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Thermodynamic properties of the one-dimensional (1D) quan-
tum well (QW) with miscellaneous permutations of the Dirich-
let (D) and Neumann (N) boundary conditions (BCs) at its
edges in the perpendicular to the surfaces electric field E are
calculated. For the canonical ensemble, analytical expres-
sions involving theta functions are found for the mean en-
ergy and heat capacity cV for the box with no applied volt-
age. Pronounced maximum accompanied by the adjacent
minimum of the specific heat dependence on the tempera-
ture T for the pure Neumann QW and their absence for other
BCs are predicted and explained by the structure of the corre-
sponding energy spectrum. Applied field leads to the increase
of the heat capacity and formation of the new or modifica-
tion of the existing extrema what is qualitatively described by
the influence of the associated electric potential. A remark-
able feature of the Fermi grand canonical ensemble is, at any
BC combination in zero fields, a salient maximum of cV ob-
served on the T axis for one particle and its absence for any

other number N of corpuscles. Qualitative and quantitative
explanation of this phenomenon employs the analysis of the
chemical potential and its temperature dependence for differ-
ent N. It is proved that critical temperature Tcr of the Bose-
Einstein (BE) condensation increases with the applied volt-
age for any number of particles and for any BC permutation
except the ND case at small intensities E what is explained
again by the modification by the field of the interrelated ener-
gies. It is shown that even for the temperatures smaller than
Tcr the total dipole moment 〈P〉 may become negative for
the quite moderate E . For either Fermi or BE system, the in-
fluence of the electric field on the heat capacity is shown to
be suppressed with N growing. Different asymptotic cases
of, e.g., the small and large temperatures and low and high
voltages are derived analytically and explained physically. Par-
allels are drawn to the similar properties of the 1D harmonic
oscillator, and similarities and differences between them are
discussed.

1 Introduction

The preceding paper [1] discovered, among other find-
ings, the independence of the sign of the polariza-
tion Pn on the boundary conditions (BCs) for the one-
dimensional (1D) quantum well (QW) of the width L
placed into the uniform electric field E that is directed
perpendicular to its confining surfaces located at x =
±L/2: the polarization P0(E ) of the ground state for any
permutation of the Dirichlet (D),

�

(
± L

2

)
= 0, (1)

and Neumann (N),

� ′
(

± L
2

)
= 0, (2)

edge requirements imposed on the wavefunction �(x)
is positive for all applied voltages while its excited-
state counterparts Pn(E ), n ≥ 1, for the small growing
fields decrease from zero at E = 0 to the negative values,
pass through the minimum and only after this start to
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increase crossing zero at the n- and BC-dependent in-
tensity E ext

n . Immediately, one wonders: for any kind of
the particles, is it possible to observe the total statistically
averaged polarization that is negative at the small elec-
tric forces? Analysis below answers this question together
with the thermodynamic calculations of the correspond-
ing energy E and heat capacity cV . Following the previ-
ous research [1], the QW with the particular distribution
of the BCs will be denoted by the two characters, where
the first (second) one corresponds to the edge condition
at the left (right) interface. Similar to the discussion of
the spectrum En(E ) and polarizations Pn(E ) [1], all en-
ergies will be measured, if not specified otherwise, in
units of π2

�
2/(2mL2), which is a ground-state energy of

the DD QW, while the unit of the electric field will be
π2

�
2/(2emL3), and that of the polarization - eL, with m

being the particle mass and e denoting the absolute value
of the electronic charge. In addition, heat capacity is ex-
pressed below in terms of Boltzmann constant kB . Dis-
cussion considers canonical as well as grand canonical
ensembles. In this last case, the properties are calculated
both for fermions and bosons. Also, frequently we draw
parallels with the 1D harmonic oscillator (HO) with the
potential (in regular units) [2]

VHO(x) = 1
2

mω2x2 (3)

whose energies E HO
n , upon application of the electric

voltage, are

E HO
n = �ω

(
n + 1

2

)
− 1

2
e2E 2

mω2
. (4)

For this configuration, the natural units that will be
used below are: for the energy, �ω; for the length, x0 ≡
[�/(mω)]1/2; for the electric field, �ω/(ex0); and for the po-
larization, ex0.

2 Canonical ensemble

This type of the statistical ensemble assumes that the
system under consideration is in the thermal equilib-
rium with the much larger bath characterized by the
thermodynamic temperature T . The fundamental quan-
tity here is the partition function

Z =
∑

n

e−β En, (5)

where the summation runs over all possible quantum
states, and the parameter β is (in regular, unnormalized

units) β = 1/(kB T). The probability wn of finding particle
in the state n depends on the temperature and the energy
En as

wn = 1
Z

e−β En. (6)

As a result, the mean value 〈I 〉can of any physical quan-
tity I is calculated as

〈I 〉can = 1
Z

∑
n

wnIn =
∑

n Ine−β En∑
n e−β En

. (7)

For the N particles in the system, this equation has to be
multiplied by N. Applying these general results to the QW
with the different BCs in the electric field E , one derives
the mean values of the energy 〈E〉 and polarization 〈P〉

〈E〉can(β, E ) =
∑∞

n=0 Ene−β En∑∞
n=0 e−β En

(8a)

〈P〉can(β, E ) =
∑∞

n=0 Pne−β En∑∞
n=0 e−β En

, (8b)

where in the left-hand side we have explicitly underlined
that they are functions of the temperature T (through
the parameter β) and electric field [through the corre-
sponding dependence of En(E ) and Pn(E )]. Equivalently,
Eq. (8a) can be written as:

〈E〉can = − ∂

∂β
ln Z. (9)

Heat capacity at the constant volume cV is a work that
has to be done to change the temperature of the system
by one degree and, as a result of this, it is calculated as a
derivative of the total energy with respect to the temper-
ature T :

cV = ∂

∂T
〈E〉 = −kBβ2 ∂

∂β
〈E〉, (10)

where regular, unnormalized units have been used. Ap-
plying this generic definition to the canonical distribu-
tion from Eq. (8a), one gets fluctuation-dissipation theo-
rem [2]

ccan(β, E ) = β2 (〈E 2〉can − 〈E〉2
can

)
, (11)

where, for convenience of the notation, the subscript V
has been dropped. Energies En and polarizations Pn for
the QW were calculated before [1] while for the HO they
are:

E HO
n = n + 1

2
− 1

2
E 2 (12a)
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PHO
n = −dE HO

n

dE
= E . (12b)

Note that, contrary to the hard-wall QW [1], for its HO
counterpart the polarization is at any voltage a linear
function of the field and is the same for all levels. Accord-
ingly, its mean value for the one particle is equal to E too
while the energy becomes:

〈
E HO〉

can = 1
2

+ 1
eβ − 1

− 1
2

E 2. (13)

As a result, the electric field does not affect the HO
canonical heat capacity, which reads [2]:

cHO
can(β) = β2 eβ

(eβ − 1)2
. (14)

One can derive limiting cases of these dependencies: for
the small temperatures (β → ∞):

〈
E HO〉

can = 1
2

+ e−β + e−2β + e−3β + · · · − 1
2

E 2 (15a)

cHO
can = β2 (

e−β + 2e−2β + 3e−3β + · · · ) , (15b)

for the large temperatures (β → 0):

〈
E HO〉

can = 1
β

+ 1
12

β − 1
720

β3 + · · · − 1
2

E 2 (16a)

cHO
can = 1 − 1

12
β2 + 1

240
β4 − · · · . (16b)

Before discussing the electric field influence on the
thermodynamic properties of the hard-wall QW, let us
address first the voltage-free configuration. Plugging in
the well known expressions for the zero-field energies

E DD
n (0) = (n + 1)2, E ND

n (0) =
(

n + 1
2

)2

, E NN
n (0) = n2

(17)

into Eq. (9), one gets after some algebra:

〈
E DD〉

can = 1

1 − θ3
(
0, e−β

) d
dβ

θ3
(
0, e−β

)
(18a)

〈
E ND〉

can = − 1

θ2
(
0, e−β

) d
dβ

θ2
(
0, e−β

)
(18b)

〈
E NN〉

can = − 1

1 + θ3
(
0, e−β

) d
dβ

θ3
(
0, e−β

)
. (18c)

Here, θi(z, q), i = 1, 2, 3, 4, are Theta functions [3, 4]. For
small temperatures, β → ∞, these equations degenerate
to

〈
E DD〉

can = 1 + 3e−3β − 3e−6β + 8e−8β + 3e−9β + · · ·
(19a)

〈
E ND〉

can = 1
4

+ 2e−2β − 2e−4β + 8e−6β − 10e−8β + · · ·

(19b)

〈
E NN〉

can = e−β − e−2β + e−3β + 3e−4β − 4e−5β

+ 5e−6β − 6e−7β + 3e−8β + · · · . (19c)

Utilizing transformation properties of the Theta func-
tions [3]

θ3
(
0, e−β

) =
√

π

β
θ3

(
0, e−π2/β

)
(20a)

θ2
(
0, e−β

) =
√

π

β
θ4

(
0, e−π2/β

)
, (20b)

one derives the energies in the opposite limit of the high
temperatures:

〈
E

DD
NN

〉
can

= 1
2β

± 1
2π1/2β1/2

+ 1
β

e−π2/β, β → 0 (21a)

〈
E ND〉

can = 1
2β

− 2π2

β2
e−π2/β, β → 0. (21b)

The corresponding heat capacities cV are calculated
by applying the right-most part of Eq. (10) to the above
dependencies; in particular, one has for the “cold” QW,
β → ∞:

cDD
can = β2 (

9e−3β − 18e−6β + 64e−8β + · · · ) (22a)

cND
can = β2 (

4e−2β − 8e−4β + 48e−6β − 80e−8β + · · · ) (22b)

cNN
can = β2 (

e−β − e−2β + e−3β + 3e−4β − 4e−5β

+ 5e−6β −6e−7β+ 3e−8β + · · · ) ; (22c)

for the hot thermal bath:

cDD,NN
can = 1

2
± 1

4π1/2
β1/2 − π2

β
e−π2/β, β → 0 (23a)

cND
can = 1

2
− 4π2

β
e−π2/β + 2π4

β2
e−π2/β, β → 0. (23b)
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Figure 1 (a) Heat capacity cV and (b) mean energy 〈E〉 as a func-
tion of the normalized temperature β−1 for the canonical ensem-
ble and pure Dirichlet (dotted line), Neumann (solid curve) and ND
(dashed line) QW at zero electric field.

Statistically averaged energies and corresponding
heat capacities are shown in Fig. 1. At the zero tempera-
ture, the total internal energy reduces to the ground-state
energy and the heat capacity is zero, as it should be. As it
follows from Eqs. (19) and (22), their avalanche growth
from the T = 0 values for the purely Neumann QW takes
place at the smaller temperatures as compared to the
mixed BCs, which, in turn, is followed by the quantities
for the Dirichlet structure. This is explained by the grow-
ing difference between the two lowest energies for just
consecutively mentioned BC configurations: the quan-
tity

�n(E ) = En+1(E ) − En(E ) (24)

at the zero field is the smallest (largest) for the Neumann
(Dirichlet) structure:

�NN
n (0) = 2n + 1, �ND

n (0) = 2n + 2,

�DD
n (0) = 2n + 3. (25)

A remarkable feature of the heat capacity depen-
dence is its nonmonotonic behavior for the Neumann
QW: at β−1

max = 0.4342 (βmax = 2.3031) it reaches a pro-
nounced maximum cNN

max = 0.4455 that is followed by
the minimum of cNN

min = 0.3818 located at β−1
min = 0.9420

(βmin = 1.0616). If the maximum is observed quite ex-
actly by keeping only the first term in the parentheses
of the right-hand side of Eq. (22c), the emergence and
precision of the location and magnitude of the second
extremum are described better by keeping more terms
in the same expansion. Physically, this nonmonotonicity
of the heat capacity is attributed to the structure of
the energy spectrum, see Eqs. (17) and (25); namely,
very small temperature promotes the particle mainly
to the first excited level that is only one unit above the
ground state, �NN

0 (0) = 1, with the contribution of the
other levels being negligibly small due to the almost
vanishing exponents in Eq. (8a) or, equivalently, in
Eqs. (19c) and (22c); as a result, the heat capacity grows
rapidly. For the larger temperatures, the occupations
of the higher lying levels become essential; however,
the transitions to them are more difficult since the
difference between, e.g., second and first excited states
�NN

1 (0) = 3 is three times larger than that between the
latter and the ground level. Accordingly, the same speed
of the heat capacity change can not be sustained what
results in the observed maximum. For the other BCs,
the ratio �1(0)/�0(0) is smaller than for the Neumann
QW, as it follows from Eq. (25): �ND

1 (0)/�ND
0 (0) = 2 and

�DD
1 (0)/�DD

0 (0) = 5/3; as a result, for them no extrema
are observed on the cV − T dependence at β−1 � 1.
Mathematically, the drop of the NN specific heat is
caused by the interplay between the counterbalancing
terms β2 and e−β in Eq. (22c) as the temperature grows.
Keeping only the first exponent in the parentheses of
the right-hand side of this equation produces β

NN(1)
max = 2

while the same procedure applied to the other BCs,
see Eqs. (22a) and (22b), results in β

DD(1)
max = 2/3 and

β
ND(1)
max = 1, which are, respectively, three and two times

smaller and lie beyond the range of the validity of these
expansions. Accordingly, for the latter two configura-
tions, it is essential to keep other items in the corre-
sponding series in order for them to be correct at the
decreasing β, and these extra exponents eliminate the
resonance of the first-term approximation while for
the Neumann QW the (negative) second component
simply improves the previous result. Note that the HO
leading term of the capacity expansion from Eq. (15b)
also results in β

H O(1)
max = 2; however, the subsequent (all

positive) items in the series wipe out the extremum. Very
broad and gentle asymmetric maximum is observed at
β−1 � 2.5 for the Dirichlet QW while for the mixed BC
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Figure 2 Mean energy 〈E〉 of the
canonical ensemble in terms of the
electric field E and temperature β−1

for all permutations of the BCs. In each
of the panels, the corresponding type
of the edge requirements is denoted by
the two characters.

the heat capacity is a monotonically increasing func-
tion of the temperature, which, at quite large T , rapidly
approaches the asymptotic value of one half. On the con-
trary, the heat capacity of the symmetric QWs reaches the
same limit much slower, as Eq. (23b) asserts and panel
(a) of Fig. 1 exemplifies. Note that the HO internal energy
for the high temperatures is twice of that for the hard-
wall QW: kB T and 1

2 kB T in regular units, respectively.
From point of view of classical equilibrium statistics that
is applicable for T → ∞, this difference is explained by
the fact that in the former case the kinetic and potential
parts of the motion make equal contributions of 1

2 kB T
to the total energy [2] while for the latter system it is
the kinetic energy only that determines 〈E〉 as the QW
potential is zero. As a direct consequence of this, the QW
heat capacities in the same limit are one half of their HO
counterpart.

Applied electric field modifies the energy spectrum
what, in turn, affects the thermodynamic properties of
the wells. It was shown that the voltage increases the
difference �0(E ) between the ground and first excited
levels for any permutation of the BCs (the only excep-
tion is the ND case at the small fields, see equations (50)
in [1]); accordingly, the larger temperature is needed to
push out the electron from its lowest state. This is re-
flected in Figs. 2 and 3 where the energy 〈E(β, E )〉can and

heat capacity 〈cV (β, E )〉can, respectively, are shown. It is
seen that the β−1 range where the mean energy does
not change appreciably from the ground-state value gets
wider for the stronger intensities E . The same is true
for the heat capacity where the plateau with its almost
zero value grows with the field. The increasing voltage
wipes out the NN minimum of the heat capacity simul-
taneously moving the maximum to the higher tempera-
tures and increasing its magnitude. For each of the mixed
BCs, it also creates a maximum that was absent at E = 0.
Mentioned above DD extremum of the heat capacity gets
narrower and its peak increases with the field growing.
Recalling again the language of the classical statistical
mechanics [2], one qualitatively explains the larger heat
capacities at the nonzero fields by the contribution of the
electric potential; namely, the thermally averaged value
of the potential energy 〈−E x〉 is:

〈−E x〉 = 1
β

(
1 − 1

2
βE coth

1
2
βE

)
. (26)

This classical expression is applicable to our quantum
system for the large temperatures only:

〈−E x〉 ≈ − 1
12

E 2β + 1
720

E 4β3 − · · · , β → 0. (27)
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Figure 3 The same as in Fig. 2 but for
the heat capacity cV .

Then, the potential contribution to the heat capacity
reads:

c pot
V ≈ 1

12
(βE )2 − 1

240
(βE )4 + · · · , β → 0. (28)

Note that, contrary to the HO, the kinetic and poten-
tial contributions to the heat capacity in this case, gen-
erally, are not equal to each other. Let us also mention
once again that the electric field does not affect at all the
HO heat capacity, see Eq. (14), since it simply shifts all the
levels by the same amount, according to Eq. (12a).

Fig. 4 depicts statistically averaged polarizations
〈P〉can in terms of E and β−1. Growing temperature leads
to the decrease of 〈P〉can for all electric fields; however,
thermal energy is not strong enough to make the to-
tal dipole moment negative: for any BC the polarization
stays positive. To understand the statistical properties
better, it is instructive to consider the case of the low
temperatures. For the small voltages, as a first approxi-
mation, we also accept undisturbed by the field energies
from Eq. (17). Then, one has following dependencies:

〈P DD〉 = P0 + (P1 − P0)
(
e−3β − e−6β

)
+ (P2 − P0) e−8β + · · · , β → ∞ (29a)

〈P ND〉 = P0 + (P1 − P0)
(
e−2β − e−4β

)
+ (P2 − 2P0 + P1) e−6β + · · · , β → ∞ (29b)

〈P NN〉 = P0 + (P1 − P0)
(
e−β − e−2β + e−3β

)
+ (P2 − P1) e−4β + · · · , β → ∞. (29c)

These equations were derived under the assumption
of E � 1, but the general property stating that the first-
order temperature correction is determined by P1 − P0,
holds for any electric intensities. For the small fields,
this difference is negative [1] what naturally explains the
decrease of the total polarization with the temperature
growing. In the opposite limit of the high voltages, the
polarizations of the QW with the uniform BCs tend
to the same level-independent value of one-half [1]
what requires larger temperatures in order to see the
deviation of 〈P〉 from its T = 0 value. This is exemplified
in Fig. 4 where the temperature-independent plateau at
T = 0 widens with the field growing. For the mixed edge
requirements, this limiting quantity is supplemented
by the term that is proportional to ±(n + 1/2)−2 with its
sign being determined by the orientation of the BCs [1];
so, for the DN case it is actually possible to observe
the increase of the polarization with the temperature

C© 2015 The Authors. Annalen der Physik published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim 301www.ann-phys.org
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Figure 4 The same as in Fig. 2 but for
the polarization 〈P〉.

growing from zero. This feature is not shown in the
corresponding panel of the figure since it takes place
beyond the figure range 0 ≤ E ≤ 50.

3 Grand canonical ensemble

Grand canonical distribution is used for the description
of the quantum system that, in addition to the thermal
balance with the external reservoir, is also in the chemi-
cal equilibrium with it. Accordingly, the structure can ex-
change the energy as well as particles with the heat bath.
So, the number of the quantum corpuscles N in it can
be changed. The fundamental role in this case is played
by the chemical potential μ, which is defined from the
condition

N =
∑

n

1
e(En−μ)β ± 1

, (30)

where the upper sign corresponds to the Fermi-Dirac
(FD) distribution while the lower one describes Bose-
Einstein (BE) particles. Physically, the difference between
these two statistics is in the fact that each quantum level
can not be occupied by more than one fermion (Pauli ex-
clusion principle) while the arbitrary number of bosons
can coexist in the same state. The distribution function

now depends not only on the energies En but also on
the number of the particles in the system N; namely, for
the physical quantity I its grand canonical average value
〈I 〉gc is

〈I 〉gc =
∑

n

In

e(En−μ)β ± 1
. (31)

Applying the distribution from Eq. (31) for the cal-
culation of the heat capacity, Eq. (10), one finds that its
grand canonical value cgc is

cgc = β2
∑

n

En

(
En − μ − β

∂μ

∂β

)
[
e(En−μ)β ± 1

]2 e(En−μ)β, (32)

where the chemical potential, which, in the case of
fermions, is also frequently called the Fermi level, is cal-
culated, as stated above, from Eq. (30). Physically, the
value of μ corresponds to the energy that is needed
for changing by one the number of the particles in the
system:

μ =
(

∂〈E〉
∂ N

)
T,V

. (33)

For calculating its partial derivative with respect to
the temperature, one should consider Eq. (30) as a con-
dition of zeroing of the implicit function F (μ, β, N) of the
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Figure 5 Chemical potential μN for the
FD distribution of the pure Dirichlet QW
as a function of the electric field E and
temperature β−1 for different number
of fermions N that is depicted in each
panel. Note different μ scale for each
plot. Viewing perspectives for the upper
two panels are different from those for
the other subplots.

chemical potential in terms of the variables β and N:

F (μ(β, N), β, N) = 0. (34)

The rule of differentiating implicit functions states
[9]:

∂μ

∂β
= − ∂ F/∂β

∂ F/∂μ
. (35)

As a result, one finds:

β
∂μ

∂β
=

∑
n

En−μ

[e(En−μ)β±1]2 e(En−μ)β

∑
n

1

[e(En−μ)β±1]2 e(En−μ)β
. (36)

The boson statistics is used for the particles with the
integer spin such as photons or Cooper pairs in super-
conductors while the FD distribution is applied for the

system of the constituents with the half integer spins;
for example, the electron with its spin of 1/2 has, for the
same energy, two projections of its spin equal to ±1/2.
However, in our discussion below we will neglect this fact
and will assume that the number of the fermions for each
energy En is not larger than one.

Fig. 5 depicts the FD chemical potential for the pure
Dirichlet QW as a function of the electric field and tem-
perature for several numbers N. Qualitatively, the same
features are characteristic for other BC permutations too.
There are several distinct regions of the Fermi energy μN

dependence on the temperature. From its E N−1 value at
T = 0 it rapidly grows as

μN = E N−1 − 1
β

ln
1 + √

1 − 4e−�N−1β

2
, β → ∞, (37)
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until it reaches and stays exactly at the value of

μN = 1
2

(
E N−1 + E N

)
, β � 1, (38)

which is due to the interaction of the two correspond-
ing levels that, at the zero temperature, were the high-
est occupied and lowest unoccupied states. The width of
this T-independent plateau is determined by the num-
ber of the particles N and electric field E . For the still
higher temperatures, the chemical potential for N = 1
decreases while for the larger number of particles, N ≥
2, it grows with β−1, reaches maximum and only after
that decreases, passes zero at β(0) and continues to de-
cline into the negative part of the spectrum. For the
nonpositive chemical potentials, μN ≤ 0, Eq. (30) can be
cast into the form

∞∑
m=0

(∓1)meμβ(m+1)
∞∑

n=0

e−β(m+1)En = N, μ ≤ 0. (39)

For the zero field, E = 0, the energy spectrum from
Eqs. (12a) and (17) simplifies this equation as follows:

for the HO:

1
2

∞∑
m=0

(∓1)m eμβ(m+1)

sinh 1
2 β(m + 1)

= N, μ ≤ 0 (40a)

and, for example, for the mixed BCs:

1
2

∞∑
m=0

(∓1)meμβ(m+1)θ2
(
0, e−β(m+1)) = N, μ ≤ 0. (40b)

Putting here the chemical potential equal to zero, μ = 0,
leads to the calculation of β(0). In known to us literature
[3–8], there are no analytical expressions for these infi-
nite series. However, for the very small β, the m = 0 terms
in the above equations make the most significant contri-
butions producing the following dependencies:

for the HO:

μHO(β)
∣∣
E =0 = 1

β
ln(Nβ), β → 0 (41a)

and, for the hard-wall QW with the arbitrary BCs:

μIJ (β)
∣∣
E =0 = 1

β
ln

(
2N

√
β

π

)
, β → 0. (41b)

Superscripts I and J in Eq. (41b) stand for any of the
values of D and/or N. Fig. 5 manifests that, for the larger
N, these asymptotics are achieved at the higher tempera-
tures. As a result, the grand canonical mean energy 〈E〉gc

reads in the same limit:

〈E HO〉gc(β)
∣∣
E =0 = N

β
, β → 0 (42a)

〈E IJ 〉gc(β)
∣∣
E =0 = 1

2
N
β

, β → 0, (42b)

what, by means of Eq. (10), immediately leads to the as-
sociated heat capacities cgc:

cHO
gc (β)

∣∣∣
E =0

= N, β → 0 (43a)

cIJ
gc(β)

∣∣∣
E =0

= N
2

, β → 0. (43b)

A comparison of these remarkable results with
Eqs. (16), (21) and (23) confirms the general property,
which states that for the large temperatures there is
no difference between canonical and grand canonical
distributions [2]. However, for the small T these two
statistics produce very different features. Fig. 6 shows
the FD heat capacity of the pure Dirichlet QW in terms
of the temperature and electric field for the different
N corresponding to their counterparts from Fig. 5. It
is seen that, for the larger number of the particles, the
asymptotics from Eq. (43b) is achieved at the higher T .
At the zero field, a prominent characteristic of the heat
capacity dependence for the one particle (top left panel
of Fig. 6) is a salient maximum cmax = 0.882 observed at
β−1

max = 0.633, i.e., at the right edge of the plateau from
Eq. (38). Accordingly, we attribute this extremum to the
different behavior of the chemical potential for N = 1
and N ≥ 2; namely, as it was mentioned during discus-
sion of Fig. 5, for one particle the Fermi energy decreases
after the flat part from Eq. (38) while for any other num-
ber N it grows with T . Thus, their contributions to the
heat capacity from Eq. (32) are opposite to each other
what results in the resonance that is observed for the one
particle only. Even though the shape of this maximum
is quite similar to its NN counterpart for the canonical
ensemble, see Sec. 2, its physical explanation is com-
pletely different. First, we point out that the very similar
extrema are calculated also for the ND (with cmax = 0.879
and β−1

max = 0.418) and pure Neumann (cmax = 0.878 and
β−1

max = 0.208) QWs too. The fact that the three cmax are
almost the same and the ratios of the three temperatures
Tmax are practically equal to those of �0(0) from Eq. (25),
undoubtedly proves that the origin of this effect is the
BC independent one and that the interplay between
the two lowest states plays a dominant role in it. To
understand these resonances, let us recall that, for the
very small temperatures, the properties of the FD well
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Figure 6 The same as in Fig. 5 but for
the heat capacity cN. Note different c
and β−1 scales for different panels.

are determined only by the highest occupied level and its
interaction with the nearest (empty at T = 0) above lying
state, what is reflected in the extremely rapid approach
by the chemical potential to the energy from Eq. (38) that
is located exactly in the middle between them. For N ≥ 2,
a contribution from the lower lying members in this
regime is negligibly small and can be safely neglected,
while for the one-electron QW this addition is absent by
definition. Further growth of the temperature increases
thermal energy but it is still too “weak” to compel the
corpuscles, which at T = 0 lied below the Fermi energy,
to contribute to the heat capacity. Only at the right
edge of the plateau, the thermodynamic quantum kB T
becomes strong enough and forces other particles to do-
nate to μN and cN. Therefore, for N ≥ 2 the heat capacity
is a quite smoothly varying function of the temperature.
However, for N = 1 there are no such additional donors
that aid to support the continuous growth of the heat

capacity, which can not be sustained by the one particle
only. As a result, the specific heat reaches maximum and
drops.

This qualitative physical reasoning can be corrob-
orated by the simple quantitative mathematical analy-
sis. Fermi level from Eq. (37) defines the corresponding
mean energy and heat capacity as:

〈E〉 =
N−2∑
n=0

En + 1
2

E N−1 + E Ne−�N−1β, β → ∞ (44a)

cV = E N�N−1β
2e−�N−1β, β → ∞. (44b)

On the other hand, for the chemical potential
from Eq. (38) these quantities for one fermion, N = 1,
become:

〈E〉 = E0

1 + e−�0β/2
+ E1

1 + e�0β/2
, β � 1 (45a)
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Figure 7 Total polarization 〈P〉 as a func-
tion of the electric field E at zero tem-
perature, T = 0, for different number of
fermions N that is depicted next to the
corresponding curve.

cV = 1
2
�0β

2

[
E1

e�0β/2(
1 + e�0β/2

)2

− E0
e−�0β/2(

1 + e−�0β/2
)2

]
, β � 1, (45b)

where we take into consideration only the two lowest
states. For the pure Neumann QW without the field, this
last expression takes an especially simple form:

cNN
1

∣∣
E =0 = 1

2
β2 eβ/2(

1 + eβ/2
)2 . (46)

This function has a pronounced maximum of
cmax = 0.878 at βmax = 4.799. A perfect coincidence with
the provided above exact results justifies a validity of the
two-level approximation and proves that the electron
transitions between them determine the specific heat
resonance. It is also very instructive to contrast Eq. (46)
with its canonical counterpart from Eq. (22c) in sec. 2.
The comparison shows that the magnitude of the grand
canonical Neumann extremum is almost two times
larger and it is achieved at more than two times lower
temperature.

Applied field E smooths out and widens this maxi-
mum simultaneously increasing the heat capacity. Sim-
ilar to the canonical ensemble, this growth is explained
by the contribution of the electrostatic potential. How-
ever, the electric influence is drastically decreased by the
growing number of the particles in the QW; for exam-

ple, right-bottom panels exhibit the almost full indepen-
dence of the Fermi energy and heat capacity on the in-
tensity E already for N = 10. This is explained by the
properties of the energy spectrum in the electric field
when the higher lying states (which, in the case of the FD
distribution, determine the features of the system) are
less affected by the applied voltage [1].

Fig. 7 demonstrates zero-temperature FD polariza-
tion for all possible BCs and several numbers N. As the
well accommodates more fermions, the total polariza-
tion becomes smoother function of the electric field. Fig-
ure reveals that, independently of the edge demands, the
magnitude of 〈P〉 at N � 5 grows linearly with the voltage
and the slope of this almost straight line diminishes with
N. For any number of fermions, the total polarization
remains positive at the arbitrary voltage. Nonzero tem-
perature leads to the dependencies that qualitatively are
similar to the canonical patterns, Fig. 4, and, because of
this, the corresponding polarizations are not shown here.

Next, let us discuss bosonic structures. Remarkable
experimental observations of the BE condensation in
the vapors of rubidium [10] and sodium [11] spurred
an avalanche of the research on the subject predicted
almost ninety years ago [12], see, e. g., reviews [13–16].
Theoretically, the main effort was devoted to the cal-
culation of the properties of the BE systems in the 3D
isotropic or anisotropic harmonic traps [13, 17–20] and
their existence/nonexistence in lower dimensions [13,
17, 18, 20, 21]. However, other forms of the confining
potentials [21, 22], including the 3D box with the pe-
riodic [23–25] or uniform [22, 26–29] BCs, were also
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discussed with the comparative analysis of their influ-
ence of the properties of the trap [30–33]. From this point
of view, an inclusion of the electric voltage and different
BCs presents a generalization of the previous analy-
sis. Moreover, overwhelming majority of the research
concentrated on the analysis of the BE systems in the
thermodynamic limit when the number of the particles
and the volume containing them tend to infinity while
the the density is kept constant. In this approximation,
the infinite series above in this section can be safely
replaced by the integrals [13, 14, 16]. Considering N
changing from one to the large values might help to
understand the formation of the BE processes with the
the number of the particles growing. First, we state that
Eqs. (41)–(43) stay valid for the BE statistics too since
they were obtained as a result of retaining the first term
in the series from Eq. (40). In the opposite limit of the
very small temperatures, it is elementary to derive:

μN = E0 − 1
β

ln
(

1 + 1
N

)
, β → ∞, (47a)

what leads to the mean energy and heat capacity:

〈E〉N = NE0 + N
N + 1

E1e−�0β, β → ∞, (47b)

cN = N
N + 1

E1�0β
2e−�0β, β → ∞. (47c)

An important characteristic of the BE system is its
critical temperature Tcr . It corresponds to the situation
when the chemical potential is equal to the energy of the
lowest level, μ = E0, and the number of the particles in
this state N0 is zero what leads to the implicit mathemat-
ical equation for finding βcr

∑
n=1

1
e(En−E0)βcr − 1

= N. (48)

Physically, it is the largest temperature at which the
BE condensation still can be observed, and at the lower
T the fraction N0/N of the particles in the ground state
will increase until at T = 0 it becomes unity:

N0/N|T=0 = 1. (49)

Fig. 8(a) shows dependencies of the critical parameter
β−1

cr on the applied voltage for all possible BCs and several
numbers N. In accordance with the previous results [13],
the temperature Tcr increases with N. In the absence of
the fields, the lowest (highest) temperature is observed
for the pure Neumann (Dirichlet) QW what is a reflection

Figure 8 (a) Critical temperatures β−1
cr and (b) corresponding to

them polarizations 〈Pcr 〉 from Eq. (50) as functions of the applied
electric field E for different number N of bosons that are depicted
near the corresponding curves. Solid (dotted) lines are for the pure
Dirichlet (Neumann) BC while their dash (dash-dotted) counter-
parts denote DN (ND) geometry. In panel (b), thin horizontal line
is zero polarization.

of the corresponding spectrum from Eq. (17) and the en-
ergy difference between the affiliated states, see Eq. (25).
Electric field leads to the modification of the mutual lo-
cation of the levels on the energy axis; in particular, at
the small voltages, the two lowest states move closer to
each other for the ND geometry while the difference
E1 − E0 grows with the field for all E and any other BC
configuration [1]. As a result, the critical temperature for
the former edge requirement decreases with the growing
from zero field, passes through minimum and then un-
restrictedly grows with the electric intensity while for all
other BCs it is a continuously increasing function of E .
At the high voltages, the energy spectrum is determined
mainly by the condition at the right wall [1] what leads
to almost the same critical temperature for, e. g., the NN
and DN wells. Note that in this regime, contrary to the
zero fields, the Dirichlet requirement is more favorable to
the formation of the BE condensate as compared to the
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Figure 9 Bosonic heat capacity cV of
the pure Neumann QW as a function of
the applied electric field E and temper-
ature β−1 for (a) N = 3, (b) N = 1000
and (c) N = 105. Note that in the last
two cases the temperature is scaled in
units of the critical temperature β−1

cr

while the corresponding z axes measure
specific heat per particle c/N. Panel (d)
shows the chemical potential μ for N =
105 with the corresponding heat capac-
ity depicted in part (c).

Neumann interface. This is explained by the larger level
separation for the latter geometry at the high voltages [1].

As the ground-state polarization is positive for all
fields and BCs [1], one can expect that at the onset of the
BE condensation the total statistically averaged dipole
moment will, at the small voltages, be negative. This is
exactly what is observed in panel (b) of Fig. 8 that shows
the polarizations 〈Pcr 〉 corresponding to the critical tem-
peratures β−1

cr from panel (a). They were calculated from
equation

〈Pcr 〉 =
∞∑

n=1

Pn

e(En−E0)βcr − 1
, (50)

and, as stated above, the critical temperature β−1
cr was

found from Eq. (48). The characteristic features of the
critical polarizations basically follow the properties of
the first excited state: from zero they decrease with the
growth of the field, reach minimum after which they in-
crease. However, for the large voltages many upper ly-
ing states are occupied and contribute to the total dipole
moment. As a result, the high-field 〈Pcr 〉 for one boson
is considerably smaller than P1. The absolute value of
the negative polarization at the extremum grows with the
number of the particles with the largest one, at the fixed
N, being observed for the pure Neumann QW followed by
its ND counterpart what is a replica of the similar behav-

ior for the first excited level [1]. For the temperatures be-
low Tcr , the nonzero occupation of the ground state con-
tributes a positive term to the polarization what leads to
the gradual disappearance of the negative region of the
total dipole moment 〈P〉 with the decreasing tempera-
ture until at T = 0 it becomes NP0, which is positive for
any BC and arbitrary fields [1].

As a final example, Fig. 9 exhibits evolution of the heat
capacity and chemical potential with the varying electric
field and temperature for the pure Neumann QW. It is
seen that for the small number of bosons, say, N = 3 in
panel (a), the applied voltage leads, at quite warm sam-
ple, to the increase of cV while at the small T , the width of
the temperature-independent zero-capacity plateau in-
creases with the field. These features were discussed be-
fore for the canonical ensemble. Increasing the number
of the particles in the well leads to the suppression of the
voltage dependence, as a transition from panel (a) to (b)
with N = 1000 and (c) for N = 105 vividly demonstrates.
No any noticeable field dependence is seen there in the
range 0 ≤ E ≤ 50. It is well known that for some poten-
tials, such as, e.g., the 3D isotropic harmonic trap [14,
16, 18, 19, 34, 35], the heat capacity has a cusp-like pecu-
liarity as it passes through the critical temperature while
for the 1D quadratic potential it is a smooth function of
T [16, 18, 35]. Fig. 9 exemplifies that no any peculiarity is
observed for the 1D hard-wall potential with Neumann
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surfaces and arbitrary applied electric fields. Our calcu-
lations confirm that the same is true for any other BCs.
Finally, panel (d) shows that the chemical potential μ is
a monotonically decreasing function of both the elec-
tric field E and temperature T . It is seen that the grow-
ing temperature diminishes the voltage influence on the
chemical potential.

4 Concluding remarks

Rigorous mathematical treatment of the QW with miscel-
laneous BCs under the applied voltage revealed a strong
influence of the interplay between them on the thermo-
dynamic properties of the structure. In particular, with-
out the field the differences of the energy spectrum lead,
for the canonical ensemble, to the conspicuous maxi-
mum followed by the minimum of the heat capacity cV

on the temperature axis for the NN quantum box while
for the other edge requirements no such adjacent ex-
trema are observed. Modification of the specific heat and
statistically averaged polarization in the field is qualita-
tively explained by the influence of the associated elec-
trostatic potential. Numerical calculations, which pre-
dicted, for the flat potential with the arbitrary BC, a
salient maximum of cV as a function of T for one fermion
and its absence for the larger N, were corroborated by
the two-level model that allows simple analytical treat-
ment with its predictions perfectly coinciding with the
exact results. From this, a clear physical explanation of
this phenomenon follows that is based on the analysis of
the associated Fermi energy. It is predicted that the ap-
plied field, in general, favors the formation of the BE con-
densate, and the differences and similarities of this pro-
cess for the different BCs are discussed. The thermally
averaged dipole moment is shown to take the negative
values in some ranges of the fields and temperatures. It is
also argued that for the larger number of either fermions
or bosons in the QW, the influence of the electric field on
the thermodynamic properties diminishes.

Dirichlet and Neumann conditions are the limiting
cases of the so called Robin BC [36]

n∇�|S = 1
	

�

∣∣∣∣
S

, (51)

where n is an inward unit normal to the surface, and
the parameter 	 has a dimension of length and is called
the extrapolation distance. Its variation allows a contin-
uous transformation from the Dirichlet (	 = 0) to the
Neumann (	 = ∞) situation. Without the field, espe-
cially intriguing are the properties of the QW at the small

negative Robin lengths, 	 → −0, when, in addition to
the positive spectrum, two almost degenerate odd and
even levels with the energies E ∼ −1/(π	)2 are created
[37]. Analysis of the Robin QW in the electric field might
present an interesting extension of the present research.
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