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The gastrointestinal motility is regulated by extrinsic and intrinsic neural regulation. Intrinsic neural pathways are controlled by 
sensory input, inter-neuronal relay and motor output. Enteric motor neurons release many transmitters which affect post-junc-
tional responses. Post-junctional responses can be excitatory and inhibitory depending on neurotransmitters. Excitatory neuro-
transmitters induce depolarization and contraction. In contrast, inhibitory neurotransmitters hyperpolarize and relaxe the gas-
trointestinal smooth muscle. Smooth muscle syncytium is composed of smooth muscle cells, interstitial cells of Cajal and plate-
let-derived growth factor receptor α-positive (PDGFRα+) cells (SIP syncytium). Specific expression of receptors and ion channels 
in these cells can be affected by neurotransmitters. In recent years, molecular reporter expression techniques are able to study 
the properties of ion channels and receptors in isolated specialized cells. In this review, we will discuss the mechanisms of ion 
channels to interpret the post-junctional responses in the gastrointestinal smooth muscles.
(J Neurogastroenterol Motil 2013;19:426-432)
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Introduction
Stimulation of enteric motor neuron releases many neuro-

transmitters and neuropeptides. To evoke post-junctional electrical 
responses, many ion channels in smooth muscle cells (SMCs) or 
specialized cells (e.g., interstitial cells of Cajal [ICC] and plate-
let-derived growth factor receptor α-positive [PDGFRα+] cells) 
can be activated.1,2 Post-junctional responses can be categorized 
by 2 components: excitatory junction potentials (EJPs) and in-
hibitory junction potentials (IJPs). EJPs are mediated by ace-

tylcholine (ACh) and neurokinins (NKs). Muscarinic receptors 
respond to ACh released from cholinergic neurons. Muscarinic 
receptors (M2 and M3) are expressed in the gastrointestinal 
(GI) smooth muscle. Three neurokinins (NKs) are substance P, 
neurokinin A and neurokinin B. These NKs are mediated by ac-
tivation of neurokinin receptors (NK1-3). IJPs are mediated by 
purines, nitric oxide (NO), vasoactive intestinal peptide (VIP) 
and pituitary adenylate cyclase-activating peptide (PACAP). 
Purines bind to purinergic receptors, in particular P2Y receptors. 
NO directly activates soluble guanylate cyclase. VIP and 
PACAP act through VPAC1 and VPAC2. Besides NO, most 
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Figure 1. Possible post-junctional mechanisms responsible for 
cholinergic excitation. Acetylcholine (ACh) is coupled to Gq/11 protein 
and activates conductance(s) through inositol 1,4,5-triphosphate 
receptor (IP3R) in interstitial cells of Cajal (ICC) and smooth muscle 
cells (SMC). ACh might also be coupled to G12/13 protein and activate 
Rho-Kinase (RhoK) pathway to induce contraction in SMC. ER, 
endoplasmic reticulum; PLC, phospholipase C; DAG, diacyl glycerol; 
PKC, protein kinase C; CaCC, Ca2+-activated Cl- channels; NSCC, 
non-selective cation channels; GJ, gap junction; MLCP, myosine light 
chain phosphatase.

neurotransmitters or neuropeptides are coupled to G-proteins. 
These G protein coupled receptors have a unique relationship 
with specific G-proteins and thus activate ion channels in unique 
ways. Recently the post-junctional responses are focused on the 
roles of intermediary cells between neurons and SMCs. These 
cells are ICC and PDGFRα+ cells.1,2 Thus, in this review, we 
will discuss the ion channel candidates with cell-specific roles 
which can be modulated by neurotransmitters or neuropeptides. 

Cholinergic Excitatory Response
ACh is the major excitatory neurotransmitter3 and plays a 

primary role in increasing the contractile force in GI motility. 
Cholinergic excitatory responses are mediated by 2 types of mus-
carinic receptors (M2 and M3).4 M2 receptors are highly ex-
pressed in SMC. M2 receptors act via Gi/o proteins which de-
crease the production of cAMP. ICC expresses mainly M3 
receptors.5,6 M3 receptors are coupled to Gq/11 which activates 
phospholipase C (PLC) and its downstream signaling pathways. 
Activation of PLC hydrolyzes phosphatidylinositol 4,5-bispho-
sphate (PIP2) into diacylglycerol and inositol-1,3,4-triphosphate 
(Ins-1,4,5-IP3).

7,8 The PLC blocker U-73122 and the anti-Gq/11 
antibody inhibit muscarinic activation of non-selective cation cur-
rents (mICAT) in murine gastric myocytes.9 The effects of inhibit-
ing PLC on mICAT were found to be independent of triphos-
phage (IP3), diacylglycerol or Ca2+ store depletion in guinea pig 
ileal myocytes10 and in murine gastric myocytes.11 One inter-
pretation of this finding is that activation of PLC is coupled to 
M2 receptors by β dimers released from Gi/o proteins.12,13 
However, there is no direct evidence of Gi/o-mediated regulation 
of mICAT in GI smooth muscle to date. In studies of the IP3 
mediated pathway, flash photolysis of “caged” IP3 augmented 
mICAT in guinea-pig ileal cells suggesting that IP3 receptor-medi-
ated release plays a central role in modulation of mICAT.14 
Intracellular Ca2+ has been shown to facilitate mICAT in certain 
species.15,16 Interestingly, the inhibitory effect of Ca2+-dependent 
PKC on mICAT suggests that endogenous stimulation of PKC by 
ACh might be responsible for desensitization of mICAT.17

The Rho-kinase (RhoK) pathway is a major signaling cas-
cade that controls GI smooth muscle contraction. Recently there 
have been many reports about the importance of this pathway in 
GI muscle.18-21 The initiating step in this pathway is the small 
GTPase, RhoA that is activated by receptors coupled to G12/13. 
M3 receptors also couple through G12/13 and Gq/G11 can also rap-
idly activate RhoA.22 In the active GTP-bound state, RhoA asso-

ciates with its main downstream effector, RhoK and inhibits my-
osin light-chain phosphatase (Fig. 1), thus increasing the phos-
phorylation state of myosin and the contractile responses to intra-
cellular Ca2+ [Ca2+]i. However, it is important to note the 
non-specificity of RhoK inhibitors. Studies of GI muscle have 
neglected the fact that RhoK may also be coupled to membrane 
excitability mechanisms. In addition recent studies have indicated 
that the RhoA signaling modulates a growing number of ion 
channels.23-25 RhoK has also been suggested to affect Ca2+ influx 
through inhibition of non-selective cation channels (NSCC).26,27 
It is worthwhile to note that the pharmacology of native NSCC is 
complicated and there are no specific blockers for these channels. 
Therefore, studying the role of NSCC in tissue experiments is 
still problematic.

NSCC is important conductance in understanding the fun-
damental excitatory pathway in GI SMC, but evidence to date 
suggests that cholinergic activation of these channels is unlikely 
to occur to any great extent in vivo. In W/W v murine fundus 
which ICCs were ablated, the EJP was abolished suggesting that 
cholinergic activation of the gut appears to occur primarily 
through activation of M3 receptors in ICC.28,29 Recently, many 
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Figure 2. Possible post-junctional mechanisms responsible for pur-
inergic inhibition. Purines (ATP and β-NAD) are coupled to Gq/11

protein and activate conductance(s) through inositol 1,4,5-triphosphate 
receptor (IP3R) in platelet-derived growth factor receptor α-positive 
cells (PDGFRα+ cell) and smooth muscle cells (SMC). ER, 
endoplasmic reticulum; PLC, phospholipase C; DAG, diacyl glycerol; 
PKC, protein kinase C; SK3, small-conductance Ca2+-activated K+

channels type 3; NSCC, non-selective cation channels; GJ, gap junction.

studies reported that ICC uniquely express the Ano1 (Tmem16a) 
transcript and protein.30-32 Ano1 is a molecular candidate for 
Ca2+-activated Cl- channels (CaCC) which could be another can-
didate conductance in response to ACh (Fig. 1). Activation of 
M3 receptors by ACh in ICC increases intracellular Ca2+ 
through the PLC-downstream pathway. Thus, an increase in 
Ca2+ can activate Cl- conductance. However, this hypothesis has 
not been carefully studied. Interestingly, mice which express 
copGFP constitutively only in ICC displayed functional ex-
pression of ANO1 in small intestinal smooth muscle.31,32 Using 
isolated ICC cells from these mice, the characterization of acti-
vated currents by muscarinic agonists will be important to inter-
pret the ionic conductance responsible for EJP. Another strong 
approach will be generation of Ano1 knockout (KO) mice. 
Unfortunately, the conventional Ano1 KO mouse dies within 20 
days after birth. It is necessary to generate an inducible Ano1 KO 
mouse to elucidate the functional role of CaCC in ICC in re-
sponse to EJP. 

Peptidergic Excitatory Response
It has been suggested that high frequency stimulation of elec-

trical field stimulation (EFS) (＞ 10 Hz) releases neuropeptides. 
NKs and tachykinins are the candidates for excitatory peptides. 
Substance P binds to neurokinin 1 (NK1) receptors, neurokinin 
A (NKA) binds to neurokinin 2 (NK2) receptors and neurokinin 
B (NKB) binds to neurokinin 3 (NK3) receptors.33 Activation of 
these receptors induces activation of PLC and produces IP3. 
Thus, we speculate that the functional role of NKs is not much 
different from ACh. Activation of these receptors induces depo-
larization and contraction. The distribution of NK receptors is 
interesting. The NK1 receptor is mainly expressed in ICC and 
NK2 receptors are expressed in SMC.34,35 Application of NKA 
and substance P in canine colonic SMC activates NSCC similar 
to mICAT.36 In tissue experiments, W/W v and Ws/Ws fundus re-
vealed that substance P-mediated excitation with the marked 
spontaneous phasic contraction was augmented compared to wild 
type. These data suggest that the absence of ICC would give the 
musculature unmasked access to substance P since fundic ICC 
are innervated by dominantly inhibitory neurotransmitter (e.g., 
NO). Although there is no report about the effects of NKs on 
ICC conductance, it will be worthwhile to characterize the ionic 
conductance activated by NKs in comparison with the ionic con-
ductance in SMC. It might be possible to activate CaCC through 
the PLC-downstream pathway with an increase in intracellular 

Ca2+ by NKs in ICC.

Purinergic Inhibitory Response
EFS evoked a EJP followed by a fast hyperpolarization (fast 

IJP) in GI smooth muscle. The phenomenon resulted from acti-
vation of P2Y receptors by purines (mainly ATP or 
β-NAD).37-41 There are eight identified human P2Y receptors: 
P2Y1,2,4,6,11,12,13,14.

42 The P2Y1-P2Y11 receptors are coupled via 
Gq/11 and P2Y12-P2Y14 receptors are coupled via Gi/o.

42 Recent 
evidence showed that P2Y1 receptor has the most prominent role 
in fast IJP. MRS2500, a specific blocker for the P2Y1 receptor, 
completely abolished fast IJP.37-40 Furthermore, P2ry1 KO mice 
showed the absence of fast IJP.39,40 P2Y1 receptors are coupled to 
Gq/11 and activate PLC downstream signaling. An increase in IP3 
production and in turn, release of intracellular Ca2+ from IP3 
Ca2+ store may be the key component. Ca2+-dependent K+ con-
ductance(s) is the main candidate to generate hyperpolarization. 
Apamin, a blocker of small-conductance Ca2+-activated K+ (SK) 
channels, inhibits partially the fast IJP.41,43,44 Thus, activation of 
SK channels coupled to P2Y1 receptor could be one of the main 
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Figure 3. Possible post-junctional mechanisms responsible for nitrer-
gic inhibition. Nitric oxide (NO) directly activates soluble guanylate 
cyclase (sGC) and activates conductance(s) through various possible 
mechanisms in interstitial cells of Cajal (ICC) and smooth muscle cells 
(SMC). ER, endoplasmic reticulum; cGMP, 3’,5’-guanosine cyclic 
monophosphate; PKG, protein kinase G; PDEs, phosphodiesterases; 
cAMP, 3’5’-adensosine cyclic monophosphate; PKA, protein kinase A.
SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; CaCC, Ca2+- 
activated Cl- channels; NSCC, non-selective cation channels.

responses to generate fast IJP. It is important to discuss the speci-
alized cell in response to fast IJP. Previously, the purinergic in-
hibitory response was regarded to result from the activation of SK 
channel in SMC.45,46 However, recently the fibroblast-like cells 
were identified as PDGFRα immunoreactive positive cell, con-
firmed by using transgenic mice which expressed eGFP in nuclei 
(PDGFRα+ cell).47-49 PDGFRα+ cell under patch clamp dis-
played a large outward current which was inhibited by apamin.49 
The current density of PDGFRα+ cells is much higher than in 
SMC. Thus, there is strong possibility that fast IJP responses 
evoked by purines are mediated through P2Y1 receptor and SK 
channels in PDGFRα+ cells (Fig. 2). This hypothesis still needs 
to be confirmed with inducible Pdgfrα KO mice since conven-
tional Pdgfrα KO mice are not viable. 

Nitrergic Inhibitory Response
Enteric nitric oxide synthase (NOS) containing inhibitory 

neurons releases NO.50 NO induced slow hyperpolarization (slow 
IJP) and relaxed GI smooth muscle by neural stimulation.51-55 
NO activates soluble guanylate cyclase, produces 3’,5’-guanosine 
cyclic monophosphate (cGMP), and activates protein kinase G 
(PKG). NOS inhibitors (e.g., L-NNA) and soluble guanylate 
cyclase inhibitors (e.g., ODQ) abolish slow IJP.56 Firstly, slow 
IJP could be due to activation of K+ conductance. Functional 
presence of stretch-dependent K+ (SDK) channels has been re-
ported in colonic myocytes.57,58 SDK channels are activated by 
NO, a membrane-permeable analogue of cGMP and PKG. 
L-methionine and its derivatives inhibit SDK channels and de-
crease the evoked slow IJP.59 TREK-1 channel has been found to 
be a molecular candidate for native SDK channels in murine co-
lonic myocytes.60 TREK-1 channel has a similar single channel 
conductance and regulatory properties including the effects of 
NO and membrane permeable analogue of cGMP. Secondly, 
slow IJP could also be due to inhibition of inward conductance. 
There are reports that slow IJP, particularly in esophageal 
smooth muscle, is due to inhibition of CaCC in tissue experi-
ments.61,62 As is known, CaCC blockers are notorious by 
non-specificity. The inhibition of CaCC in SMC by NO has not 
been reported to date. Thus, the candidate of ionic conductance 
for slow IJP is still controversial. It is important to note that the 
NO component of IJP (sIJP) was abolished in ICC ablated mice 
(W/W v and Sl/Sl d) and rat (Ws/Ws).63-65 Recently, an ICC-spe-
cific deletion of PKG decreased the slow IJP66 (Fig. 3). These 
data suggest that the slow IJP may be evoked by PKG activation 

and may not be due to the activation of ion channels in SMC but 
in ICC. We need to consider that phosphodiesterase 3a is highly 
expressed in ICC.6 This enzyme is inhibited by cGMP. Inhibi-
tion of phosphodiesterase 3a can increase the concentration of 
cAMP and activity of protein kinase A (PKA). PKA including 
PKG might involve the phosphorylation of phospholamban in 
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in ICC, 
and in turn Ca2+ influx into the endoplasmic reticulum might be 
augmented (Fig. 3). In addition to activation of K+ conductance 
by PKG, it is possible to inhibit Ca2+-activated inward con-
ductance in ICC during NO release. Thus, it will be very im-
portant to investigate ionic conductance(s) evoked by NO and its 
intracellular signaling mechanisms in freshly dispersed ICC.

Peptidergic Inhibitory Response
VIP and PACAP are known to be enteric inhibitory pep-

tides.67 These peptides induce hyperpolarization and relaxation of 
the GI smooth muscle.68 In rat colonic smooth muscle, the VIP 
antagonist (VIP10-28) blocked the inhibitory response elicited 
by EFS.69 Two VIP receptors, VPAC1 and VPAC2 are activated 
by both peptides. VPAC2 is predominantly expressed in the GI 
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tract.68,70 This receptor is coupled to Gs and increases the pro-
duction of cAMP. VIP activates delayed rectifying K+ currents 
(KDR) via PKA activation in SMC.71 However, KDR currents are 
voltage-dependent and thus have a threshold for activation (∼40 
mV). The activation of KDR currents cannot undergo further hy-
perpolarization from the resting membrane potentials. In con-
trast, PACAP induced-hyperpolarization was inhibited by apa-
min suggesting that activation of SK channel may be mediated 
through VPAC1 receptors which are coupled to Gq/11.

67,69 
However there is no clear study of ion channels regarding how 
VIP and PACAP can induce hyperpolarization. Also, no study 
has shown what types of cells (ICC or PDGFRα+ cell) are medi-
ated by peptidergic inhibitory responses.

In conclusion, it is not clear what types of receptors, ion chan-
nels and cells stimulated by enteric motor neurons are involved in 
post-junctional responses. Studies with animal models (e.g., 
W/W v, Ws/Ws and Sl/Sl d etc) suggested that specialized cells are 
involved in post-junctional responses. For instance, ICC are cou-
pled to SMC through gap junction. PDGFRα+ cells have a sim-
ilar electrical coupling to SMC. Thus it is possible that neuro-
transmitters and possibly peptides can bind to the receptors in 
these specialized cells, generate electrical events and conduct 
these electrical events to the SMC. Three types of cells (SMC, 
ICC and PDGFRα+ cell) can be candidates in response to neu-
rotransmitters and neuropeptides. Many studies in tissue experi-
ments have relied on pharmacology. Many receptor antagonists 
and some ion channel blockers are non-specific. This non-specif-
icity can be solved by direct investigation of functional expression 
of ion channels in these cell types. Since there was only a limited 
approaches to isolate and separate the specialized cells (e.g., ICC 
and PDGFRα+ cell), the characterization of ionic conduct-
ance(s) in SMCs has been studied extensively. Recent transgenic 
approaches make it possible to identify ICC and PDGFRα+ 
cells. Characterization of the ion channels in these cells activated 
by neurotransmitters and neuropeptides will elucidate new con-
cepts of electrophysiology of GI smooth muscle. Finally we have 
to consider the difference of electrical responses in the human GI 
smooth muscle. Although many transgenic animals will be gen-
erated and developed for the future, studies on ionic conductance 
activated by transmitters or peptides using human smooth muscle 
should be emphasized.
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