechanisms cause this.

Evidence that ketamine binds to ERα, was provided by Ho
et al. (232). Radioligand binding assays, coupled with surface
plasmon resonance, demonstrated that E2, ketamine, and 2R-
6R/2S-6S HNK bind to ERα receptors in cultured astrocytes.
They also found that the same compounds act in an additive
manner to induce AMPA receptor subunits, again in vitro. This
is thought to be crucial for ketamine’s antidepressant effects,
as previously discussed, and this effect was ablated by ERα

knockdown. Given that all three compounds also lead to ERα
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trafficking to the nucleus, it follows that the authors hypothesized
a potential positive feedback loop. Namely, when ERα binds
to estrogen-response elements, CYP2A6, CYP2B6, and AMPA
subunit transcription is induced, leading to more ketamine
metabolism and more AMPA receptors (232). Research has yet
to be conducted to determine how PRs might be impacted by
these processes but it is likely that, via ERα binding, ketamine
and its metabolites cause PR upregulation. Virtually nothing is
known of ketamine’s ability to impact PGRMC1. How this might
be manifested behaviorally is an even greater mystery.

HIPPOCAMPUS AS A CANDIDATE FOR
KETAMINE-HORMONE INTERACTIONS

Depression involves multiple brain regions. The HPC is perhaps
the most well-studied brain region in regards to MDD. A meta-
analysis of MRI results yielded an average reduction of 8–10% in
HPC volume among individuals with unipolar depression (238).
The HPC is also a site of continuous neurogenesis as documented
in adult macaques (239). That is, while depression may decrease
HPC volume, this change may not necessarily be permanent.
Outside the context of antidepressant research, it is worth noting
that HPC volume declines naturally with age, and that there exists
an interactive effect of gender and age onHPC volume decline. As
we age, HPC volume declines linearly among men, whereas there
is no such correlation among women (240).

Morphological changes in the HPC such as neurogenesis and
synaptogenesis are, in part, mediated by BDNF (59, 241, 242).
What’s more, researchers have shown that peripheral BDNF
leads to both hippocampal neurogenesis among adult mice,
as well as antidepressant-like effects in the forced swim test
[FST; (75)]. Ketamine is well-documented to both increase
hippocampal BDNF, and produce antidepressant-like effects in
the FST in male rodents (243–246). Furthermore, it is likely
that the neuroprotective effects of E2 are partly due to BDNF
upregulation (247). Some speculate that the BDNF gene contains
an estrogen response element such that E2 could upregulate
BDNF directly (248). Others have shown that estrogen receptors
are found on BDNF-expressing neurons (249, 250). It is perhaps
through this mechanism that E2 mediates dendritic spine growth
and synaptogenesis in the HPC, as previously discussed (218,
251).

What makes the HPC particularly interesting in terms of
ketamine’s effects is, as previously discussed, that the HPC-PFC
circuits are likely the most crucial for ketamine’s antidepressant
effect. Within this circuit ketamine selectively disinhibits GABA
interneurons, as per the glutamate burst hypothesis—see
Figure 3. With regards to the neuroinflammatory hypothesis,
ovarian hormones are known to play an important role in the

inflammatory response in the HPC (252, 253) and prefrontal
cortex (254). The HPC has been the focus of several research
groups who found that ketamine generally suppresses glial
inflammation in this area (177, 255, 256).

CONCLUSION

The etiology of major depressive disorder is complex, and
there is no single explanation for its manifestation. Likewise,
it’s possible that there are many valid explanations as to why
women suffer fromMDDmore than men, but ovarian hormones
are surely implicated. Despite the discovery of ketamine’s
antidepressant effects being relatively recent, there’s plenty of
evidence supporting the various hypotheses concerning its
mechanisms of action in the CNS. However, evidence specific
to the female sex is lacking. That which has been gathered only
demonstrates that well-researched theories do not generalize
across the sexes. Considering the neuroinflammatory hypothesis
of depression may help shed light on ketamine’s mechanism
of action among females. Indeed, a massive body of literature
supports the relevance of this hypothesis, particularly the role of
microglia, to novel antidepressants like ketamine. The literature
provides more than sufficient evidence to warrant the idea that
circulating E2 and P would interact with ketamine’s effect on
the CNS. In believing some, one might suspect that the three
molecules would act additively to reduce depressive symptoms.
Believing other lines of research, one might expect E2 to act
additively with ketamine, but that P would antagonize this via
acting on PGRMC1 on microglia. Evidence which indicates P
has neuroinflammatory effects is contradicted by evidence which
shows it has anti-inflammatory effects. In vivo experimentation
looking specifically at the HPC is the next step in investigating
these complex phenomena, as much of the literature uses in vitro
models. Exploring this is paramount to the likely eventuality that
ketamine, or a similar compound, will be administered to those
seeking treatment for MDD on a larger scale.
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