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Abstract: Phosphate tailings (PTs) are solid waste, which is produced by phosphate flotation. In this
work, PTs were used as raw materials for the preparation of diethylenetriamine pentamethronic acid
(DTPMP) intercalated trimetal (Ca-Mg-Al) layered double hydroxides (TM-DTPMP LDHs) by co-
precipitation method. TM-DTPMP LDHs were characterized by X-ray diffraction, fourier-transform
infrared spectroscopy, scanning electron microscopy, differential thermal gravimetric analysis, X-ray
photoelectron spectroscopy and applied as a flame retardant to improve the fire safety of epoxy resin
(EP). The results showed that the composite materials exhibited obvious layered structure. After
intercalation, layer spacing increased from 0.783 to 1.78 Å. When the amount of TM-DTPMP LDH in
EP was 8%, the limitted oxygen index of the composite material increased from the original 19.2%
to 30.2%. In addition, Cone calorimeter (CC) and Raman spectrum results indicated that with the
addition of TM-DTPMP LDHs, the value of heat release rate peak (pHRR) and total heat release (THR)
were reduced by more than 43% and 60%, while the value of smoke formation rate (pSPR) and the
total smoke production (TSP) decreased nearly 64% and 83%, respectively. The significant reduction
in the release of combustion heat and harmful smoke during EP combustion may be attributed to
the synergistic flame-retardant effect between hydrotalcite and DTPMP. This work exhibited great
potential for the green recycling of PTs and the enhancement of the fire safety of EP.

Keywords: phosphate tailings; layered double hydroxides; epoxy resin; fire safety

1. Introduction

As a typical and extensive phosphorus chemical solid waste, phosphorus tailings
(PTs) are one of the main by-products produced in the process of phosphate mining and
flotation. PTs are mainly composed of calcium and magnesium carbonates, and the main
components are CaO, MgO and P2O5 [1,2]. According to incomplete statistics, 0.4 tons of
PTs are produced for every ton of phosphate concentrate produced [3]. In China, nearly
9.5 million tons of phosphate tailings will be produced every year, but the comprehensive
utilization rate of PTs is only about 7% [4]. A large amount of PTs can only be piled up in
the tailings pond for a long time. After being washed by rainwater, this will lead to the
chemical migration of harmful elements. As a result, it will cause serious pollution to the
surrounding atmosphere, water and soil, destroy vegetation and even directly endanger
the survival of humans and animals [5]. Therefore, the effective comprehensive utilization
of PTs is imminent.
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Epoxy resin (EP) is widely used in various industries, such as machinery, aerospace,
adhesives, national defense, flooring and other industries due to its excellent chemical
and physical properties. Therefore, the output of EP increases year by year. However, EP
is a thermosetted thermoset resin based on its own chemical structure, the limit oxygen
index in the air is only about 25.8%, and its application range is greatly limited. Thus,
the flame retardancy modification of EP has always been an important research topic in
academia and industry. In recent years, extensive studies have focused on the development
of novel flame-retardant materials to improve the thermal stability of epoxy resins, such as
halogen [6], phosphorus-nitrogen [7,8] and inorganic flame retardant (hydroxide) [9,10].
Among them, inorganic flame retardants are widely concerned because of their good smoke
suppression effect and environmental protection [11–13].

Layered double hydroxides (LDHs) are regarded as a new type of eco-friendly and ef-
ficient flame retardant because of the formation of non-flammable gases H2O and CO2 and
a metal oxide residue. More importantly, the introduction of organic anions or functional
flame-retardant anions between the layers can effectively improve the flame-retardant
efficiency of LDHs and its compatibility with polymer matrix materials. Zammarano et al.
found that the flame resistance of LDH/EP nanocomposites is related to the level of disper-
sion as well as the intrinsic properties of the LDH derivative [14]. Ding et al. reported that
the Cu-Al layered double hydroxide (Cu-Al-LDHs) and the sodium dodecyl sulfate (SDS)
intercalated Cu-Al-LDHs (SDS-CuAl-(SDS)LDHs) can greatly improve the thermal stability
and flame retardancy of EP [15]. Wang et al. found that functionalized LDHs based on
multi-modifiers’ system composed by hydroxypropyl-sulfobutyl-beta-cyclodextrin sodium
(sCD), dodecylbenzenesulfonate (DBS), taurine (T) and cardanol-BS showed excellent com-
bustion safety and mechanical properties [16,17]. Jiang et al. found that Labyrinth effect of
m-SiO2 and formation of graphitized carbon char catalyzed by Co-Al LDH played pivotal
roles in the flame retardance enhancement [18]. Zhang et al. reported that a flame-retardant
material composed of metal organic frameworks (MOFs) and LDHs can significantly im-
prove its dispersion in EP and exhibit a good synergistic flame-retardant effect [19]. In
addition, carbon nanotubes (CNTs) based organic nickel-iron layered double hydroxide
(ONiFe-LDH-CNTs) can significantly improve the dispersion of CNTs and flame retardancy
of LDHs in EP [20]. Meanwhile, as a typical organic phosphonic acid, Diethylenetriamine-
penta (methylene-phosphonic acid) (DTPMP) has abundant C, N and phosphoric acid
in its structure, which contribute to superior flame retardancy in high molecular poly-
mers [21,22]. Therefore, DTPMP intercalated LDHs can not only effectively improve the
compatibility between hydrotalcite and polymer substrate, but also improve the flame
retardancy of the hydrotalcite. PTs contain a large amount of calcium and magnesium
sources required for the synthesis of LDHs, which provides the possibility to prepare LDHs
based on phosphate tailings.

Hence, this work introduced a favorable method to synthetise DTPMP intercalated
trimetal layered double hydroxides (TM LDHs) used PTs by co-precipitation method. The
effect of LDHs on the fire resistance of EP composites was evaluated by studying the
thermal stability, flame retardancy, and smoke/CO release. The relevant mechanisms were
provided by analyzing the gas and condensed phase of the EP matrix.

2. Materials and Methods
2.1. Materials

PTs was selected from a phosphorus chemical industry located in Jinmen Hubei
province. MgCl2·6H2O, AlCl3·6H2O, NaOH, HCl (15%, w/w) and diaminodiphenylmethane
(DDM) were all of analytical reagent grade quality and were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China) Diethylenetriamine pentamethronic acid
(C9H28N3O15P5; DTPMP) was obtained from Aladdin Reagent Co., Ltd. (Shanghai, China).
Epoxy resin (E-44, expoxy equiv 210–230 g/mol, hydrolysable chlorine ≤ 0.5%, inorganic
chlorine ≤ 50 mg/kg, softening point 14–23 ◦C) was purchased by Nantong Xingchen Syn-
thetic Material Co., Ltd. (Jiangsu, China). Deionized water was used in all experimentation.
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2.2. Synthesis of TM-DTPMP LDHs/EP Composite Materials

The synthesis process included the following steps: (1) preparation of TM LDHs by
co-precipitation method; (2) DTPMP intercalation of TM LDHs by ion-exchange method
(TM-DTPMP LDHs); (3) preparation of TM-DTPMP LDHs/EP composites. The whole
synthesis process was described below.

Preparation of TM LDHs from PTs. Generally, PTs were burned at 900 ◦C for three
hours. Subsequently, 25 g of calcined PTs were dissolved in 90 mL HCl (15% w/w), stirred
at 60 ◦C for 30 min, filtered, and then obtained acid solution. Subsequently, the NaOH
solution (200 g/L) was used to adjust the pH of above acid solution to 5, then filtred
to obtain pure solution. Then 20 mL pure solution was injected into 250 mL beakers,
ensuring that the molar ratio of Ca2+ to Mg2+ was 1:2, Ca2+ and Mg2+ to Al3+ was 3:1,
added 0.36 mol/L NaOH to the above pure solution for adjusting pH to 10 with strong
stirring at 60 ◦C for 30 min. Then, the mixture was aged at 90 ◦C for 18 h, centrifuged,
washed with ethyl alcohol absolute for three times, dryed at 55 ◦C vacuum oven for 48 h,
and TM LDHs were obtained.

DTPMP intercalation of TM LDHs by ion-exchange method. An amount of 3 g of
TM LDHs were soluted in 120 mL ultrapure water and then stir at 25 ◦C all day, which
was named as solution A. Then sodium hydroxide solution was added into DTPMP (10 g)
and adjusted pH to 5.5, stirred for 12 h at 25 ◦C, which was named as solution B. After
that solution B was added dropwise to the solution A, stirred at 140 ◦C for 10 h. The
precipitation was filtered and washed with ultrapure water until the supernatant became
neutral, dried at 55 ◦C all day, and then TM-DTPMP LDHs were obtained.

Preparation of TM-DTPMP LDHs/EP composites. An amount of 2 g TM-DTPMP
LDHs dispersed to 20 g EP, assisted with stirring, heated to 90 ◦C for 8 min, and following
added 6 g DDM. After 10 min reaction, the EP based mixture solidified at 100 ◦C for 2 h and
following solidified at 150 ◦C for 2 h. Lastly, TM-DTPMP/EP composites were obtained
after cooling to room temperature.

2.3. Characterization

X-ray diffraction (XRD) was obtained (PANalytical, Almelo, The Netherlands) using
Cu Kα ray with a scan speed of 2◦ (2θ) min−1. Scanning electron microscopy (SEM) images
were investigated by SU 8010 (Hitachi, Tokyo, Japan) with an accelerating voltage of 20 Kv.
The Fourier transform infrared spectroscopy (FT-IR) was performed using Nicolet iS50
(Thermo Scientific, Waltham, MA, USA) with the optical range of 400–4000 cm−1. The
degree of graphitization of residual carbon was determined via a Laser confocal Raman
Spectrometer (SPEX.1403). The thermogravimetric analysis (TGA) was measured using
TA Q5000 (TA Co., Newcastle, DE, USA) at the heating rate of 10 ◦C min−1 under N2
condition with the flow rate of 40 mL min−1. An oxygen index tester (HC-2C, Nanjin,
China) following GB/T2406.2-2009 standards detected the level of burning materials. The
combustion heat release, effective heat, smoke generation and smoke toxicity were test
by using Cone calorimeter (FTT0007, Fire Testing Technology, West Sussex, UK) followed
iso 5660 standards and 35 KW radiation intensity. The sample sizes for cone calorimetry
samples were cuboid 100 × 100 × 10 mm3.

3. Results and Discussion
3.1. Characterization of TM-DTPMP LDHs
3.1.1. Chemical Properties of TM-DTPMP LDHs

The XRD of TM LDHs and TM-DTPMP LDHs composites were showed in Figure 1a.
LDHs at (003), (006), (009), (110), and (113) represented the hydrotalcite structure [23].
The diffraction peaks of (003), (006) and (009) crystal planes can be seen at 11.3◦, 22.97◦

and 34.83◦, which conformed to the diffraction peak angles of TM LDHs XRD crystal
planes [24,25]. The diffraction peaks of TM-DTPMP LDHs located at (003), (006), (009) were
distinctly inclined to low angles. By Bragg’s law (2dsinθ = nλ), the basic distance d(003)
of TM LDH and TM-DTPMP LDH was calculated to be 0.783 and 1.78Å, respectively [26].
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The change of d(003) indicated that DTPMP anions may be inserted into the middle layer
of TM LDHs.
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Figure 1. (a) XRD curves, (b) FT-IR spectras and (c) TG images of TM-DTPMP LDHs and TM LDHs.

As shown in Figure 1b, the FT-IR spectra of TM LDH and TM-DTPMP LDH have ab-
sorption peaks at 3454 cm−1, 3453 cm−1 and 1640, 1645 cm−1, which were attributed to the
O-H band [27]. There were also strong characteristic peaks of CO3

2− in LDHs at 1367 cm−1

and 1372 cm−1 [28]. In the FT-IR spectrum of TM-DTPMP LDHs, the characteristic band at
782 cm−1 might be ascribed to the stretching vibration of C-P [29]. The presence of P-O and
P=O stretching at 978 cm−1 and 1082 cm−1 indicated that DTPMP anions may be inserted
into the TM-LDHs layer [30].

XPS was used to analyze the chemical state of constituent elements and the change
of valence. As shown in Figure 2, it was clear that the samples contained Mg, Al, Ca, O,
N and P elements, which indicated that DTPMP might be inserted between the layers of
hydrotalcite. The binding energies of Mg 1s were found at 1303.4 eV could be attributed to
the active oxides of magnesium [31]. The binding energies of 350.7 eV and 73.8 eV could
be explained by the existence of O-metal CaO and Al2O3, respectively [32,33]. In the N
1s XPS spectrum of TM-DTPMP LDH, there was only one peak at 398.4 eV, which was
corresponded to C-N in DTPMP molecular [34]. The peak located at 132.8 eV assigned to P
2p could belong to the existence of P-O [35]. The peak located at 530.6 eV assigned to O
1s could be attributed to O2− in CaO, MgO and Al2O3 (M-O represent the layered double
hydroxides) [36].
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3.1.2. Microstructure of TM LDHs and TM-DTPMP LDHs

SEM image in Figure 3 showed the microstructure of the as-prepared TM LDHs and
TM-DTPMP LDHs. It can be seen from Figure 3a,b that both TM LDHs and TM-DTPMP
LDHs displayed obvious layered structure, preliminary hinted for the successful synthesis
of hydrotalcite. TM LDHs exhibited layered structure of hydrotalcite-like with nuiform size
and smooth surface. However, TM-DTPMP LDHs presented irregular layered structure
with matte surface. The results indicated that the intercalation of DTPMP may damage the
layered and crystal structure of LDHs.
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3.1.3. Thermal Stability of TM-DTPMP LDHs

The thermal stability of TM LDHs and TM-DTPMP LDHs were determined by TG. As
shown in Figure 1c and Table 1, the weight loss of TM LDHs and TM-DTPMP LDHs below
200 ◦C could be explained by the removal of adsorbed water, which were attached to the
surface of hydrotalcite due to the ambient humidity and incomplete drying [37]. During
the crystallization process in the preparation of hydrotalcite, a large number of anions, such
as carbonate, hydroxide and water molecules are inserted between the layers of LDHs.
Meanwhile, the high degree of weight loss from 200–400 ◦C of TM LDHs and TM-DTPMP
LDHs may be attributed to the removal of interlayer water and CO3

2− [38]. LDHs are
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mixed polymetal hydroxides. When hydrotalcite is calcined at a certain temperature and
converted to a multi-metal mixed metal oxide, the hydroxide radicals in the structure
will be converted into water molecules and overflow. Moreover, the initial temperature
(T5%) and maximum weight loss temperature (Tmax%) of TM LDHs and TM-DTPMP LDHs
were 102.3 ◦C, 328.4 ◦C and 103.5 ◦C, 325.1 ◦C, respectively. At the same time, the amount
of char residual gradually increased from 60.7% of TM LDHs to 67.3% of TM-DTPMP
LDHs. The results indicated that the intercalation of DTPMP contributed to the reduction
of the decomposition temperature of composite materials. The structure of LDHs could
gradually collapse with a temperature above 400 ◦C, which was followed by a loss of
structure water and CO3

2− [39]. According to TG curves, the weight loss of TM LDHs at
end point was higher than that of TM-DTPMP LDHs, which attributed to the incomplete
thermal decomposition of DTPMP in TM-DTPMP LDHs and caused some carbon residues
to remain in the layered double oxides (LDO). The results indirectly showed that a small
amount of carbonate replaced by DTPMP, which was correlated with the chemical analysis.

Table 1. Thermal decomposition parameters of TM LDHs, TM-DTPMP LDHs, EP and TM-DTPMP
LDHs/EP.

Sample T5% (◦C) Tmax (◦C) Residue at 750 ◦C (%)

TM LDHs 102.3 328.4 60.7
TM-DTPMP LDHs 103.5 325.1 67.3

EP 367.5 391.4 22
TM-DTPMP LDHs/EP 340.3 385.6 27.5

3.2. Flame Retardant Performance Analysis of TM-DTPMP LDHs/EP Composites
3.2.1. TG Analysis

The influence of TM-DTPMP LDHs/EP on the degradation behavior of EP was carried
out by TG. It can be seen from Figure 4 and Table 1 that the initial decomposition temper-
ature of EP composite decreases slightly with the addition of TM-DTPMP LDHs, which
was mainly due to the high stability of EP matrix and deprivation of LDHs interlayer and
adsorption H2O. The carbon production was an significant factors to judged the thermal
stability of composites. When the addition quantity of TM-DTPMP LDHs was 8%, T5% and
Tmax% of TM-DTPMP LDHs/EP samples increased to 340.3 and 385.6 ◦C, respectively. At
the same time, the amount of char residual gradually increased from 22% of EP to 27.5% of
TM-DTPMP LDHs/EP. A higher residue is beneficial for the flame retardant performance
as the barrier is increased. In addition the flame retardant mechanism should start before
the matrix decomposes, so that a decrease in decomposition temperature is expected.
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3.2.2. Analysis of Oxygen Index

The limited oxygen index (LOI) is one of the important indexes to evaluate the flame
retardant properties of composite materials. Generally, the higher the value of LOI, the
harder the composite materials is to burn. Figure S1 in Support Information (SI) displayed
the change trend of the LOI under different TM-DTPMP LDHs additions. It showed that
as the TM-DTPMP LDHs addition increased from 0% to 8%, the value of LOI increased
from the initial value of 25.8% to 30.3%. The results indicated that TM-DTPMP LDHs was
conducive to improving the flame retardant performance of EP. It was possible that the
synergistic effect between TM LDH and DTPMP leads to a reduction in the total load of
flame retardant additives, thereby improving the flame retardancy of the the composite
materials [40]. Compared with other inorganic flame retardants in Table S1 [41–43], TM-
DTPMP LDHs exhibited better flame retardant effect. Although the LOI value of the EP
composites with only DTPMP was higher than that of the TM LDH and TM-DTPMP LDHs,
the TM-DTPMP LDHs/EP composite still exhibited a better smoke suppression effect while
maintaining a certain LOI value.

3.2.3. Solid Phase Products of Composites after Combustion Analysis

Raman spectrum was used to analyze the char yield and determine the carbonaceous
quality of TM-DTPMP LDHs/EP. As shown in Figure 5, the peaks were observed at
1360 cm−1 and 1600 cm−1 may be caused by the vibration of carbon atoms from disordered
graphite (D band) and graphitic carbon (G band), respectively. At the same time, the
graphitization degree of composite materials was related to the area ratio of the D band
and the G band (ID/IG) [44]. It can be seen from Figure 5a,b that the ID/IG value (3.46)
of pure EP was higher than that of TM-DTPMP LDHs/EP (2.00), which indicated that
the EP matrix formed more residual carbon with a high graphitization degree under the
addition of TM-DTPMP LDHs. Moreover, higher carbon yield may prevent the transport
of degradation products to the combustion zone, thus reducing the heat release rate and
inhibiting the transfer of heat to the degradation zone.
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SEM images of the carbon residue reserved after combustion of TM-DTPMP/EP
composites and pure EP were used to estimate the flame-retardancy mechanisms. As
shown in Figure 6a–c, the carbon layer of pure EP was porous and disordered, while that
of TM-DTPMP LDHs/EP was dense and flat. When adding LDHs alone, the surface of the
EP after combustion showed a more compact carbon residue and metal oxides. As seen
from EDS analysis of solid residue of TM-DTPMP LDHs/EP in Table S2, it was composed
by Ca, Mg, Al, O, C, P and N. The dense and flat carbon layer acted as a barrier during
the combustion process and can effectively inhibit the transfer of combustion heat and
degradation products [45,46]. Moreover, the results showed that TM-DTPMPLDHs had



Polymers 2022, 14, 725 8 of 13

obvious smoke suppression effect for EP, which was consistent with the results of cone
calorimetry.
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3.2.4. Combustion Behavior Analysis of TM-DTPMP LDHs/EP Composites

The heat release rate (HRR) and total heat release (THR) of EP and TM-DTPMP
LDHs/EP obtained from cone calorimeter (CC) and were shown in Figure 7a,b. It can be
seen that the heat release peak (pHRR) and THR curves of TM-DTPMP LDHs/EP decreased
sharply, reducing by more than 43% and 60%, respectively. The decrease of pHRR indicated
that TM-DTPMP LDHs could be effective in inhibiting the combustion of EP. In addition,
the reduction of THR indicated that coke had been formed duriong the combustion of EP,
which was related to the catalyze effect of TM LDHs and the synergistic effect between TM
LDHs and the nitrogen/acid source in DTPMP [47]. Moreover, the addition of hydrotalcite
reduced the ignition time but reduced the heat release, which may be attributed to the
mixed oxide layer formed by the decomposition of the hydrotalcite and the decomposition
of interlayer DTPMP [47].

CO release is an important factor in evaluating the safe combustion of EP, which
discharged from partial combustion of oxygen-containing groups [48]. The CO release
curves of EP and TM-DTPMP LDHs/EP were obtained from cone calorimeter (CC) and are
shown in Figure 7c,d. It can be seen that the CO release rate of TM-DTPMP LDHs/EP was
1.25 kg/kg, far lower than that of pure EP (10.47 kg/kg), indicating that the addition of
TM-DTPMP LDHs could be conducive to reducing the production of CO and enhancing
combustion safety of EP. The results could be caused by TM LDHs catalyzed EP to reduce
incomplete combustion of oxygen-containing groups.

Generally, dense smoke may suffocate humans and cause death, so smoke formation
is one of the important factors in evaluating flame retardant performance [49]. The results
of smoke formation rate (SPR) and the total smoke production (TSP) obtained from cone
calorimeter (CC) were shown in Figure 7e,f. Compared with EP, the peak values of SPR
(pSPR) and TSP reduced by nearly 64% and 83% for TM-DTPMP LDHs/EP, respectively.
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The obvious reduction of pSPR and TSR indicated that TM-DTPMP LDHs had a significant
improvement on the combustion safety of EP.
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3.2.5. Flame Retardant Mechanism Analysis

The mechanistic illustration of flame retardation of TM-DTPMP LDHs may be ex-
plained by Figure 8. The crystal water and CO3

2− between the layers of hydrotalcite,
and the large amount of -OH on the laminates, make the hydrotalcite release CO2 and
water when it was thermally decomposed, which can effectively dilute the concentration
of combustible gas released and isolate oxygen [50]. The addition of TM-DTPMP LDHs
promoted the decrease of smoke/CO and sped up the coke formation process, which may
be attributed to the catalytic performance of LDHs. The metal hydroxides in TM LDHs
converted to corresponding oxides (LDO) during combustion, especially Ca transforming
to Ca-O, which can catalyze the decomposition of EP and promote the early cross-linking
of the molecular chain. As a result, the carbonization process of EP and the smoke release
during the combustion process were improved.
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Moreover, P-N synergistic effect in the structure of DTPMP between the TM LDHs
layers may also inhibit the combustion of EP. Phosphate will be pyrolyzed to produce
pyrophosphoric acid, metaphosphoric acid and polymetaphosphoric acid, while nitride
will be heated to release gaseous substances such as NH3, H2O and N2 [51]. Pyrophosphoric
acid coats the substrate to form an isolation film. The non-combustible gas released by the
compound and the isolation film will expand the substrate to form a foam layer, reducing
the thermal conductivity. Meanwhile, phosphate also had the effect of catalyzing carbon
formation, and the dense coking carbon structure had a blocking effect on combustion [52].
The synergistic effect of TM-LDH and DTPMP mainly occurs in the gas phase. DTPMP
promotes the rapid decomposition of TM-LDH to release a large amount of water vapor
and carbon dioxide, absorbs the heat of the substrate, reduces the surface temperature, and
also dilutes the oxygen concentration and fiberboard heat. The effect of the concentration
of the combustible gas produced by the solution makes the combustion proceed slowly
and achieves the flame retardant effect. The gas phase flame retardancy of composite flame
retardants is the result of the combined action of “cooling effect” and “dilution effect” [53].
Hence, the synergistic action between TM LDHs and DTPMP can effectively inhibit smoke
and heat release and improve the fire safety of EP.

4. Conclusions

In this work, PTs were used as raw materials for preparation of TM-DTPMP LDHs
by co-precipitation and ion exchange method, and further applied as flame retardant to
enhance the fire safety of EP. The results indicated that the DTPMP intercalated hydrotalcite
exhibited obvious layered structure and the interlayer spacing became larger. Compared
with pure EP, the value of LOI increase from 19.2 to 30.2 with 8 wt% cotent of TM-DTPMP
LDHs. The CC results indicated that the value of pHRR and THR decreased more than
more than 43% and 60% with the addition of TM-DTPMP LDHs, respectively. Meanwhile,
the values of pSPR and TSP reduced nearly 64% and 83%, which indicated the lower release
of combustion heat and smoke during EP combustion. TM-DTPMP LDHs can effectively
inhibit the release of smoke/CO and promote the formation of coke. The enhancement of
TM-DTPMP LDHs to EP combustion safety may be mainly attributed to the conversion of
LDHs to LDO, and the P-N synergistic effect in the structure of DTPMP between the TM
LDHs layers. Therefore, TM-DTPMP LDHs prepared from PTs had great potential to be an
eco-friendly and efficient flame retardant for improving the fire safety of EP.
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